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Abstract

Existing image-based activity understanding methods

mainly adopt direct mapping, i.e. from image to activ-

ity concepts, which may encounter performance bottleneck

since the huge gap. In light of this, we propose a new path:

infer human part states first and then reason out the ac-

tivities based on part-level semantics. Human Body Part

States (PaSta) are fine-grained action semantic tokens, e.g.

〈hand, hold, something〉, which can compose the activi-

ties and help us step toward human activity knowledge en-

gine. To fully utilize the power of PaSta, we build a large-

scale knowledge base PaStaNet, which contains 7M+ PaSta

annotations. And two corresponding models are proposed:

first, we design a model named Activity2Vec to extract PaSta

features, which aim to be general representations for var-

ious activities. Second, we use a PaSta-based Reason-

ing method to infer activities. Promoted by PaStaNet, our

method achieves significant improvements, e.g. 6.4 and 13.9

mAP on full and one-shot sets of HICO in supervised learn-

ing, and 3.2 and 4.2 mAP on V-COCO and images-based

AVA in transfer learning. Code and data are available at

http://hake-mvig.cn/.

1. Introduction

Understanding activity from images is crucial for build-

ing an intelligent system. Facilitated by deep learning,

great advancements have been made in this field. Recent

works [7, 64, 61, 40] mainly address this high-level cog-

nition task in one-stage, i.e. from pixels to activity con-

cept directly based on instance-level semantics (Fig. 1(a)).

This strategy faces performance bottleneck on large-scale

benchmarks [3, 24]. Understanding activities is difficult for

reasons, e.g. long-tail data distribution, complex visual pat-

terns, etc. Moreover, action understanding expects a knowl-

edge engine that can generally support activity related tasks.
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Figure 1. Instance-level and hierarchical methods. Besides the

instance-level path, we perform body part states recognition in

part-level with the PaSta annotations. With the help of PaSta, we

can significantly boost the performance of activity understanding.

Thus, for data from another domain and unseen activities,

much smaller effort is required for knowledge transfer and

adaptation. Additionally, for most cases, we find that only a

few key human parts are relevant to the existing actions, the

other parts usually carry very few useful clues.

Consider the example in Fig. 1, we argue that perception

in human part-level semantics is a promising path but previ-

ously ignored. Our core idea is that human instance actions

are composed of fine-grained atomic body part states. This

lies in strong relationships with reductionism [10]. More-

over, the part-level path can help us to pick up discrimi-

native parts and disregard irrelevant ones. Therefore, en-

coding knowledge from human parts is a crucial step to-

ward human activity knowledge engine. The generic object

part states [39] reveal that the semantic state of an object

part is limited. For example, after exhaustively checking

on 7M manually labeled body part state samples, we find

that there are only about 12 states for “head” in daily life

activities, such as “listen to”, “eat”, “talk to”, “inspect”,

etc. Therefore, in this paper, we exhaustively collect and

annotate the possible semantic meanings of human parts in

activities to build a large-scale human part knowledge base

PaStaNet (PaSta is the abbreviation of Body Part State).

Now PaStaNet includes 118 K+ images, 285 K+ persons,
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250 K+ interacted objects, 724 K+ activities and 7 M+ hu-

man part states. Extensive analysis verifies that PaStaNet

can cover most of the the part-level knowledge in general.

Using learned PaSta knowledge in transfer learning, we can

achieve 3.2, 4.2 and 3.2 improvements on V-COCO [25],

images-based AVA [24] and HICO-DET [3] (Sec.5.4).

Given PaStaNet, we propose two powerful tools to pro-

mote the image-based activity understanding: 1) Activ-

ity2Vec: With PaStaNet, we convert a human instance into

a vector consisting of PaSta representations. Activity2Vec

extracts part-level semantic representation via PaSta recog-

nition and combines its language representation. Since

PaSta encodes common knowledge of activities, Activ-

ity2Vec works as a general feature extractor for both seen

and unseen activities. 2) PaSta-R: A Part State Based Rea-

soning method (PaSta-R) is further presented. We construct

a Hierarchical Activity Graph consisting of human instance

and part semantic representations, and infer the activities by

combining both instance and part level sub-graph states.

The advantages of our method are two-fold: 1)

Reusability and Transferability: PaSta are basic com-

ponents of actions, their relationship can be in analogy

with the amino acid and protein, letter and word, etc.

Hence, PaSta are reusable, e.g., 〈hand, hold, something〉
is shared by various actions like “hold horse” and “eat ap-

ple”. Therefore, we get the capacity to describe and dif-

ferentiate plenty of activities with a much smaller set of

PaSta, i.e. one-time labeling and transferability. For few-

shot learning, reusability can greatly alleviate its learn-

ing difficulty. Thus our approach shows significant im-

provements, e.g. we boost 13.9 mAP on one-shot sets of

HICO [4]. 2) Interpretability: we obtain not only more

powerful activity representations, but also better interpreta-

tion. When the model predicts what a person is doing, we

can easily know the reasons: what the body parts are doing.

In conclusion, we believe PaStaNet will function as a

human activity knowledge engine. Our main contributions

are: 1) We construct PaStaNet, the first large-scale activity

knowledge base with fine-grained PaSta annotations. 2) We

propose a novel method to extract part-level activity repre-

sentation named Activity2Vec and a PaSta-based reasoning

method. 3) In supervised and transfer learning, our method

achieves significant improvements on large-scale activity

benchmarks, e.g. 6.4 (16%), 5.6 (33%) mAP improvements

on HICO [4] and HICO-DET [3] respectively.

2. Related Works

Activity Understanding. Benefited by deep learning and

large-scale datasets, image-based [4, 25, 33, 1] or video-

based [24, 45, 46, 2, 53, 50, 30] activity understanding has

achieved huge improvements recently. Human activities

have a hierarchical structure and include diverse verbs, so

it is hard to define an explicit organization for their cate-

gories. Existing datasets [24, 4, 12, 25] often have a large

difference in definition, thus transferring knowledge from

one dataset to another is ineffective. Meanwhile, plenty of

works have been proposed to address the activity under-

standing [7, 20, 11, 51, 16, 31, 56, 54]. There are holis-

tic body-level approaches [55, 7], body part-based meth-

ods [20], and skeleton-based methods [57, 11], etc. But

compared with other tasks such as object detection [49] or

pose estimation [15], its performance is still limited.

Human-Object Interaction. Human-Object Interaction

(HOI) [4, 3] occupies the most of daily human activities.

In terms of tasks, some works focus on image-based HOI

recognition [4]. Furthermore, instance-based HOI detec-

tion [3, 25] needs to detect accurate positions of the hu-

mans and objects and classify interaction simultaneously.

In terms of the information utilization, some works utilized

holistic human body and pose [55, 64, 61, 40, 5], and global

context is also proved to be effective [29, 63, 62, 7]. Ac-

cording to the learning paradigm, earlier works were often

based on hand-crafted features [7, 29]. Benefited from large

scale HOI datasets, recent approaches [20, 13, 22, 19, 41,

48, 17, 34] started to use deep neural networks to extract

features and achieved great improvements.

Body Part based Methods. Besides the instance pattern,

some approaches studied to utilize part pattern [63, 13, 20,

11, 40, 65]. Gkioxari et al. [20] detects both the instance

and parts and input them all into a classifier. Fang et al. [13]

defines part pairs and encodes pair features to improve HOI

recognition. Yao et al. [63] builds a graphical model and

embed parts appearance as nodes, and use them with object

feature and pose to predict the HOIs. Previous work mainly

utilized the part appearance and location, but few studies

tried to divide the instance actions into discrete part-level

semantic tokens, and refer them as the basic components of

activity concepts. In comparison, we aim at building human

part semantics as reusable and transferable knowledge.

Part States. Part state is proposed in [39]. By tokeniz-

ing the semantic space as a discrete set of part states, [39]

constructs a sort of basic descriptors based on segmenta-

tion [26, 14, 60]. To exploit this cue, we divide the human

body into natural parts and utilize their states as discretized

part semantics to represent activities. In this paper, we focus

on the part states of humans instead of daily objects.

3. Constructing PaStaNet

In this section, we introduce the construction of

PaStaNet. PaStaNet seeks to explore the common knowl-

edge of human PaSta as atomic elements to infer activities.

PaSta Definition. We decompose human body into ten

parts, namely head, two upper arms, two hands, hip, two

thighs, two feet. Part states (PaSta) will be assigned to these

parts. Each PaSta represents a description of the target part.

For example, the PaSta of “hand” can be “hold something”
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or “push something”, the PaSta of “head” can be “watch

something”, “eat something”. After exhaustively review-

ing collected 200K+ images, we found the descriptions of

any human parts can be concluded into limited categories.

That is, the PaSta category number of each part is limited.

Especially, a person may have more than one action simul-

taneously, thus each part can have multiple PaSta, too.

Data Collection. For generality, we collect human-centric

activity images by crowdsourcing (30K images paired with

rough activity label) as well as existing well-designed

datasets [4, 3, 25, 33, 66, 36] (185K images), which are

structured around a rich semantic ontology, diversity, and

variability of activities. All their annotated persons and ob-

jects are extracted for our construction. Finally, we collect

more than 200K images of diverse activity categories.

Activity Labeling. Activity categories of PaStaNet are cho-

sen according to the most common human daily activities,

interactions with object and person. Referred to the hierar-

chical activity structure [12], common activities in existing

datasets [4, 25, 66, 33, 24, 12, 1, 36] and crowdsourcing

labels, we select 156 activities including human-object in-

teractions and body motions from 118K images. Accord-

ing to them, we first clean and reorganize the annotated hu-

man and objects from existing datasets and crowdsourcing.

Then, we annotate the active persons and the interacted ob-

jects in the rest of the images. Thus, PaStaNet includes all

active human and object bounding boxes of 156 activities.

Body Part Box. To locate the human parts, we use pose

estimation [15] to obtain the joints of all annotated persons.

Then we generate ten body part boxes following [13]. Esti-

mation errors are addressed manually to ensure high-quality

annotation. Each part box is centered with a joint, and the

box size is pre-defined by scaling the distance between the

joints of the neck and pelvis. A joint with confidence higher

than 0.7 will be seen as visible. When not all joints can be

detected, we use body knowledge-based rules. That is, if

the neck or pelvis is invisible, we configure the part boxes

according to other visible joint groups (head, main body,

arms, legs), e.g., if only the upper body is visible, we set the

size of the hand box to twice the pupil distance.

PaSta Annotation. We carry out the annotation by crowd-

sourcing and receive 224,159 annotation uploads. The pro-

cess is as follows: 1) First, we choose the PaSta cate-

gories considering the generalization. Based on the verbs

of 156 activities, we choose 200 verbs from WordNet [44]

as the PaSta candidates, e.g., “hold”, “pick” for hands,

“eat”, “talk to” for head, etc. If a part does not have

any active states, we depict it as “no action”. 2) Sec-

ond, to find the most common PaSta that can work as

the transferable activity knowledge, we invite 150 anno-

tators from different backgrounds to annotate 10K images

of 156 activities with PaSta candidates (Fig. 2). For ex-

ample, given an activity “ride bicycle”, they may describe

head-drinks_with-sth
right_hand-hold-sthhuman-drink_with-bottle

head-talk_on-sth
right_hand-hold-sthhuman-talk_on-cellphone

head-look_at-sth
right_hand-hold-sth
left_hand-hold-sth

human-ride-bike
hip-sit_on-sth

right_foot-step_on-sth
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Figure 2. PaSta annotation. Based on instance activity labels, we

add fine-grained body part boxes and corresponding part states

PaSta labels. In PaSta, we use “something” [39] to indicate the

interacted object for generalization. The edge in Activity Parsing

Tree indicates the statistical co-occurrence.

it as 〈hip, sit on, something〉, 〈hand, hold, something〉,
〈foot, setp on, something〉, etc. 3) Based on their anno-

tations, we use the Normalized Point-wise Mutual Informa-

tion (NPMI) [6] to calculate the co-occurrence between ac-

tivities and PaSta candidates. Finally, we choose 76 candi-

dates with the highest NPMI values as the final PaSta. 4)

Using the annotations of 10K images as seeds, we automat-

ically generate the initial PaSta labels for all of the rest im-

ages. Thus the other 210 annotators only need to revise the

annotations. 5) Considering that a person may have mul-

tiple actions, for each action, we annotate its correspond-

ing ten PaSta respectively. Then we combine all sets of

PaSta from all actions. Thus, a part can also have multiple

states, e.g., in “eating while talking”, the head has PaSta

〈head, eat, something〉, 〈head, talk to, something〉 and

〈head, look at, something〉 simultaneously. 6) To ensure

quality, each image will be annotated twice and checked by

automatic procedures and supervisors. We cluster all labels

and discard the outliers to obtain robust agreements.

Activity Parsing Tree. To illustrate the relationships be-

tween PaSta and activities, we use their statistical correla-

tions to construct a graph (Fig. 2): activities are root nodes,

PaSta are son nodes and edges are co-occurrence.

Finally, PaStaNet includes 118K+ images, 285K+ per-

sons, 250K+ interacted objects, 724K+ instance activities

and 7M+ PaSta. Referred to well-designed datasets [24, 12,

4] and WordNet [44], PaSta can cover most part situations

with good generalization. To verify that PaSta have en-

coded common part-level activity knowledge and can adapt

to various activities, we adopt two experiments:

Coverage Experiment. To verify that PaSta can cover

most of the activities, we collect other 50K images out

of PaStaNet. Those images contain diverse activities and

384



many of them are unseen in PaStaNet. Another 100 volun-

teers from different backgrounds are invited to find human

parts that can not be well described by our PaSta set. We

found that only 2.3% cases cannot find appropriate descrip-

tions. This verifies that PaStaNet is general to activities.

Recognition Experiment. First, we find that PaSta can

be well learned. A shallow model trained with a part of

PaStaNet can easily achieve about 55 mAP on PaSta recog-

nition. Meanwhile, a deeper model can only achieve about

40 mAP on activity recognition with the same data and met-

ric (Sec. 5.2). Second, we argue that PaSta can be well

transferred. To verify this, we conduct transfer learning

experiments (Sec. 5.4), i.e. first trains a model to learn the

knowledge from PaStaNet, then use it to infer the activities

of unseen datasets, even unseen activities. Results show that

PaSta can be well transferred and boost the performance

(4.2 mAP on image-based AVA). Thus it can be considered

as the general part-level activity knowledge.

4. Activity Representation by PaStaNet

In this section, we discuss the activity representation by

PaStaNet.

Conventional Paradigm Given an image I , conventional

methods mainly use a direct mapping (Fig. 1(a)):

Sinst = Finst(I, bh,Bo) (1)

to infer the action score Sinst with instance-level seman-

tic representations finst. bh is the human box and Bo =
{bio}

m
i=1 are the m interacted object boxes of this person.

PaStaNet Paradigm. We propose a novel paradigm to uti-

lize general part knowledge: 1) PaSta recognition and fea-

ture extraction for a person and an interacted object bo:

fPaSta = RA2V (I,Bp, bo), (2)

where Bp = {b
(i)
p }10i are part boxes generated from the

pose estimation [15] automatically following [13] (head,

upper arms, hands, hip, thighs, feet). RA2V (·) indicates

the Activity2Vec, which extracts ten PaSta representations

fPaSta = {f
(i)
PaSta}

10
i=1. 2) PaSta-based Reasoning (PaSta-

R), i.e., from PaSta to activity semantics:

Spart = FPaSta−R(fPaSta, fo), (3)

where FPaSta−R(·) indicates the PaSta-R, fo is the object

feature. Spart is the action score of the part-level path. If

the person does not interact with any objects, we use the

ROI pooling feature of the whole image as fo. For multiple

object case, i.e., a person interacts with several objects, we

process each human-object pair (fPaSta, f
(i)
o ) respectively

and generate its Activity2Vec embedding.

Following, we introduce the PaSta recognition in

Sec. 4.1. Then, we discuss how to map human instance

to semantic vector via Activity2Vec in Sec. 4.2. We be-

lieve it can be a general activity representation extractor. In

Sec. 4.3, a hierarchical activity graph is proposed to largely

advance activity related tasks by leveraging PaStaNet.

4.1. Part State Recognition

With the object and body part boxes bo,Bp, we oper-

ate the PaSta recognition as shown in Fig. 3. In detail, a

COCO [35] pre-trained Faster R-CNN [49] is used as the

feature extractor. For each part, we concatenate the part

feature f
(i)
p from b

(i)
p and object features fo from bo as in-

puts. For body only motion, we input the whole image

feature fc as fo. All features will be first input to a Part

Relevance Predictor. Part relevance represents how im-

portant a body part is to the action. For example, feet usu-

ally have weak correlations with “drink with cup”. And in

“eat apple”, only hands and head are essential. These rel-

evance/attention labels can be converted from PaSta labels

directly, i.e. the attention label will be one, unless its PaSta

label is “no action”, which means this part contributes noth-

ing to the action inference. With the part attention labels as

supervision, we use part relevance predictor consisting of

FC layers and Sigmoids to infer the attentions {ai}
10
i=1 of

each part. Formally, for a person and an interacted object:

ai = Ppa(f
(i)
p , fo), (4)

where Ppa(·) is the part attention predictor. We compute

cross-entropy loss L
(i)
att for each part and multiply f

(i)
p with

its scalar attention, i.e. f
(i)∗
p = f

(i)
p × ai.

Second, we operate the PaSta recognition. For each part,

we concatenate the re-weighted f
(i)∗
p with fo, and input

them into a max pooling layer and two subsequent 512 sized

FC layers, thus obtain the PaSta score S
(i)
PaSta for the i-

th part. Because a part can have multiple states, e.g. head

performs “eat” and “watch” simultaneously. Hence we use

multiple Sigmoids to do this multi-label classification. With

PaSta labels, we construct cross-entropy loss L
(i)
PaSta. The

total loss of PaSta recognition is:

LPaSta =

10∑

i

(L
(i)
PaSta + L

(i)
att). (5)

4.2. Activity2Vec

In Sec. 3, we define the PaSta according to the most com-

mon activities. That is, choosing the part-level verbs which

are most often used to compose and describe the activities

by a large number of annotators. Therefore PaSta can be

seen as the fundamental components of instance activities.

Meanwhile, PaSta recognition can be well learned. Thus,

we can operate PaSta recognition on PaStaNet to learn the

powerful PaSta representations, which have good transfer-

ability. They can be used to reason out the instance actions
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Figure 3. The overview of Part States (PaSta) recognition and Activity2Vec.

in both supervised and transfer learning. Under such cir-

cumstance, PaStaNet works like the ImageNet [8]. And

PaStaNet pre-trained Activity2Vec functions as a knowl-

edge engine and transfers the knowledge to other tasks.

Visual PaSta feature. First, we extract visual PaSta repre-

sentations from PaSta recognition. Specifically, we extract

the feature from the last FC layer in PaSta classifier as the

visual PaSta representation f
V (i)
PaSta ∈ R

512.

Language PaSta feature. Our goal is to bridge the gap be-

tween PaSta and activity semantics. Language priors are

useful in visual concept understanding [38, 58]. Thus the

combination of visual and language knowledge is a good

choice for establishing this mapping. To further enhance the

representation ability, we utilize the uncased BERT-Base

pre-trained model [9] as the language representation extrac-

tor. Bert [9] is a language understanding model that consid-

ers the context of words and uses a deep bidirectional trans-

former to extract contextual representations. It is trained

with large-scale corpus databases such as Wikipedia, hence

the generated embedding contains helpful implicit semantic

knowledge about the activity and PaSta. For example, the

description of the entry “basketball” in Wikipedia: “drag

one’s foot without dribbling the ball, to carry it, or to hold

the ball with both hands...placing his hand on the bottom of

the ball;..known as carrying the ball”.

In specific, for the i-th body part with n PaSta, we di-

vide each PaSta into tokens {t
(i,k)
p , t

(i,k)
v , t

(i,k)
o }nk=1, e.g.,

〈part, verb, object〉. The 〈object〉 comes from object de-

tection. Each PaSta will be converted to a f
(i,k)
Bert ∈ R

2304

(concatenating three 768 sized vectors of part, verb, ob-

ject), i.e. f
(i,k)
Bert = RBert(t

(i,k)
p , t

(i,k)
v , t

(i,k)
o ). {f

(i,k)
Bert}

n
k=1

will be concatenated as the f
(i)
Bert ∈ R

2304∗n for the i-

th part. Second, we multiply f
(i)
Bert with predicted PaSta

probabilities P
(i)
PaSta, i.e. f

L(i)
PaSta = f

(i)
Bert ×P

(i)
PaSta, where

P
(i)
PaSta = Sigmoid(S

(i)
PaSta) ∈ R

n, S
(i)
PaSta denotes the

PaSta score of the i-th part, PPaSta = {P
(i)
PaSta}

10
i=1.

This means a more possible PaSta will get larger attention.

f
L(i)
PaSta ∈ R

2304∗n is the final language PaSta feature of

the i-th part. We use the pre-converted and frozen f
(i,k)
Bert in

the whole process. Additionally, we also try to rewrite each

PaSta into a sentence and convert it into a fixed-size vector

as f
(i,k)
Bert, the performance is slightly better (Sec. 5.5).

PaSta Representation. At last, we pool and resize the

f
L(i)
PaSta, and concatenate it with its corresponding visual

PaSta feature f
V (i)
PaSta. Then we obtain the PaSta representa-

tion f
(i)
PaSta ∈ R

m for each body part (e.g. m = 4096). This

process is indicated as Activity2Vec (Fig. 3). The output

fPaSta = {f
(i)
PaSta}

10
i=1 is the part-level activity representa-

tion and can be used for various downstream tasks, e.g. ac-

tivity detection, captioning, etc. From the experiments, we

can find that Activity2Vec has a powerful representational

capacity and can significantly improve the performance of

activity related tasks. It works like a knowledge transformer

with the fundamental PaSta to compose various activities.

4.3. PaSta­based Activity Reasoning

With part-level fPaSta, we construct a Hierarchical Ac-

tivity Graph (HAG) to model the activities. Then we can

extract the graph state to reason out the activities.

Hierarchical Activity Graph. Hierarchical activity graph

G = (V, E) is depicted in Fig. 4. For human-object inter-

actions, V = {Vp,Vo}. For body only motions, V = Vp.

In instance level, a person is a node with instance represen-

tation from previous instance-level methods [17, 34, 24] as

a node feature. Object node vo ∈ Vo and has fo as node

feature. In part level, each body part can be seen as a node

vip ∈ Vp with PaSta representation f i
PaSta as node feature.

Edge between body parts and object is epo = (vip, vo) ∈

Vp×Vo, and edge within parts is eijpp = (vip, v
j
p) ∈ Vp×Vp.

Our goal is to parse HAG and reason out the graph state,
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i.e. activities. In part-level, we use PaSta-based Activity

Reasoning (PaSta-R) to infer the activities. That is, with the

PaSta representation from Activity2Vec, we use Spart =
FPaSta−R(fPaSta, fo) (Eq. 3) to infer the activity scores

Spart. For body motion only activities e.g. “dance”, Eq. 3 is

Spart = FPaSta−R(fPaSta, fc), fc is the feature of image.

We adopt different implementations of FPaSta−R(·).

Linear Combination. The simplest implementation is to

directly combine the part node features linearly. We con-

catenate the output of Activity2Vec fPaSta with fo and in-

put them to a FC layer with Sigmoids.

MLP. We can also operate nonlinear transformation on Ac-

tivity2Vec output. We use two 1024 sized FC layers and an

action category sized FC with Sigmoids.

Graph Convolution Network. With part-level graph, we

use Graph Convolution Network (GCN) [32] to extract the

global graph feature and use an MLP subsequently.

Sequential Model. When watching an image in this way:

watch body part and object patches with language descrip-

tion one by one, human can easily guess the actions. In-

spired by this, we adopt an LSTM [28] to take the part node

features f
(i)
PaSta gradually, and use the output of the last time

step to classify actions. We adopt two input orders: random

and fixed (from head to foot), and fixed order is better.

Tree-Structured Passing. Human body has a natural hier-

archy. Thus we use a tree-structured graph passing. Specif-

ically, we first combine the hand and upper arm nodes into

an “arm” node, its feature is obtained by concatenating the

features of three son nodes and passed a 512 sized FC layer.

Similarly, we combine the foot and thigh nodes to an “leg”

node. Head, arms, legs and feet nodes together form the sec-

ond level. The third level contains the “upper body“ (head,

arms) and “lower-body” (hip, legs). Finally, the body node

is generated. We input it and the object node into an MLP.

The instance-level graph inference can be operated by

instance-based methods [13, 17, 34, 24] using Eq. 1:

Sinst = Finst(I, bh,Bo). To get the final result upon the

whole graph, we can use either early or late fusion. In early

fusion, we concatenate finst with fPaSta, fo and input them

to PaSta-R. In late fusion, we fuse the predictions of two

levels, i.e. S = Sinst + Spart. In our test, late fusion out-

performs early fusion in most cases. If not specified, we use

late fusion in Sec. 5. We use Linst
cls and LPaSta

cls to indicate

Part State Labels:
head-look_at-sth right_arm-swing
left_arm-swing right_foot-kick-sth

�(�)
Number Labels:

9 8 1 1 2

‘’Part Box’’

Labels:
person-kick-football

�(�)�′(I, ��, ��, . . . , ���) �′(�, ��, ��, ��, ��, ��)

Part Box
with Part State

Labels:
17

Analogy

‘’Instance Box’’Instance Box

Figure 5. An analogy to activity recognition.

the cross-entropy losses of two levels. The total loss is:

Ltotal = LPaSta + LPaSta
cls + Linst

cls . (6)

5. Experiments

5.1. An analogy: MNIST­Action

We design a simplified experiment to give an intuition

(Fig. 5). We randomly sample MNIST digits from 0 to 9

(28×28×1) and generate 128×128×1 images consists of 3

to 5 digits. Each image is given a label to indicate the sum of

the two largest numbers within it (0 to 18). We assume that

“PaSta-Activity” resembles the “Digits-Sum”. Body parts

can be seen as digits, thus human is the union box of all dig-

its. To imitate the complex body movements, digits are ran-

domly distributed, and Gaussian noise is added to the im-

ages. For comparison, we adopt two simple networks. For

instance-level model, we input the ROI pooling feature of

the digit union box into an MLP. For hierarchical model, we

operate single-digit recognition, then concatenate the union

box and digit features and input them to an MLP (early fu-

sion), or use late fusion to combine scores of two levels.

Early fusion achieves 43.7 accuracy and shows significant

superiority over instance-level method (10.0). And late fu-

sion achieves a preferable accuracy of 44.2. Moreover, the

part-level method only without fusion also obtains an accu-

racy of 41.4. This supports our assumption about the effec-

tiveness of part-level representation.

5.2. Image­based Activity Recognition

Usually, Human-Object Interactions (HOIs) often take

up most of the activities, e.g., more than 70% activities

in large-scale datasets [24, 12, 2] are HOIs. To evalu-

ate PaStaNet, we perform image-based HOI recognition on

HICO [4]. HICO has 38,116 and 9,658 images in train

and test sets and 600 HOIs composed of 117 verbs and 80

COCO objects [35]. Each image has an image-level label

which is the aggregation over all HOIs in an image and does

not contain any instance boxes.

Modes. We first pre-train Activity2Vec with PaSta labels,

then fine-tune Activity2Vec and PaSta-R together on HICO

train set. In pre-training and finetuning, we exclude the

HICO testing data in PaStaNet to avoid data pollution. We
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Method mAP Few@1 Few@5 Few@10

R*CNN [21] 28.5 - - -

Girdhar et al. [18] 34.6 - - -

Mallya et al. [41] 36.1 - - -

Pairwise [13] 39.9 13.0 19.8 22.3

Mallya et al. [41]+PaStaNet*-Linear 45.0 26.5 29.1 30.3

Pairwise [13]+PaStaNet*-Linear 45.9 26.2 30.6 31.8

Pairwise [13]+PaStaNet*-MLP 45.6 26.0 30.8 31.9

Pairwise [13]+PaStaNet*-GCN 45.6 25.2 30.0 31.4

Pairwise [13]+PaStaNet*-Seq 45.9 25.3 30.2 31.6

Pairwise [13]+PaStaNet*-Tree 45.8 24.9 30.3 31.8

PaStaNet*-Linear 44.5 26.9 30.0 30.7

Pairwise [13]+GT-PaStaNet*-Linear 65.6 47.5 55.4 56.6

Pairwise [13]+PaStaNet-Linear 46.3 24.7 31.8 33.1

Table 1. Results on HICO. “Pairwise [13]+PaStaNet” means the

late fusion of [13] and our part-level result. Few@i indicates the

mAP on few-shot sets. @i means the number of training images is

less than or equal to i. The HOI categories number of Few@1, 5,

10 are 49, 125 and 163. “PaStaNet-x” means different PaSta-R.

adopt different data mode to pre-train Activity2Vec: 1)

“PaStaNet*” mode (38K images): we use the images in

HICO train set and their PaSta labels. The only additional

supervision here is the PaSta annotations compared to con-

ventional way. 2) “GT-PaStaNet*” mode (38K images):

the data used is same with “PaStaNet*”. To verify the up-

per bound of our method, we use the ground truth PaSta

(binary labels) as the predicted PaSta probabilities in Ac-

tivity2Vec. This means we can recognize PaSta perfectly

and reason out the activities from the best starting point.

3) “PaStaNet” mode (118K images): we use all PaStaNet

images with PaSta labels except the HICO testing data.

Settings. We use image-level PaSta labels to train Activ-

ity2Vec. Each image-level PaSta label is the aggregation

over all existing PaSta of all active persons in an image.

For PaSta recognition, i.e., we compute the mAP for the

PaSta categories of each part, and compute the mean mAP

of all parts. To be fair, we use the person, body part and

object boxes from [13] and VGG-16 [52] as the backbone.

The batch size is 16 and the initial learning rate is 1e-5.

We use SGD optimizer with momentum (0.9) and cosine

decay restarts [37] (the first decay step is 5000). The pre-

training costs 80K iterations and fine-tuning costs 20K iter-

ations. Image-level PaSta and HOI predictions are all gen-

erated via Multiple Instance Learning (MIL) [42] of 3 per-

sons and 4 objects. We choose previous methods [41, 13] as

the instance-level path in the hierarchical model, and uses

late fusion. Particularly, [13] uses part-pair appearance and

location but not part-level semantics, thus we still consider

it as a baseline to get a more abundant comparison.

Results. Results are reported in Tab. 1. PaStaNet* mode

methods all outperform the instance-level method. The

part-level method solely achieves 44.5 mAP and shows

good complementarity to the instance-level. Their fusion

can boost the performance to 45.9 mAP (6 mAP improve-

ment). And the gap between [13] and [41] is largely nar-

rowed from 3.8 to 0.9 mAP. Activity2Vec achieves 55.9

Default Known Object

Method Full Rare Non-Rare Full Rare Non-Rare

InteractNet [19] 9.94 7.16 10.77 - - -

GPNN [48] 13.11 9.34 14.23 - - -

iCAN [17] 14.84 10.45 16.15 16.26 11.33 17.73

TIN [34] 17.03 13.42 18.11 19.17 15.51 20.26

iCAN [17]+PaStaNet*-Linear 19.61 17.29 20.30 22.10 20.46 22.59

TIN [34]+PaStaNet*-Linear 22.12 20.19 22.69 24.06 22.19 24.62

TIN [34]+PaStaNet*-MLP 21.59 18.97 22.37 23.84 21.66 24.49

TIN [34]+PaStaNet*-GCN 21.73 19.55 22.38 23.95 22.14 24.49

TIN [34]+PaStaNet*-Seq 21.64 19.10 22.40 23.82 21.65 24.47

TIN [34]+PaStaNet*-Tree 21.36 18.83 22.11 23.68 21.75 24.25

PaStaNet*-Linear 19.52 17.29 20.19 21.99 20.47 22.45

TIN [34]+GT-PaStaNet*-Linear 34.86 42.83 32.48 35.59 42.94 33.40

TIN [34]+PaStaNet-Linear 22.65 21.17 23.09 24.53 23.00 24.99

Table 2. Results on HICO-DET.

mAP on PaSta recognition in PaStaNet* mode: 46.3

(head), 66.8 (arms), 32.0 (hands), 68.6 (hip), 56.2 (thighs),

65.8 (feet). This verifies that PaSta can be better learned

than activities, thus they can be learned ahead as the ba-

sis for reasoning. In GT-PaStaNet* mode, hierarchical

paradigm achieves 65.6 mAP. This is a powerful proof of

the effectiveness of PaSta knowledge. Thus what remains

to do is to improve the PaSta recognition and further pro-

mote the activity task performance. Moreover, in PaStaNet

mode, we achieve relative 16% improvement. On few-shot

sets, our best result significantly improves 13.9 mAP, which

strongly proves the reusability and transferability of PaSta.

5.3. Instance­based Activity Detection

We further conduct instance-based activity detection on

HICO-DET [3], which needs to locate human and object

and classify the actions simultaneously. HICO-DET [3] is

a benchmark built on HICO [4] and add human and object

bounding boxes. We choose several state-of-the-arts [17,

19, 48, 34] to compare and cooperate.

Settings. We use instance-level PaSta labels, i.e. each an-

notated person with the corresponding PaSta labels, to train

Acitivty2Vec, and fine-tune Activity2Vec and PaSta-R to-

gether on HICO-DET. All testing data are excluded from

pre-training and fine-tining. We follow the mAP metric

of [3], i.e. true positive contains accurate human and ob-

ject boxes (IoU > 0.5 with reference to ground truth) and

accurate action prediction. The metric for PaSta detection

is similar, i.e., estimated part box and PaSta action predic-

tion all have to be accurate. The mAP of each part and the

mean mAP are calculated. For a fair comparison, we use the

object detection from [17, 34] and ResNet-50[27] as back-

bone. We use SGD with momentum (0.9) and cosine decay

restart [37] (the first decay step is 80K). The pre-training

and fine-tuning take 1M and 2M iterations respectively. The

learning rate is 1e-3 and the ratio of positive and negative

samples is 1:4. A late fusion strategy is adopted. Three

modes in Sec. 5.2 and different PaSta-R are also evaluated.

Results. Results are shown in Tab. 2. All PaStaNet*

mode methods significantly outperform the instance-level

methods, which strongly prove the improvement from the

learned PaSta information. In PaStaNet* mode, the PaSta

detection performance are 30.2 mAP: 25.8 (head), 44.2
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Method AProle(Scenario1) AProle(Scenario2)

Gupta et al. [25] 31.8 -

InteractNet [19] 40.0 -

GPNN [48] 44.0 -

iCAN [17] 45.3 52.4

TIN [34] 47.8 54.2

iCAN [17]+PaStaNet-Linear 49.2 55.6

TIN [34]+PaStaNet-Linear 51.0 57.5

Table 3. Transfer learning results on V-COCO [25].

(arms), 17.5 (hands), 41.8 (hip), 22.2 (thighs), 29.9 (feet).

This again verifies that PaSta can be well learned. And GT-

PaStaNet* (upper bound) and PaStaNet (more PaSta la-

bels) modes both greatly boosts the performance. On Rare

sets, our method obtains 7.7 mAP improvement.

5.4. Transfer Learning with Activity2Vec

To verify the transferability of PaStaNet, we design

transfer learning experiments on large-scale benchmarks:

V-COCO [25], HICO-DET [3] and AVA [24]. We first use

PaStaNet to pre-train Activity2Vec and PaSta-R with 156

activities and PaSta labels. Then we change the last FC

in PaSta-R to fit the activity categories of the target bench-

mark. Finally, we freeze Activity2Vec and fine-tune PaSta-

R on the train set of the target dataset. Here, PaStaNet works

like the ImageNet [8] and Activity2Vec is used as a pre-

trained knowledge engine to promote other tasks.

V-COCO. V-COCO contains 10,346 images and instance

boxes. It has 29 action categories, COCO 80 objects [35].

For a fair comparison, we exclude the images of V-COCO

and corresponding PaSta labels in PaStaNet, and use re-

maining data (109K images) for pre-training. We use SGD

with 0.9 momenta and cosine decay restarts [37] (the first

decay is 80K). The pre-training costs 300K iterations with

the learning rate as 1e-3. The fine-tuning costs 80K itera-

tions with the learning rate as 7e-4. We select state-of-the-

arts [25, 19, 48, 17, 34] as baselines and adopt the metric

AProle [25] (requires accurate human and object boxes and

action prediction). Late fusion strategy is adopted. With

the domain gap, PaStaNet still improves the performance

by 3.2 mAP (Tab. 3.).

Image-based AVA. AVA contains 430 video clips with

spatio-temporal labels. It includes 80 atomic actions con-

sists of body motions and HOIs. We utilize all PaStaNet

data (118K images) for pre-training. Considering that

PaStaNet is built upon still images, we use the frames per

second as still images for image-based instance activity de-

tection. We adopt ResNet-50 [27] as backbone and SGD

with momentum of 0.9. The initial learning rate is 1e-2 and

the first decay of cosine decay restarts [37] is 350K. For a

fair comparison, we use the human box from [59]. The pre-

training costs 1.1M iterations and fine-tuning costs 710K

iterations. We adopt the metric from [24], i.e. mAP of the

top 60 most common action classes, using IoU threshold

of 0.5 between detected human box and the ground truth

and accurate action prediction. For comparison, we adopt a

image-based baseline: Faster R-CNN detector [49] with

Method mAP

AVA-TF [23] 11.4

LFB-Res-50-baseline [59] 22.2

LFB-Res-101-baseline [59] 23.3

AVA-TF [23]+PaStaNet-Linear 15.6

LFB-Res-50-baseline [59]+PaStaNet-Linear 23.4

LFB-Res-101-baseline [59]+PaStaNet-Linear 24.3

Table 4. Transfer learning results on image-based AVA [24].

ResNet-101 [27] provided by the AVA website [23]. Re-

cent works mainly use a spatial-temporal model such as

I3D [2]. Although unfair, we still employ two video-based

baselines [59] as instance-level models to cooperate with

the part-level method via late fusion. Results are listed in

Tab. 4. Both image and video based methods cooperated

with PaStaNet achieve impressive improvements, even our

model is trained without temporal information. Consider-

ing the huge domain gap (films) and unseen activities, this

result strongly proves its great generalization ability.

HICO-DET. We exclude the images of HICO-DET and the

corresponding PaSta labels, and use left data (71K images)

for pre-training. The test setting in same with Sec. 5.3. The

pre-training and fine-tuning cost 300K and 1.3M iterations.

PaStaNet shows good transferability and achieve 3.25 mAP

improvement on Default Full set (20.28 mAP).

5.5. Ablation Study

We design ablation studies on HICO-DET with

TIN [34]+PaSta*-Linear (22.12 mAP). 1) w/o Part Atten-

tion degrades the performance with 0.21 mAP. 2) Lan-

guage Feature: We replace the PaSta Bert feature in

Activity2Vec with: Gaussian noise, Word2Vec [43] and

GloVe [47]. The results are all worse (20.80, 21.95, 22.01

mAP). If we change the PaSta triplet 〈part, verb, sth〉 into

a sentence and convert it to Bert vector, this vector performs

sightly better (22.26 mAP). This is probably because the

sentence carries more contextual information.

6. Conclusion

In this paper, to make a step toward human activity

knowledge engine, we construct PaStaNet to provide novel

body part-level activity representation (PaSta). Meanwhile,

a knowledge transformer Activity2Vec and a part-based rea-

soning method PaSta-R are proposed. PaStaNet brings in

interpretability and new possibility for activity understand-

ing. It can effectively bridge the semantic gap between pix-

els and activities. With PaStaNet, we significantly boost the

performance in supervised and transfer learning tasks, espe-

cially under few-shot circumstances. In the future, we plan

to enrich our PaStaNet with spatio-temporal PaSta.
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