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Abstract

We address the problem of removing undesirable reflec-
tions from a single image captured through a glass surface,
which is an ill-posed, challenging but practically important
problem for photo enhancement. Inspired by iterative struc-
ture reduction for hidden community detection in social net-
works, we propose an Iterative Boost Convolutional LSTM
Network (IBCLN) that enables cascaded prediction for re-
flection removal. IBCLN is a cascaded network that iter-
atively refines the estimates of transmission and reflection
layers in a manner that they can boost the prediction quality
to each other, and information across steps of the cascade is
transferred using an LSTM. The intuition is that the trans-
mission is the strong, dominant structure while the reflec-
tion is the weak, hidden structure. They are complementary
to each other in a single image and thus a better estimate
and reduction on one side from the original image leads to a
more accurate estimate on the other side. To facilitate train-
ing over multiple cascade steps, we employ LSTM to ad-
dress the vanishing gradient problem, and propose residual
reconstruction loss as further training guidance. Besides,
we create a dataset of real-world images with reflection and
ground-truth transmission layers to mitigate the problem of
insufficient data. Comprehensive experiments demonstrate
that the proposed method can effectively remove reflections
in real and synthetic images compared with state-of-the-art
reflection removal methods.

1. Introduction

Undesirable reflections from glass occur frequently in
real-world photos. It not only significantly degrades the
image quality, but also affects the performance of down-
stream computer vision tasks like object detection and se-
mantic segmentation. As the reflection removal problem
is ill-posed, early works primarily tackle it with multi-
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ple input images [24, 19, 16, 32, 6, 23, 5, 7]. More re-
cently, researchers attempt to address the more common
and practically significant scenario of a single input im-
age [14, 15, 16, 17, 28, 22, 1, 25].

For single-image reflection removal (SIRR), researchers
have observed that some handcrafted priors may help for
distinguishing the transmission layer from the reflection
layer in a single image. But these priors often do not gener-
alize well to different types of reflections and scenes owing
to disparate imaging conditions. In recent years, researchers
apply data-driven learning to replace handcrafted priors via
deep convolutional neural networks. With abundant labeled
data, a network can be trained to perform effectively over
a broad range of scenes. However, learning-based single-
image methods still have much room for improvement due
to complications such as limited training data, disparate
imaging conditions, varying scene content, limited physical
understanding of this problem, and the performance limita-
tion of various models.

In this work, inspired by the iterative structure reduc-
tion approach for hidden community detection in social net-
works [8, 9], we introduce a cascaded neural network model
for transmission and reflection decomposition. Figure 1 il-
lustrates the cascade results in our model, where the trans-
mission and reflection are progressively refined during the
iterations. To the best of our knowledge, previous works
on reflection removal did not utilize a cascaded refinement
approach. Though some methods such as BDN [33] obtain
predictions over a sequence of a few sub-networks, they do
not iteratively refine the estimates, but rather they conduct a
short alternating optimization, e.g., by estimating the reflec-
tion from the input image and the initial transmission layer,
and then estimating the transmission from the input image
and the estimated reflection layer.

For a cascade model on SIRR, a simple approach is to
employ one network to generate a predicted transmission
that serves as the auxiliary information of the next network,
and continue such process with subsequent networks to it-
eratively improve the prediction quality. With a long cas-
cade, however, the training becomes difficult due to the
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Figure 1. Visualization of results at different cascade steps of the two sub-networks in the proposed model. The estimates of transmissions
and residual reflections become increasingly more accurate as they progress through the cascade. More results are in the suppl. material.

vanishing gradient problem and limited training guidance at
each step. To address this issue, we design a convolutional
LSTM (Long Short-Term Memory) network, which saves
information from the previous iteration (i.e. time step) and
allows gradients to flow unchanged.

In our model, two sub-networks use identical convolu-
tional LSTM architecture, one for transmission prediction
and the other for reflection prediction. They share input
information using the outputs of the previous time step to
boost each other’s effectiveness. Here we propose a residual
reconstruction loss as further training supervision at each
cascade step. To simplify the reconstruction loss, we de-
fine a new concept of residual reflection, which will be de-
scribed in Sec. 3.4.

Though a few real-world datasets with ground-truth have
been presented [26, 34], the real-world data for SIRR is still
insufficient due to the tremendously labor-intensive work.
To help resolve the insufficiency of the real-world train-
ing data, we also collect a real dataset with densely-labeled
ground truth in disparate imaging conditions and varying
scenes.

Our main contributions are as follows:

e We propose a new network architecture, a cascaded
network, with loss components that achieves state-of-
the-art quantitative results on real-world benchmarks
for the single image reflection removal problem.

e We design a residual reconstruction loss, which can
form a closed loop with the linear method for synthe-
sizing images with reflections, to expand the influence
of the synthesis method across the whole network.

e We collect a new real-world dataset containing images
with densely-labeled ground-truth, which can serve as
baseline data in future research.

2. Related Work

Mathematically speaking, SIRR operates on a captured
image I, which is generally assumed to be a linear combi-
nation of a transmission layer T and a reflection layer R.
The goal is to infer a transmission layer T that is free of
reflections. In this work, we focus on deep learning-based
SIRR, which has produced state-of-the-art results. Previ-
ous multiple-image methods [32, 6, 16, 23, 19, 5, 24, 7] and
single-image-priors based methods [15, 17, 14, 22, 1, 28,
16, 25] are not considered here.

Due to the advantages in robustness and performance,
there is an emerging interest in applying neural networks
to SIRR. Fan er al. [4] provide the first neural network
model to solve this ill-posed problem. They propose a linear
method for synthesizing images with reflection for training,
and use an edge map as auxiliary information to guide the
reflection removal. Wan et al. [27] develop two cooperative
sub-networks, which predict the transmission layer inten-
sity and gradients concurrently. Both of these works [4, 27]
utilize edge or gradient information of the captured layer
I, motivated by the idea that the reflection layers are usu-
ally not in focus and thus blurry as compared to the trans-
mission layers. From the edge information of the captured
image I, the edge map of the transmission image T is pre-
dicted and used in estimating the transmission result. In-
stead, BDN [33] predicts reflection layers which are then
used as auxiliary information in a subsequent network to
estimate the transmission.

In several recent methods, improved formulations of the
objective function are presented. These include the adop-
tion of perceptual losses [11] to account for both low-level
and high-level image information [3, 10, 34]. In these
works, images are fed to a deep network pre-trained on Ima-
geNet, and comparisons are made based on extracted multi-
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stage features. Adversarial losses have also been applied,
specifically to improve the realism of predicted transmis-
sion layers [34, 13, 31, 30].

Another direction of study focuses on datasets for train-
ing. Moving beyond improvements for the linear synthesis
method in [4] and [34], Wen et al. [31] synthesize training
data with learned non-linear alpha blending masks that bet-
ter model the real-world imaging conditions. These masks
are also used in forming a reconstruction loss that guides
the prediction of transmission layers. To deal with the in-
sufficiency of densely-labeled training data, Wei et al. [30]
present a technique for utilizing misaligned real-world im-
ages as the training data, as they are less burdensome to
acquire than aligned images and are more realistic than syn-
thetic images.

3. Proposed Method
3.1. Motivation

This work is motivated by research on hidden structures
in social networks. He et al. [8, 9] define a set of communi-
ties as hidden structure if most of the members also belong
to other stronger communities. They propose an iterative
boost approach to separate a set of strong, dominant com-
munities and another set of weak, hidden communities, and
boost the detection accuracy on both sides. The key idea is
that, when they detect an approximate set of dominant com-
munities using a base algorithm, and weaken their internal
connection to the average connection of the overall graph,
the dominant structure is reduced to boost the detection on
the set of hidden communities, and vice versa.

Under the scenario of SIRR, a useful trick is to employ
sub-networks to learn auxiliary information that can facil-
itate transmission layer prediction. The types of auxiliary
information utilized in existing works include edge infor-
mation [4, 27] and predicted reflections [33]. The ideal aux-
iliary information would be the ground truth reflection-free
version of the transmission layer, which is what we seek to
predict. As this is not available at inference time, we instead
use approximations to the ground-truth transmission in the
form of predicted transmissions as the auxiliary informa-
tion. Though certainly not as useful as the ground truth,
it nevertheless provides strong guidance, especially as the
transmission predictions improve. The key issue then be-
comes how to drive the transmission estimations closer and
closer to the ground truth. Referring to the work of He et
al. [8, 9], we regard the transmission layer as the strong,
dominant structure, and the reflection layer as the weak,
hidden structure. By iteratively reducing the more accurate
version of the counterpart, we could extract more accurate
approximations on the two layers of images.

Our model contains two sub-networks that can collabo-
rate and boost each other’s output by reducing the output

of one side from the original image as effective auxiliary
information for the other complementary side. Such collab-
orative cascaded refinement of the dominant image (trans-
mission) and the weak image (reflection) is novel for the
training of a neural network.

3.2. General Design Principles

We use two convolutional LSTM networks to separately
generate the predicted transmission layers and the predicted
reflection layers. The input of each sub-network includes
the outputs of both the transmission and reflection sub-
networks. Besides, the outputs of the two sub-networks
are combined within a reconstruction loss to supervise the
whole model at each time step. The synergy between the
two sub-networks leads to a mutual boost in their predic-
tions, resulting in progressive improvements of the auxiliary
information and finally accurate estimates of the transmis-
sion.

To ensure that the transmission sub-network and the re-
flection sub-network generate complementary outputs, we
enforce a reconstruction loss where the image i synthesized
from the estimated transmission and reflection is expected
to match the input image I.

A related constraint is employed in RmNet [31], which
synthesizes an image I from the ground-truth transmission
layer with no reflection, the reflection layer used to pro-
duce reflections off the glass, and an alpha blending mask
W. Thus,I = Wo T+ (1 — W) o R, where o denotes
element-wise multiplication. The reconstructed image Iis
then compared to the synthetic input image I. However,
their alpha blending model only approximates the complex
physical mechanisms involved in forming an actual input
image with reflections, as it does not model effects such as
spatially varying blurs and Gamma correction [2], which is
used to correct for the differences between the way a camera
captures content and the way our visual system processes
light. This will limit reconstruction quality on real-world
input images and consequently degrade prediction results
as we found from experiments reported in Table 1.

To avoid the problem that RmNet encounters, we use a
scale parameter « instead of the element-wise mask matrix
W, and we directly calculate the residual reflection R by
I — a-T. In this way, we do not require modeling the
complicated physical process involved in the formation of
images with reflection, and our performance does not suffer
from deficiencies in such a synthesis model. The benefit of
predicting residual reflection instead of the reflection layer
used to produce reflections off the glass is that image recon-
struction becomes simplified as just the sum of the predicted
transmission and the predicted residual reflection. Also, dif-
ferent from RmNet, all our linear operations are done in the
linear color space, removing Gamma correction [2].
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Figure 2. The architecture of IBCLN. The cascaded network consists of a transmission generative sub-network G and a reflection
generative sub-network G r with skip connections, both of which are convolutional LSTM networks. The images generated at each time
step by the two sub-networks will be fed back at the next time step. The overall network is trained in an end-to-end manner.

3.3. Network Architecture

The architecture of the proposed network is illustrated
in Figure 2!. IBCLN consists of two sub-networks:
a transmission-prediction network G and a reflection-
prediction network Gr. The two sub-networks are both
convolutional LSTM networks with the same architecture
but different goals. The former aims to learn the transmis-
sion T while the latter aims to learn the residual reflection
R, so they learn completely different weight parameters.
Each sub-network consists of an encoder with 11 Conv-
relu blocks that extract the features from the input image,
a convolutional LSTM unit [20] and a decoder with 8 con-
volutional layers for generating the predicted transmission
layer or the predicted residual reflection layer. Each con-
volutional layer is followed by a ReLU activation, except
for the LSTM layers which are followed by a Sigmoid ac-
tivation or a Tanh activation. In each sub-network, there
are two skip connections between the encoder and the de-
coder to prevent blurred outputs. The convolutional layers
and skip connections are similar to those of a contextual au-
toencoder [18]. Different from previous works, our objec-
tive function includes the proposed residual reconstruction
loss and a multi-scale perceptual loss.

Figure 3 illustrates IBCLN from a different perspective.
All Gt illustrated in this figure is exactly the same net-
work with the same parameters, but at different time steps
in the cascade. We connect G at adjacent time steps with
convolutional LSTM units that save information from the

!Code and model: https://github.com/JHL-HUST/IBCLN/.
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Figure 3. Characterizing IBCLN with increasing number of time
steps. All blocks labeled as Gt indicate one sub-network and all
blocks labeled as G r indicate another sub-network. The output at
time step ¢ — 1 serves as the input at time step . ’i‘l, 'i‘g, s ’i‘N
are the predicted transmission. f{l, flg, s R ~ are the predicted
residual reflection.

previous time step. In the actual model, the convolutional
LSTM unit is in the middle of the sub-network and con-
nected with convolutional layers. The convolutional LSTM
unit has four gates, including an input gate, a forget gate, an
output gate, as well as a cell state. The cell state encodes
the state information that will be fed to the next LSTM. The
LSTM’s output feature is fed into the next convolutional
layer. More details can be found in ConvLSTM [20]. At
time step ¢, both of the sub-networks take nine channels of
input, specifically a concatenation of the synthetic image
I, the predicted transmission Tt—l and residual reflection
f{t_l predicted at time stept — 1 (1 <t < N). Ty is set to
be the synthetic image I and Ry is set to 0.1 for all entries.
The output of the transmission prediction network G at
the final time step [V serves as the final result.

Many previous works consider auxiliary information to
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be important for predicting reflection-free transmission lay-
ers [4, 33, 27, 31], since it indicates to the network where
the removal should be focused on. In our work, Tt—l and
R,_; are saved to serve as the auxiliary information of step
t (1 <t < N). The auxiliary information will improve with
increasing numbers of time steps (see Figure 1). Since the
predicted transmissions represent what the network can in-
fer at a given time step, using them as auxiliary information
is effective. Additionally, the predicted residual reflection
is complementary to the predicted transmission in an im-
age, so it also contains meaningful information.

Considering that the iterative process may require a long
cascade, using conventional convolutional networks as the
sub-networks would make the full model hard to train.
This motivates our use of two convolutional LSTM net-
works, each with a convolutional LSTM unit. The con-
tinuity among time steps makes the model easy to train.
Additionally, a cascaded architecture has fewer parameters
to learn, as both of the sub-networks are iterated multiple
times and each instance of a sub-network shares the same
weights. Moreover, a convolutional LSTM network has
more complete information exchange either within itself or
between the two sub-networks, which is more in line with
our iterative boost idea.

3.4. Objective Function

Residual Reconstruction Loss. For the existing linear
models [4, 34] for generating synthetic images, the general
steps are to perform a series of complex operations on a
reflection image to produce a reflection layer R, then to
generate a synthetic image I by a linear operation: I =
clip(a - T + R). Usually « € [0.8,1] due to the slight
attenuation of light as it passes through a glass plane. The
weight of the reflection layer R is 1 as the original reflec-
tion image has been subtracted adaptively by the synthesis
method. The clipping operation forces all values of the syn-
thetic image to be in [0,1].

We introduce a new loss to the proposed network, called
the residual reconstruction loss. We adopt the above syn-
thesis model, bEt replace R with R, where R is determined
from I and T. R offers more effective auxiliary information
for transmission prediction, and a more convincing ground
truth, as compared to the artificially constructed R. R is
obtained by reverting the linear synthesis model, as

R=I-a-T. (1)

With this definition of R, the clipping operation is not
needed and we avoid its loss of information. After R is
calculated, it can be used as the ground truth of G i to guide
the generation of the predicted residual reflection R. Then,
we can simply revert Eq. (1) in the objective function, as

i=a T+R, (2)

where ’i‘, R and T are the predicted transmission, pre-
dicted residual reflection and the reconstructed image, re-
spectively. « is the same as in the synthesis model.

Note that all the above linear operations are done in the
linear color space, so the Gamma correction [2] on each
image is removed before inclusion in linear operations.

It is intuitive that the reconstructed image 1 should be
similar to the original input through a well-trained network.
The residual reconstruction loss is defined as:

N

Eresidual = Z Z £]WSE (Ia It) (3)
IeD t=1
L se indicates the mean squared error. ¢ denotes the time
step of the two sub-networks. N represents the final time
step when T converges.

The residual reconstruction loss works well experimen-

tally. One potential reason is that the two sub-networks have
the same architecture but complementary objectives. With
the same architecture, they may be under-trained or over-
trained concurrently. The complementary objectives within
the residual reconstruction loss can balance the error from
the two sub-networks. If both of the two sub-networks are
either under-trained or over-trained, the error will be dou-
bled in the residual reconstruction loss.
Multi-scale Perceptual Loss. Multi-scale losses are ef-
fective in image decomposition tasks such as raindrop re-
moval [18]. A multi-scale loss extracts the features from
different decoder layers and feeds them into a convolutional
layer to form outputs at different resolutions. The outputs
are then compared to those of real images by their Ly sp
distance. By adopting such a loss in our task, we can cap-
ture more contextual information from various scales. We
change the £);sp distance to the perceptual distance be-
tween the predicted image and the real image over different
scales. This loss thus considers different scales of both low-
level and high-level information. We define the loss func-
tion as:

Lup=
T,73,T5€D
+ ’Ysﬁ\/GG(TE)a Ts))’

(Lvee(T,T) +v3Lvaa(T?, T?)

“)

where T, T3, T5 indicate the outputs of the last, 3" last
and 5'" last layers at time step I, whose sizes are 1, 5 and §
of the original size, respectively. T, T3 and T® indicate the
ground truth that has the same scale as that of the outputs,
respectively. Layers with smaller size are not considered
since their information is relatively insignificant. We set
v3 = 0.8 and 75 = 0.6. All the images are fed into the
VGGI19 network [21]. We compare the outputs of the layers
‘convl_2’ and ‘conv2_2’ in the VGG19 network.

Pixel Loss. To ensure that the outputs become as close to
the ground truth as possible, we utilize the L5 loss to
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measure the pixel-wise distance between them. Our pixel
loss is defined as follows:

N
Lpizel = Z Z[ﬁMSE(T, T)) + Luse(R,Ry)], (5)

TeD t=1

where R is the residual reflection. ’i‘t and Rt are the out-
puts at time step ¢.

Adversarial Loss. To improve the realism of the generated
transmission layers, we further add an adversarial loss. We
define an opponent discriminator network D). The adver-
sarial loss is defined as (refer to [34] for details):

Loay =Y  —log D(T,T). (6)
TeD
Overall Loss. Overall, our objective function of IBCLN is
defined as:

L= )\lﬁresidual + >\2»CMP + )\SL:pimel + >\4£ad7jv @)

where we empirically set the weights as A\; = 2, Ay =
1, A3 = 2, Ay = 0.01 throughout our experiments.

3.5. Implementation Details

We implement the proposed IBCLN in Pytorch on a PC
with an Nvidia Geforce GTX 2080 Ti GPU. The overall
model is trained for 80 epochs with a batch size of 2, using
the Adam optimizer [12]. The learning rate for the over-
all network training is set to 0.0002. For the training data,
we use 4000 images containing 2800 synthetic images and
1200 image patches of size 256 x 256 from 290 real-world
training images, containing 200 images from our created
dataset and 90 images from Zhang et al. [34].

4. Experiments

4.1. Dataset Preparation

Figure 4. Samples from our real world Nature dataset. Top: im-
ages with reflection. Bottom: the corresponding ground-truth
transmission layers.

Similar to current deep learning methods, our method
requires a relatively large amount of data with ground truth
for training. Our synthesis model is the same as the recently
proposed linear method [34] except for the clipping opera-
tion. We utilize their synthetic dataset as well. In our ex-
periments, different methods are evaluated on the publicly

available real-world images from the ST R? datasets [26],
Zhang et al. [34] and the real-world dataset we create.

Our created dataset, called Nature, contains 220 real-
world image pairs: images with reflection and the corre-
sponding ground-truth transmission layers (see samples in
Figure 4). We use a Canon EOS 750D for image acquisi-
tion. Each ground-truth transmission layer is captured when
the portable glass is removed. The dataset is randomly par-
titioned into a training set and a testing set. We use 200
images for training and 20 images for quantitative evalua-
tion. Inspired by Zhang et al. [34], we captured the images
with the following considerations to simulate diverse imag-
ing conditions: 1) Environments: indoor and outdoor; 2)
Lighting conditions: skylight, sunlight, and incandescent;
3) Thickness of the glass slabs: 3 mm and 8 mm; 4) Dis-
tance between the glass and the camera: 3 to 15 cm; 5)
Camera viewing angles: front view and oblique view; 6)
Camera exposure value: 8.0 - 16.0; 7) Camera apertures
(affecting the reflection blurriness): /4.0 — f/16.

4.2. Comparison to State-of-the-art Methods
4.2.1 Quantitative Evaluations

We compare our IBCLN against state-of-the-art methods
including CEILNet [4], Zhang et al. [34], BDN [33], Rm-
Net [31] and ERRNet [30]. For an apples-to-apples compar-
ison, we finetune each model (if the model provides train-
ing code) on our training dataset and report the best result
of the original pre-trained model and finetuned version (de-
noted with a suffix ’-F’). RmNet [31] has three models for
different reflection types, and we report the best result from
among the three models.

Table 1 summarizes results of all the competing meth-
ods on five real-world datasets, including three sub-datasets
from SIR? [26], Zhang et al. [34] and our dataset. The
number of images in each dataset is shown after the name.
The quality metrics include PSNR and SSIM [29]. Larger
values of PSNR and SSIM indicate better performance. IB-
CLN achieves the best performance on four of the datasets,
but not on 20 images of “Zhang et al.”. As ERRNet [30] is
developed based on model Zhang et al. [34], EERNet and
Zhang et al. both have better performance on the dataset
“Zhang et al.”. In terms of overall performance over all the
test datasets, IBCLN surpasses the other methods.

4.2.2 Qualitative Evaluations

Figure 5 presents visual results and the ground truth on real-
world images from SIR? [26], Zhang et al. [34] and our
dataset. We select two images from each dataset. It can be
seen that Zhang et al. [34] tends to over-remove the reflec-
tion layer, while the other baseline methods tend to under-
remove. Our model is more accurate and removes most of
the undesirable reflections.
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Table 1. Quantitative comparison of different methods on three real-world benchmark datasets. The best results are in bold and orange
color, and the second best results are underlined and in blue color. ‘Average’ is obtained by averaging the metric scores of all images from
all the above real-world datasets.

Methods
Dataset (size) Index CEILNet-F Zhang et al. BDN-F RmNet ERRNet-F IBCLN
[4] [34] [33] [31] [30]

. PSNR 22.81 22.68 23.02 2033 24.85 24.87
Object (200) SSIM 0.801 0.874 0.853 0.793 0.889 0.893
Posteard (199) PSNR 20.08 16.81 20.71 1971 21.99 23.39

SSIM 0.810 0.797 0.857 0.808 0.874 0.875

Wild (55) PSNR 22.14 2152 22.34 21.98 24.16 24.71
SSIM 0.819 0.829 0.821 0.821 0.847 0.886

Zhang ot al. (20) PSNR 1879 2242 1947 1877 2335 21.86
: SSIM 0.749 0.792 0.720 0.681 0.811 0.762

Nature (20) PSNR 19.33 19.56 18.92 19.36 22.18 23.57
SSIM 0.745 0.736 0.737 0.725 0.756 0.783

Average (494) PSNR 2131 20.85 21.68 20.19 23.45 24.08
SSIM 0.806 0.829 0.841 0.795 0.870 0.875

PEL VL

Input Zhang et al. [32] BDN [ RmNet [ ERRNet [ IBCLN Ground-truth T

Figure 5. Visual comparison among state-of-the-art approaches and our method on images from three real-world image datasets, namely,
Nature (Rows 1-2), SIR? (Rows 3-4) and Zhang et al. (Rows 5-6). More results can be found in the suppl. material.

4.3. Controlled Experiments out LSTM is not shown in the table because it cannot be
effectively trained. The ablation study on the loss terms
is shown in Table 3. And visual comparisons among all
the modified networks and IBCLN are displayed in Figure
6 and Figure 7. We observe that using two iterative sub-
networks, time steps, Lqgy, Lresidual and L p all enhance
the performance of IBCLN, and all the blocks and the losses

For better analyzing our network architecture and the ob-
jective function of IBCLN, we separately remove the sub-
network G g, the iteration step, and the three-loss terms one
by one. Then we train new models with the modified net-
works. The results from these ablations on the architecture
are given in Table 2. The result of a cascade network with-
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Input Lpixel only Without Ladv

Without Lresidual Without Lmp IBCLN

Figure 6. Visual comparison among IBCLN and versions with a modified loss on real-world images. More results are in the suppl. material.

Input Without Gr

Without iteration IBCLN

Figure 7. Visual comparison among IBCLN and versions with ar-
chitecture modifications on real-world images. More results can
be found in the suppl. material.
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Figure 8. Results using different total time steps /N in IBCLN on
STR? [26]. Total time steps N = 3 yields the best performance.

Table 2. Ablation study of IBCLN for architecture on three testing
sets. w/o G g means training with only one sub-network Gr. w/o
iteration means the total time steps is 1. Each term contributes to
the SIRR performance, and combining all achieves the best results.

Model Nature Zhang et al. SIR?
PSNR SSIM PSNR SSIM PSNR SSIM
w/o Gr 2179  0.759 20.65 0.742 2236 0.868

w/o iteration 21.82 0.764 2049 0.739 23.09 0.872
Complete 23.57 0.783 21.86 0.762 24.20 0.884

yield different contributions to the removal performance.
The complete IBCLN with all structures and objective func-
tion terms yields the best results.

To explore how many time steps are appropriate for the
predicted transmission to converge, we train the model with
different total time steps. Figure 8 exhibits the results. We
see that the output approximately converges when total time
steps are equal to 3. We experimented with having the net-

Table 3. Ablation study of IBCLN for loss terms on three testing
sets. Each loss contributes to IBCLN’s performance, and combin-
ing all achieves the best result.

Nature Zhang et al. SIR?
PSNR SSIM PSNR SSIM PSNR SSIM

Lpizer only 2198 0.739 1954 0.722 2291 0.843

Model

W/o Logy 2324 0746 2174 0755 23.86 0.885
W/0 Lyesiqual  22.54 0770 2098 0755 23.74 0.881
wlo L p 2314 0744 2147 0734 2296 0.863
Complete 2357 0.783 21.86 0.762 2420 0.884

work learn the total time steps automatically for different
images, but we found that providing this much flexibility
causes the performance to decay.

5. Conclusion

We present an Iterative Boost Convolutional LSTM Net-
work (IBCLN) that can effectively remove the reflection
from a single image in a cascaded fashion. To formulate
an effective cascade network, we propose to iteratively re-
fine the transmission and reflection layers at each step in
a manner that they can boost prediction quality for each
other, and to employ LSTM to facilitate training over mul-
tiple cascade steps. The intuition is that a better estimate
of the complementary residual reflection can boost the pre-
diction of the transmission, and vice versa. Besides, we
incorporate a residual reconstruction loss as further train-
ing guidance at each cascade step. Moreover, we combine
a multi-scale loss with the perceptual loss to form a multi-
scale perceptual loss. Quantitative and qualitative evalua-
tions on five datasets (including ours) demonstrate that the
proposed IBCLN outperforms state-of-the-art methods on
the challenging single image reflection removal problem. In
future work, we will try our cascaded prediction refinement
approach on other image layer decomposition tasks such as
raindrop removal, flare removal and dehazing.
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