
Single Image Reflection Removal through Cascaded Refinement

Chao Li1,∗ Yixiao Yang1,∗ Kun He1,† Stephen Lin2 John E. Hopcroft3

1School of Computer Science and Technology, Huazhong University of Science and Technology
2Microsoft Research Asia, 3Computer Science Department, Cornell University

brooklet60@hust.edu.cn

Abstract

We address the problem of removing undesirable reflec-

tions from a single image captured through a glass surface,

which is an ill-posed, challenging but practically important

problem for photo enhancement. Inspired by iterative struc-

ture reduction for hidden community detection in social net-

works, we propose an Iterative Boost Convolutional LSTM

Network (IBCLN) that enables cascaded prediction for re-

flection removal. IBCLN is a cascaded network that iter-

atively refines the estimates of transmission and reflection

layers in a manner that they can boost the prediction quality

to each other, and information across steps of the cascade is

transferred using an LSTM. The intuition is that the trans-

mission is the strong, dominant structure while the reflec-

tion is the weak, hidden structure. They are complementary

to each other in a single image and thus a better estimate

and reduction on one side from the original image leads to a

more accurate estimate on the other side. To facilitate train-

ing over multiple cascade steps, we employ LSTM to ad-

dress the vanishing gradient problem, and propose residual

reconstruction loss as further training guidance. Besides,

we create a dataset of real-world images with reflection and

ground-truth transmission layers to mitigate the problem of

insufficient data. Comprehensive experiments demonstrate

that the proposed method can effectively remove reflections

in real and synthetic images compared with state-of-the-art

reflection removal methods.

1. Introduction

Undesirable reflections from glass occur frequently in

real-world photos. It not only significantly degrades the

image quality, but also affects the performance of down-

stream computer vision tasks like object detection and se-

mantic segmentation. As the reflection removal problem

is ill-posed, early works primarily tackle it with multi-

∗The first two authors contribute equally.
†Corresponding author.

ple input images [24, 19, 16, 32, 6, 23, 5, 7]. More re-

cently, researchers attempt to address the more common

and practically significant scenario of a single input im-

age [14, 15, 16, 17, 28, 22, 1, 25].

For single-image reflection removal (SIRR), researchers

have observed that some handcrafted priors may help for

distinguishing the transmission layer from the reflection

layer in a single image. But these priors often do not gener-

alize well to different types of reflections and scenes owing

to disparate imaging conditions. In recent years, researchers

apply data-driven learning to replace handcrafted priors via

deep convolutional neural networks. With abundant labeled

data, a network can be trained to perform effectively over

a broad range of scenes. However, learning-based single-

image methods still have much room for improvement due

to complications such as limited training data, disparate

imaging conditions, varying scene content, limited physical

understanding of this problem, and the performance limita-

tion of various models.

In this work, inspired by the iterative structure reduc-

tion approach for hidden community detection in social net-

works [8, 9], we introduce a cascaded neural network model

for transmission and reflection decomposition. Figure 1 il-

lustrates the cascade results in our model, where the trans-

mission and reflection are progressively refined during the

iterations. To the best of our knowledge, previous works

on reflection removal did not utilize a cascaded refinement

approach. Though some methods such as BDN [33] obtain

predictions over a sequence of a few sub-networks, they do

not iteratively refine the estimates, but rather they conduct a

short alternating optimization, e.g., by estimating the reflec-

tion from the input image and the initial transmission layer,

and then estimating the transmission from the input image

and the estimated reflection layer.

For a cascade model on SIRR, a simple approach is to

employ one network to generate a predicted transmission

that serves as the auxiliary information of the next network,

and continue such process with subsequent networks to it-

eratively improve the prediction quality. With a long cas-

cade, however, the training becomes difficult due to the
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Figure 1. Visualization of results at different cascade steps of the two sub-networks in the proposed model. The estimates of transmissions

and residual reflections become increasingly more accurate as they progress through the cascade. More results are in the suppl. material.

vanishing gradient problem and limited training guidance at

each step. To address this issue, we design a convolutional

LSTM (Long Short-Term Memory) network, which saves

information from the previous iteration (i.e. time step) and

allows gradients to flow unchanged.

In our model, two sub-networks use identical convolu-

tional LSTM architecture, one for transmission prediction

and the other for reflection prediction. They share input

information using the outputs of the previous time step to

boost each other’s effectiveness. Here we propose a residual

reconstruction loss as further training supervision at each

cascade step. To simplify the reconstruction loss, we de-

fine a new concept of residual reflection, which will be de-

scribed in Sec. 3.4.

Though a few real-world datasets with ground-truth have

been presented [26, 34], the real-world data for SIRR is still

insufficient due to the tremendously labor-intensive work.

To help resolve the insufficiency of the real-world train-

ing data, we also collect a real dataset with densely-labeled

ground truth in disparate imaging conditions and varying

scenes.

Our main contributions are as follows:

• We propose a new network architecture, a cascaded

network, with loss components that achieves state-of-

the-art quantitative results on real-world benchmarks

for the single image reflection removal problem.

• We design a residual reconstruction loss, which can

form a closed loop with the linear method for synthe-

sizing images with reflections, to expand the influence

of the synthesis method across the whole network.

• We collect a new real-world dataset containing images

with densely-labeled ground-truth, which can serve as

baseline data in future research.

2. Related Work

Mathematically speaking, SIRR operates on a captured

image I, which is generally assumed to be a linear combi-

nation of a transmission layer T and a reflection layer R.

The goal is to infer a transmission layer T that is free of

reflections. In this work, we focus on deep learning-based

SIRR, which has produced state-of-the-art results. Previ-

ous multiple-image methods [32, 6, 16, 23, 19, 5, 24, 7] and

single-image-priors based methods [15, 17, 14, 22, 1, 28,

16, 25] are not considered here.

Due to the advantages in robustness and performance,

there is an emerging interest in applying neural networks

to SIRR. Fan et al. [4] provide the first neural network

model to solve this ill-posed problem. They propose a linear

method for synthesizing images with reflection for training,

and use an edge map as auxiliary information to guide the

reflection removal. Wan et al. [27] develop two cooperative

sub-networks, which predict the transmission layer inten-

sity and gradients concurrently. Both of these works [4, 27]

utilize edge or gradient information of the captured layer

I, motivated by the idea that the reflection layers are usu-

ally not in focus and thus blurry as compared to the trans-

mission layers. From the edge information of the captured

image I, the edge map of the transmission image T is pre-

dicted and used in estimating the transmission result. In-

stead, BDN [33] predicts reflection layers which are then

used as auxiliary information in a subsequent network to

estimate the transmission.

In several recent methods, improved formulations of the

objective function are presented. These include the adop-

tion of perceptual losses [11] to account for both low-level

and high-level image information [3, 10, 34]. In these

works, images are fed to a deep network pre-trained on Ima-

geNet, and comparisons are made based on extracted multi-
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stage features. Adversarial losses have also been applied,

specifically to improve the realism of predicted transmis-

sion layers [34, 13, 31, 30].

Another direction of study focuses on datasets for train-

ing. Moving beyond improvements for the linear synthesis

method in [4] and [34], Wen et al. [31] synthesize training

data with learned non-linear alpha blending masks that bet-

ter model the real-world imaging conditions. These masks

are also used in forming a reconstruction loss that guides

the prediction of transmission layers. To deal with the in-

sufficiency of densely-labeled training data, Wei et al. [30]

present a technique for utilizing misaligned real-world im-

ages as the training data, as they are less burdensome to

acquire than aligned images and are more realistic than syn-

thetic images.

3. Proposed Method

3.1. Motivation

This work is motivated by research on hidden structures

in social networks. He et al. [8, 9] define a set of communi-

ties as hidden structure if most of the members also belong

to other stronger communities. They propose an iterative

boost approach to separate a set of strong, dominant com-

munities and another set of weak, hidden communities, and

boost the detection accuracy on both sides. The key idea is

that, when they detect an approximate set of dominant com-

munities using a base algorithm, and weaken their internal

connection to the average connection of the overall graph,

the dominant structure is reduced to boost the detection on

the set of hidden communities, and vice versa.

Under the scenario of SIRR, a useful trick is to employ

sub-networks to learn auxiliary information that can facil-

itate transmission layer prediction. The types of auxiliary

information utilized in existing works include edge infor-

mation [4, 27] and predicted reflections [33]. The ideal aux-

iliary information would be the ground truth reflection-free

version of the transmission layer, which is what we seek to

predict. As this is not available at inference time, we instead

use approximations to the ground-truth transmission in the

form of predicted transmissions as the auxiliary informa-

tion. Though certainly not as useful as the ground truth,

it nevertheless provides strong guidance, especially as the

transmission predictions improve. The key issue then be-

comes how to drive the transmission estimations closer and

closer to the ground truth. Referring to the work of He et

al. [8, 9], we regard the transmission layer as the strong,

dominant structure, and the reflection layer as the weak,

hidden structure. By iteratively reducing the more accurate

version of the counterpart, we could extract more accurate

approximations on the two layers of images.

Our model contains two sub-networks that can collabo-

rate and boost each other’s output by reducing the output

of one side from the original image as effective auxiliary

information for the other complementary side. Such collab-

orative cascaded refinement of the dominant image (trans-

mission) and the weak image (reflection) is novel for the

training of a neural network.

3.2. General Design Principles

We use two convolutional LSTM networks to separately

generate the predicted transmission layers and the predicted

reflection layers. The input of each sub-network includes

the outputs of both the transmission and reflection sub-

networks. Besides, the outputs of the two sub-networks

are combined within a reconstruction loss to supervise the

whole model at each time step. The synergy between the

two sub-networks leads to a mutual boost in their predic-

tions, resulting in progressive improvements of the auxiliary

information and finally accurate estimates of the transmis-

sion.

To ensure that the transmission sub-network and the re-

flection sub-network generate complementary outputs, we

enforce a reconstruction loss where the image Î synthesized

from the estimated transmission and reflection is expected

to match the input image I.

A related constraint is employed in RmNet [31], which

synthesizes an image I from the ground-truth transmission

layer with no reflection, the reflection layer used to pro-

duce reflections off the glass, and an alpha blending mask

W. Thus, I = W ◦ T + (1 − W) ◦ R, where ◦ denotes

element-wise multiplication. The reconstructed image Î is

then compared to the synthetic input image I. However,

their alpha blending model only approximates the complex

physical mechanisms involved in forming an actual input

image with reflections, as it does not model effects such as

spatially varying blurs and Gamma correction [2], which is

used to correct for the differences between the way a camera

captures content and the way our visual system processes

light. This will limit reconstruction quality on real-world

input images and consequently degrade prediction results

as we found from experiments reported in Table 1.

To avoid the problem that RmNet encounters, we use a

scale parameter α instead of the element-wise mask matrix

W, and we directly calculate the residual reflection R̃ by

I − α · T. In this way, we do not require modeling the

complicated physical process involved in the formation of

images with reflection, and our performance does not suffer

from deficiencies in such a synthesis model. The benefit of

predicting residual reflection instead of the reflection layer

used to produce reflections off the glass is that image recon-

struction becomes simplified as just the sum of the predicted

transmission and the predicted residual reflection. Also, dif-

ferent from RmNet, all our linear operations are done in the

linear color space, removing Gamma correction [2].
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Figure 2. The architecture of IBCLN. The cascaded network consists of a transmission generative sub-network GT and a reflection

generative sub-network GR with skip connections, both of which are convolutional LSTM networks. The images generated at each time

step by the two sub-networks will be fed back at the next time step. The overall network is trained in an end-to-end manner.

3.3. Network Architecture

The architecture of the proposed network is illustrated

in Figure 21. IBCLN consists of two sub-networks:

a transmission-prediction network GT and a reflection-

prediction network GR. The two sub-networks are both

convolutional LSTM networks with the same architecture

but different goals. The former aims to learn the transmis-

sion T while the latter aims to learn the residual reflection

R̃, so they learn completely different weight parameters.

Each sub-network consists of an encoder with 11 Conv-

relu blocks that extract the features from the input image,

a convolutional LSTM unit [20] and a decoder with 8 con-

volutional layers for generating the predicted transmission

layer or the predicted residual reflection layer. Each con-

volutional layer is followed by a ReLU activation, except

for the LSTM layers which are followed by a Sigmoid ac-

tivation or a Tanh activation. In each sub-network, there

are two skip connections between the encoder and the de-

coder to prevent blurred outputs. The convolutional layers

and skip connections are similar to those of a contextual au-

toencoder [18]. Different from previous works, our objec-

tive function includes the proposed residual reconstruction

loss and a multi-scale perceptual loss.

Figure 3 illustrates IBCLN from a different perspective.

All GT illustrated in this figure is exactly the same net-

work with the same parameters, but at different time steps

in the cascade. We connect GT at adjacent time steps with

convolutional LSTM units that save information from the

1Code and model: https://github.com/JHL-HUST/IBCLN/.
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Figure 3. Characterizing IBCLN with increasing number of time

steps. All blocks labeled as GT indicate one sub-network and all

blocks labeled as GR indicate another sub-network. The output at

time step t− 1 serves as the input at time step t. T̂1, T̂2, ..., T̂N

are the predicted transmission. R̂1, R̂2, ..., R̂N are the predicted

residual reflection.

previous time step. In the actual model, the convolutional

LSTM unit is in the middle of the sub-network and con-

nected with convolutional layers. The convolutional LSTM

unit has four gates, including an input gate, a forget gate, an

output gate, as well as a cell state. The cell state encodes

the state information that will be fed to the next LSTM. The

LSTM’s output feature is fed into the next convolutional

layer. More details can be found in ConvLSTM [20]. At

time step t, both of the sub-networks take nine channels of

input, specifically a concatenation of the synthetic image

I, the predicted transmission T̂t−1 and residual reflection

R̂t−1 predicted at time step t− 1 (1 < t ≤ N ). T0 is set to

be the synthetic image I and R0 is set to 0.1 for all entries.

The output of the transmission prediction network GT at

the final time step N serves as the final result.

Many previous works consider auxiliary information to
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be important for predicting reflection-free transmission lay-

ers [4, 33, 27, 31], since it indicates to the network where

the removal should be focused on. In our work, T̂t−1 and

R̂t−1 are saved to serve as the auxiliary information of step

t (1 < t ≤ N ). The auxiliary information will improve with

increasing numbers of time steps (see Figure 1). Since the

predicted transmissions represent what the network can in-

fer at a given time step, using them as auxiliary information

is effective. Additionally, the predicted residual reflection

is complementary to the predicted transmission in an im-

age, so it also contains meaningful information.

Considering that the iterative process may require a long

cascade, using conventional convolutional networks as the

sub-networks would make the full model hard to train.

This motivates our use of two convolutional LSTM net-

works, each with a convolutional LSTM unit. The con-

tinuity among time steps makes the model easy to train.

Additionally, a cascaded architecture has fewer parameters

to learn, as both of the sub-networks are iterated multiple

times and each instance of a sub-network shares the same

weights. Moreover, a convolutional LSTM network has

more complete information exchange either within itself or

between the two sub-networks, which is more in line with

our iterative boost idea.

3.4. Objective Function

Residual Reconstruction Loss. For the existing linear

models [4, 34] for generating synthetic images, the general

steps are to perform a series of complex operations on a

reflection image to produce a reflection layer R, then to

generate a synthetic image I by a linear operation: I =
clip(α · T + R). Usually α ∈ [0.8, 1] due to the slight

attenuation of light as it passes through a glass plane. The

weight of the reflection layer R is 1 as the original reflec-

tion image has been subtracted adaptively by the synthesis

method. The clipping operation forces all values of the syn-

thetic image to be in [0,1].

We introduce a new loss to the proposed network, called

the residual reconstruction loss. We adopt the above syn-

thesis model, but replace R with R̃, where R̃ is determined

from I and T. R̃ offers more effective auxiliary information

for transmission prediction, and a more convincing ground

truth, as compared to the artificially constructed R. R̃ is

obtained by reverting the linear synthesis model, as

R̃ = I− α ·T. (1)

With this definition of R̃, the clipping operation is not

needed and we avoid its loss of information. After R̃ is

calculated, it can be used as the ground truth of GR to guide

the generation of the predicted residual reflection R̂. Then,

we can simply revert Eq. (1) in the objective function, as

Î = α · T̂+ R̂, (2)

where T̂, R̂ and Î are the predicted transmission, pre-

dicted residual reflection and the reconstructed image, re-

spectively. α is the same as in the synthesis model.

Note that all the above linear operations are done in the

linear color space, so the Gamma correction [2] on each

image is removed before inclusion in linear operations.

It is intuitive that the reconstructed image Î should be

similar to the original input through a well-trained network.

The residual reconstruction loss is defined as:

Lresidual =
∑

I∈D

N∑

t=1

LMSE(I, Ît). (3)

LMSE indicates the mean squared error. t denotes the time

step of the two sub-networks. N represents the final time

step when T̂ converges.

The residual reconstruction loss works well experimen-

tally. One potential reason is that the two sub-networks have

the same architecture but complementary objectives. With

the same architecture, they may be under-trained or over-

trained concurrently. The complementary objectives within

the residual reconstruction loss can balance the error from

the two sub-networks. If both of the two sub-networks are

either under-trained or over-trained, the error will be dou-

bled in the residual reconstruction loss.

Multi-scale Perceptual Loss. Multi-scale losses are ef-

fective in image decomposition tasks such as raindrop re-

moval [18]. A multi-scale loss extracts the features from

different decoder layers and feeds them into a convolutional

layer to form outputs at different resolutions. The outputs

are then compared to those of real images by their LMSE

distance. By adopting such a loss in our task, we can cap-

ture more contextual information from various scales. We

change the LMSE distance to the perceptual distance be-

tween the predicted image and the real image over different

scales. This loss thus considers different scales of both low-

level and high-level information. We define the loss func-

tion as:

LMP =
∑

T,T 3,T 5∈D

(LV GG(T, T̂) + γ3LV GG(T
3, T̂3)

+ γ5LV GG(T
5, T̂5)),

(4)

where T̂, T̂3, T̂5 indicate the outputs of the last, 3rd last

and 5th last layers at time step N , whose sizes are 1, 1

2
and 1

4

of the original size, respectively. T, T3 and T
5 indicate the

ground truth that has the same scale as that of the outputs,

respectively. Layers with smaller size are not considered

since their information is relatively insignificant. We set

γ3 = 0.8 and γ5 = 0.6. All the images are fed into the

VGG19 network [21]. We compare the outputs of the layers

‘conv1 2’ and ‘conv2 2’ in the VGG19 network.

Pixel Loss. To ensure that the outputs become as close to

the ground truth as possible, we utilize the LMSE loss to
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measure the pixel-wise distance between them. Our pixel

loss is defined as follows:

Lpixel =
∑

T∈D

N∑

t=1

[LMSE(T, T̂t) + LMSE(R̃, R̂t)], (5)

where R̃ is the residual reflection. T̂t and R̂t are the out-

puts at time step t.

Adversarial Loss. To improve the realism of the generated

transmission layers, we further add an adversarial loss. We

define an opponent discriminator network D. The adver-

sarial loss is defined as (refer to [34] for details):

Ladv =
∑

T∈D

− logD(T, T̂). (6)

Overall Loss. Overall, our objective function of IBCLN is

defined as:

L = λ1Lresidual + λ2LMP + λ3Lpixel + λ4Ladv, (7)

where we empirically set the weights as λ1 = 2, λ2 =
1, λ3 = 2, λ4 = 0.01 throughout our experiments.

3.5. Implementation Details

We implement the proposed IBCLN in Pytorch on a PC

with an Nvidia Geforce GTX 2080 Ti GPU. The overall

model is trained for 80 epochs with a batch size of 2, using

the Adam optimizer [12]. The learning rate for the over-

all network training is set to 0.0002. For the training data,

we use 4000 images containing 2800 synthetic images and

1200 image patches of size 256× 256 from 290 real-world

training images, containing 200 images from our created

dataset and 90 images from Zhang et al. [34].

4. Experiments

4.1. Dataset Preparation

Figure 4. Samples from our real world Nature dataset. Top: im-

ages with reflection. Bottom: the corresponding ground-truth

transmission layers.

Similar to current deep learning methods, our method

requires a relatively large amount of data with ground truth

for training. Our synthesis model is the same as the recently

proposed linear method [34] except for the clipping opera-

tion. We utilize their synthetic dataset as well. In our ex-

periments, different methods are evaluated on the publicly

available real-world images from the SIR2 datasets [26],

Zhang et al. [34] and the real-world dataset we create.

Our created dataset, called Nature, contains 220 real-

world image pairs: images with reflection and the corre-

sponding ground-truth transmission layers (see samples in

Figure 4). We use a Canon EOS 750D for image acquisi-

tion. Each ground-truth transmission layer is captured when

the portable glass is removed. The dataset is randomly par-

titioned into a training set and a testing set. We use 200

images for training and 20 images for quantitative evalua-

tion. Inspired by Zhang et al. [34], we captured the images

with the following considerations to simulate diverse imag-

ing conditions: 1) Environments: indoor and outdoor; 2)

Lighting conditions: skylight, sunlight, and incandescent;

3) Thickness of the glass slabs: 3 mm and 8 mm; 4) Dis-

tance between the glass and the camera: 3 to 15 cm; 5)

Camera viewing angles: front view and oblique view; 6)

Camera exposure value: 8.0 - 16.0; 7) Camera apertures

(affecting the reflection blurriness): f/4.0 — f/16.

4.2. Comparison to State-of-the-art Methods

4.2.1 Quantitative Evaluations

We compare our IBCLN against state-of-the-art methods

including CEILNet [4], Zhang et al. [34], BDN [33], Rm-

Net [31] and ERRNet [30]. For an apples-to-apples compar-

ison, we finetune each model (if the model provides train-

ing code) on our training dataset and report the best result

of the original pre-trained model and finetuned version (de-

noted with a suffix ’-F’). RmNet [31] has three models for

different reflection types, and we report the best result from

among the three models.

Table 1 summarizes results of all the competing meth-

ods on five real-world datasets, including three sub-datasets

from SIR2 [26], Zhang et al. [34] and our dataset. The

number of images in each dataset is shown after the name.

The quality metrics include PSNR and SSIM [29]. Larger

values of PSNR and SSIM indicate better performance. IB-

CLN achieves the best performance on four of the datasets,

but not on 20 images of “Zhang et al.”. As ERRNet [30] is

developed based on model Zhang et al. [34], EERNet and

Zhang et al. both have better performance on the dataset

“Zhang et al.”. In terms of overall performance over all the

test datasets, IBCLN surpasses the other methods.

4.2.2 Qualitative Evaluations

Figure 5 presents visual results and the ground truth on real-

world images from SIR2 [26], Zhang et al. [34] and our

dataset. We select two images from each dataset. It can be

seen that Zhang et al. [34] tends to over-remove the reflec-

tion layer, while the other baseline methods tend to under-

remove. Our model is more accurate and removes most of

the undesirable reflections.
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Table 1. Quantitative comparison of different methods on three real-world benchmark datasets. The best results are in bold and orange

color, and the second best results are underlined and in blue color. ‘Average’ is obtained by averaging the metric scores of all images from

all the above real-world datasets.

Dataset (size) Index

Methods

CEILNet-F Zhang et al. BDN-F RmNet ERRNet-F IBCLN

[4] [34] [33] [31] [30]

Object (200)
PSNR 22.81 22.68 23.02 20.33 24.85 24.87

SSIM 0.801 0.874 0.853 0.793 0.889 0.893

Postcard (199)
PSNR 20.08 16.81 20.71 19.71 21.99 23.39

SSIM 0.810 0.797 0.857 0.808 0.874 0.875

Wild (55)
PSNR 22.14 21.52 22.34 21.98 24.16 24.71

SSIM 0.819 0.829 0.821 0.821 0.847 0.886

Zhang et al. (20)
PSNR 18.79 22.42 19.47 18.77 23.35 21.86

SSIM 0.749 0.792 0.720 0.681 0.811 0.762

Nature (20)
PSNR 19.33 19.56 18.92 19.36 22.18 23.57

SSIM 0.745 0.736 0.737 0.725 0.756 0.783

Average (494)
PSNR 21.31 20.85 21.68 20.19 23.45 24.08

SSIM 0.806 0.829 0.841 0.795 0.870 0.875

Input Zhang et al. [32] BDN  [31] RmNet  [28] ERRNet  [27] IBCLN  Ground-truth T

Figure 5. Visual comparison among state-of-the-art approaches and our method on images from three real-world image datasets, namely,

Nature (Rows 1-2), SIR2 (Rows 3-4) and Zhang et al. (Rows 5-6). More results can be found in the suppl. material.

4.3. Controlled Experiments

For better analyzing our network architecture and the ob-

jective function of IBCLN, we separately remove the sub-

network GR, the iteration step, and the three-loss terms one

by one. Then we train new models with the modified net-

works. The results from these ablations on the architecture

are given in Table 2. The result of a cascade network with-

out LSTM is not shown in the table because it cannot be

effectively trained. The ablation study on the loss terms

is shown in Table 3. And visual comparisons among all

the modified networks and IBCLN are displayed in Figure

6 and Figure 7. We observe that using two iterative sub-

networks, time steps, Ladv , Lresidual and LMP all enhance

the performance of IBCLN, and all the blocks and the losses
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Without LMPLpixel only Without LresidualWithout LadvInput IBCLN

Figure 6. Visual comparison among IBCLN and versions with a modified loss on real-world images. More results are in the suppl. material.

Without GR Without iterationInput IBCLN

Figure 7. Visual comparison among IBCLN and versions with ar-

chitecture modifications on real-world images. More results can

be found in the suppl. material.

P
S

N
R

S
S

IM

Total Time Step N

Figure 8. Results using different total time steps N in IBCLN on

SIR
2 [26]. Total time steps N = 3 yields the best performance.

Table 2. Ablation study of IBCLN for architecture on three testing

sets. w/o GR means training with only one sub-network GT . w/o

iteration means the total time steps is 1. Each term contributes to

the SIRR performance, and combining all achieves the best results.

Model
Nature Zhang et al. SIR2

PSNR SSIM PSNR SSIM PSNR SSIM

w/o GR 21.79 0.759 20.65 0.742 22.36 0.868

w/o iteration 21.82 0.764 20.49 0.739 23.09 0.872

Complete 23.57 0.783 21.86 0.762 24.20 0.884

yield different contributions to the removal performance.

The complete IBCLN with all structures and objective func-

tion terms yields the best results.

To explore how many time steps are appropriate for the

predicted transmission to converge, we train the model with

different total time steps. Figure 8 exhibits the results. We

see that the output approximately converges when total time

steps are equal to 3. We experimented with having the net-

Table 3. Ablation study of IBCLN for loss terms on three testing

sets. Each loss contributes to IBCLN’s performance, and combin-

ing all achieves the best result.

Model
Nature Zhang et al. SIR2

PSNR SSIM PSNR SSIM PSNR SSIM

Lpixel only 21.98 0.739 19.54 0.722 22.91 0.843

w/o Ladv 23.24 0.746 21.74 0.755 23.86 0.885

w/o Lresidual 22.54 0.770 20.98 0.755 23.74 0.881

w/o LMP 23.14 0.744 21.47 0.734 22.96 0.863

Complete 23.57 0.783 21.86 0.762 24.20 0.884

work learn the total time steps automatically for different

images, but we found that providing this much flexibility

causes the performance to decay.

5. Conclusion

We present an Iterative Boost Convolutional LSTM Net-

work (IBCLN) that can effectively remove the reflection

from a single image in a cascaded fashion. To formulate

an effective cascade network, we propose to iteratively re-

fine the transmission and reflection layers at each step in

a manner that they can boost prediction quality for each

other, and to employ LSTM to facilitate training over mul-

tiple cascade steps. The intuition is that a better estimate

of the complementary residual reflection can boost the pre-

diction of the transmission, and vice versa. Besides, we

incorporate a residual reconstruction loss as further train-

ing guidance at each cascade step. Moreover, we combine

a multi-scale loss with the perceptual loss to form a multi-

scale perceptual loss. Quantitative and qualitative evalua-

tions on five datasets (including ours) demonstrate that the

proposed IBCLN outperforms state-of-the-art methods on

the challenging single image reflection removal problem. In

future work, we will try our cascaded prediction refinement

approach on other image layer decomposition tasks such as

raindrop removal, flare removal and dehazing.
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