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Abstract

Attributes and objects can compose diverse composi-

tions. To model the compositional nature of these general

concepts, it is a good choice to learn them through transfor-

mations, such as coupling and decoupling. However, com-

plex transformations need to satisfy specific principles to

guarantee the rationality. In this paper, we first propose a

previously ignored principle of attribute-object transforma-

tion: Symmetry. For example, coupling peeled-apple

with attribute peeled should result in peeled-apple,

and decoupling peeled from apple should still output

apple. Incorporating the symmetry principle, a trans-

formation framework inspired by group theory is built, i.e.

SymNet. SymNet consists of two modules, Coupling Net-

work and Decoupling Network. With the group axioms

and symmetry property as objectives, we adopt Deep Neu-

ral Networks to implement SymNet and train it in an end-

to-end paradigm. Moreover, we propose a Relative Mov-

ing Distance (RMD) based recognition method to utilize

the attribute change instead of the attribute pattern it-

self to classify attributes. Our symmetry learning can

be utilized for the Compositional Zero-Shot Learning task

and outperforms the state-of-the-art on widely-used bench-

marks. Code is available at https://github.com/

DirtyHarryLYL/SymNet.

1. Introduction

Attributes describe the properties of generic objects, e.g.

material, color, weight, etc. Understanding the attributes

would directly facilitate many tasks that require deep se-

mantics, such as scene graph generation [15], object per-

ception [33, 9, 40, 35, 7, 20], human-object interaction de-

tection [3, 16, 17]. As side information, attributes can also

be employed in zero-shot learning [8, 39, 38, 37, 12, 41].

Going along with the road of conventional classifica-

tion setting, some works [14, 28, 39, 29] address attribute
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Figure 1. Except for the compositionality and contextuality,

attribute-object compositions also have the symmetry property. For

instance, a peeled-apple should not change after “adding” the

peeled attribute. Similarly, an apple should keep the same af-

ter “removing” the peeled attribute because it does not have it.

recognition with the typical discriminative models for ob-

jects and achieve poor performance. This is because at-

tributes cannot be well expressed independently of the con-

text [24, 25] (Fig. 1(a)). Subsequently, researchers re-

think the nature of attributes and treat them as linear op-

erations [25] to operate these two general concepts, e.g.

“adding” attribute to object (coupling) or “removing” at-

tribute from objects (decoupling). Though such new in-

sight has promoted this field, the current “add-remove” sys-

tem is not complete and lacks an axiomatics foundation to

satisfy the specific principles of nature. In this paper, we

rethink the physical and linguistic properties of attribute-

object, and propose a previously ignored but important prin-

ciple of attribute-object transformations: symmetry, which

would promote attribute-object learning. Symmetry depicts

the invariance under transformations, e.g. a circle has ro-

tational symmetry under the rotation without changing its

appearance. The transformation that “adding” or “remov-

ing” attributes should also satisfy the symmetry: An object

should remain unchanged if we “add” an attribute which

it already has, or “remove” an attribute which it does not

have. For instance, a peeled-apple keeps invariant if

we “add” attribute peeled upon it. Similarly, “removing”

peeled from apple would still result in apple.

As shown in Fig. 1(b), except the compositionality and

contextuality, the symmetry property should also be satis-

fied to guarantee the rationality. In view of this, we first
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introduce the symmetry and propose SymNet to depict it.

In this work, we aim to bridge attribute-object learning and

group theory. Because the elegant properties of group the-

ory would largely help in a more principled way, given its

great theoretical potential. Thus, to cover the principles ex-

isting in transformations theoretically, the principles from

group theory are borrowed to model the symmetry. In de-

tail, we define three transformations {“keep”, “add”, “re-

move”} and an operation to perform three transformations

upon objects, to construct a “group”. To implement these,

SymNet adopts Coupling Network (CoN) and Decoupling

Network (DecoN) to perform coupling/adding and decou-

pling/removing. On the other hand, to meet the fundamen-

tal requirements of group theory, symmetry and the group

axioms closure, associativity, identity element, invertibil-

ity element are all implemented as the learning objectives

of SymNet. Naturally, SymNet considers the composition-

ality and contextuality during coupling and decoupling of

various attributes and objects. All above principles will be

learned under a unified model in an end-to-end paradigm.

With symmetry learning, we can apply SymNet to

address the Compositional Zero-Shot Learning (CZSL),

whose target is to classify the unseen compositions com-

posed of seen attributes and objects. We adopt a novel

recognition paradigm, Relative Moving Distance (RMD)

(Fig. 2). That is, given a specific attribute, an object would

be manipulated by the “add” and “remove” transformations

parallelly in latent space. When those transformations meet

the symmetry principle: if the input object already has the

attribute, the output after addition should be close to the

original input object, and the object after removal should be

far from the input. Contrarily, if the object does not have

the given attribute, the object after removal should be closer

to the input than the object after addition. Thus, attribute

classification can be accomplished concurrently by compar-

ing the relative moving distances between the input and two

outputs. With RMD recognition, we can utilize the robust

attribute change to classify the attributes, instead of only re-

lying on the dramatically unstable visual attribute patterns.

Extensive experiments show that our method achieves sig-

nificant improvements on CZSL benchmarks [12, 41].

The main contributions of this paper are: 1) We propose

a novel property of attribute-object composition transforma-

tion: symmetry, and design a framework inspired by group

theory to learn it under the supervision of group axioms. 2)

Based on symmetry learning, we propose a novel method

to infer the attributes based on Relative Moving Distance.

3) We achieve substantial improvements in attribute-object

composition zero-shot learning tasks.

2. Related Work

Visual Attribute. Visual attribute was introduced into

computer vision to reduce the gap between visual patterns

and object concepts, such as reducing the difficulty in ob-

ject recognition [8] or acting as an intermediate represen-

tation for zero-shot learning [14]. After that, attribute has

been widely applied in recognition of face [19], people [1],

pedestrian [6] or action [34], person Re-ID [18, 30], zero-

shot learning [37, 39], caption generation [13, 27] and so

on. Therefore, attribute recognition is a fundamental prob-

lem to promote the visual concept understanding.

The typical approach for attribute recognition is to train

a multi-label discriminative model same as object classifi-

cation [14, 28, 39, 29], which ignores the intrinsic prop-

erties of attributes, such as compositionality and contextu-

ality. Farhadi et al. [8] propose a visual feature selection

method to recognize the attributes, under the consideration

of cross-category generalization. Later, some works start to

consider the properties by exploiting the attribute-attribute

or attribute-object correlations [11, 4, 22]. Considering the

contextuality of attributes, Nagarajan et al. [25] regard at-

tributes as linear transformations operated upon object em-

beddings, and Misra et al. [24] map the attributes into model

weight space to attain better representations.

Compositional Zero-Shot Learning. CZSL is a crossing

filed of compositional learning and zero-shot learning. In

the CZSL setting, test compositions are unseen during train-

ing, while each component is seen in both training set and

test set. Chen et al. [4] construct linear classifiers for un-

seen compositions with tensor completion of weight vec-

tors. Misra et al. [24] consider that the model space is more

smooth, thus project the attributes or objects into model

space by training binary linear SVMs for the correspond-

ing components. To deal with the CZSL task, it com-

poses the attribute and object embeddings in model space

as composition representation. Wang et al. [36] address the

attribute-object compositional problem via conditional em-

bedding modification which relies on attribute word embed-

ding [23] transformation. Nan et al. [26] map the image fea-

tures and word vectors [31] into embedding space with the

reconstruction constraint. Nagarajan et al. [25] regard at-

tributes as linear operations for object embedding and map

the image features and transformed object embeddings into

a shared latent space. However, linear and explicit matrix

transformation may be insufficient to represent various at-

tribute concepts of different complexity, e.g. representing

“red” and “broken” as matrices with the same capacity. Pre-

vious methods usually ignored or incompletely considered

the natural principles within the coupling and decoupling of

attributes and objects. In light of this, we propose a unified

framework inspired by group theory to learn these impor-

tant principles such as symmetry.

3. Approach

Fig. 2 gives an overview of our approach. Our goal is

to learn the symmetry within attribute-object compositions.
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Figure 2. Overview of our proposed method. We construct a “group” to learn the symmetry and operate the composition learning.

Thus we can utilize it to obtain a deeper understanding of

attribute-object, e.g., to address the CZSL task [12, 41]. To

learn the symmetry in transformations, we need a compre-

hensive framework to cover all principles. Inspired by the

group theory, we define a unified model named SymNet.

We define G = {Te, T+, T−} which contains iden-

tity (“keep”), coupling (“add”) and decoupling (“remove”)

transformations (Sec. 3.1) for each specific attribute and uti-

lize Deep Neural Networks to implement them (Sec. 3.2).

To depict symmetry theoretically, it is a natural choice to

adopt group theory as the close associations between sym-

metry and group in physics and mathematics. Since a group

should satisfy the group axioms, i.e., closure, associativity,

identity element, and invertibility element, we construct the

learning objectives based on these axioms to train the trans-

formations (Sec. 3.3). In addition, SymNet also satisfies

the commutativity under conditions. With the above con-

straints, we can naturally guarantee compositionality and

contextuality. Symmetry allows us to use a novel method,

Relative Moving Distance, to identify whether an object has

a certain attribute with the help of T+ and T− (Sec. 3.4) for

CZSL task (Sec. 3.5).

3.1. Group Definition

To depict the symmetry, we need to first define the trans-

formations. Naturally, we need two reciprocal transforma-

tions to “add” and “remove” the attributes. Further, we

need an axiomatic system to restrain the transformations

and keep the rationality. Thus, we define three transfor-

mations G = {Te, T+, T−} and an operation “·”. In prac-

tice, it is difficult to strictly follow the theory considering

the physical and linguistic truth. For example, the operation

between attribute transformations “peeled · broken” is

odd. Thus the “operation” here is defined to be operated

upon object only.

Definition 1. Identity transformation Te keep the at-

tributes of object. Coupling transformation T+ couples a

specific attribute with an object. Decoupling transforma-

tion T− decouples a specific attribute from an object.

Definition 2. Operation “·” performs transformations

{Te, T+, T−} upon object. Noticeably, operation “·” is

not the dot product and we use this notation to maintain the

consistence with group theory.

More formally, for object o ∈ O and attribute ai, aj ∈
A, ai 6= aj , where O denotes object set and A denotes

attribute set, operation “·” performs transformations in G

upon an object/image embedding:

f i
o · T+(a

j) = f ij
o ,

f ij
o · T−(a

j) = f i
o,

f i
o · Te = f i

o,

(1)

where f i
o means o has one attribute ai and f ij

o means o has

two attributes ai, aj . Here we do not sign a specific object

category and use o for simplicity.

Definition 3. G has the symmetry property if and only if

∀ai, aj ∈ A, ai 6= aj :

f i
o = f i

o · T+(a
i), f i

o = f i
o · T−(a

j). (2)

3.2. Group Implementation

In practice, when performing Te upon f i
o, we directly use

f i
o as the f i

o ·Te to implement the identity transformation for
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Figure 3. The structure of CoN and DecoN. They take the attribute

embedding to assign a specific attribute aj . f i
o, f

ij
o are the object

embeddings extracted from ResNet-18 [10].

simplicity. For other two transformations T+, T−, we pro-

pose SymNet consists of two modules: Coupling Network

(CoN) and Decoupling Network (DecoN). CoN and DecoN

have the same structure but independent weights and are

trained with different tasks. As seen in Fig. 3, CoN and De-

coN both take the image embedding f i
o of an object and the

embedding of attribute aj as inputs, and output the trans-

formed object embedding. We use the attribute category

word embeddings such as GloVe [31] or onehot vector to

represent the attributes. f i
o is extracted by an ImageNet [5]

pre-trained ResNet [10] from image I , i.e. f i
o = Fres(I).

Intuitively, attributes affect objects in different ways, e.g.

“red” changes the color, “wooden” changes the texture. In

CoN and DecoN, we use an attribute-as-attention strategy,

i.e. using att = g(aj) as attention, where g(·) means two

fully-connected (FC) and a Softmax layers. We concatenate

f i
o ◦ att + f i

o with original aj as the input and use two FC

layers to perform the transformation.

3.3. Group Axioms as Objectives

According to group theory, SymNet should satisfy four

group axioms: closure, associativity, identity element, and

invertibility. Under certain conditions, attribute-object also

satisfy commutativity. Besides, SymNet must obey the sym-

metry property of the attribute transformations.

In practice, we use Deep Neural Networks to implement

transformations. Thus, we can construct training objectives

to approach the theoretic transformations following the ax-

ioms. Considering the actual characteristics of attribute-

object compositions, we slightly adjust the axioms to con-

struct the objectives. Besides, there are two situations with

different forms of axioms: 1) coupling or decoupling an at-

tribute ai that the object f i
o already has, or 2) coupling or

decoupling an attribute aj that object f i
o does not have.

Symmetry. First of all, SymNet should satisfy the symme-

try property as depicted in Eq. 2, i.e., f i
o = f i

o ·T+(a
i), f i

o =
f i
o · T−(a

j). The symmetry is essential to keep the seman-

tic meaning during coupling and decoupling. For example,

given a peeled-egg, adding the attribute peeled again

should not change the object state. Similarly, a cupwithout

attribute broken should remain unchanged after removing

broken. Thus, we construct the symmetry loss:

Lsym = ‖f i
o − f i

o · T+(a
i)‖2 + ‖f i

o − f i
o · T−(a

j)‖2. (3)

where ai, aj ∈ A, i 6= j. We use L2 norm loss to measure

the distance between two embeddings.

Closure. For all elements in set G, their operation results

should also be in G. In SymNet, for the attribute ai that f i
o

has, f i
o ·T+(a

i) ·T−(a
i) should be equal to f i

o ·T−(a
i). For

the attribute aj that f i
o does not have, f i

o · T−(a
j) · T+(a

j)
should be equal to f i

o · T+(a
j). Thus, we construct:

Lclo =‖f i
o · T+(a

i) · T−(a
i)− f i

o · T−(a
i)‖2+

‖f i
o · T−(a

j) · T+(a
j)− f i

o · T+(a
j)‖2,

(4)

Identity Element. The properties of identity element Te

are automatically satisfied since we implement Te as a skip

connection, i.e. f i
o ·T∗(a

i)·Te = f i
o ·Te ·T∗(a

i) = f i
o ·T∗(a

i)
where T∗ denotes any element in G.

Invertibility Element. According to the definition, T+ is

the invertibility element of T−, vice versa. For the attribute

ai that f i
o has, f i

o·T−(a
i)·T+(a

i) should be equal to f i
o·Te =

f i
o. For the attribute aj that f i

o does not have, f i
o · T+(a

j) ·
T−(a

j) should be equal to f i
o ·Te = f i

o. Therefore, we have:

Linv =‖f i
o · T+(a

j) · T−(a
j)− f i

o · Te‖2+

‖f i
o · T−(a

i) · T+(a
i)− f i

o · Te‖2.
(5)

Associativity. In view of the practical physical meaning of

attribute-object compositions, we only define the operation

“·” that operates a transformation upon an object embedding

in Sec. 3.1, but do not define the operation between transfor-

mations. Therefore, we relax the constraint here and do not

construct an objective according to associativity in practice.

Commutativity. Because of the speciality of attribute-

object, SymNet satisfies the commutativity when coupling

and decoupling multiple attributes. Thus, f i
o · T+(a

i) ·
T−(a

j) should be equal to f i
o · T−(a

j) · T+(a
i):

Lcom = ‖f i
o · T+(a

i) · T−(a
j)−

f i
o · T−(a

j) · T+(a
i)‖2.

(6)

Although above definitions do not strictly follow the theory,

but the loosely conducted axiom objectives still contribute

to the robustness and effectiveness a lot (ablation study in

Sec. 3.5) and open a door to a more theoretical way.

The last but not the least, CoN and DecoN need to keep

the semantic consistency, i.e. before and after the transfor-

mation, the object category should not change. Hence we

use a cross-entropy loss Lo
cls for the object recognition of

the input and output embeddings of CoN and Decon. In the

same way, before and after coupling and decoupling, the at-

tribute changes provide the attribute classification loss La
cls.

We use typical visual pattern-based classifiers consisting of

FC layers for the object and attribute classifications.
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3.4. Relative Moving Distance

As shown in Fig. 4, we utilize the Relative Moving

Distance (RMD) based on the symmetry property to op-

erate the attribute recognition. Given an image embed-

ding fx
o of an object with unknown attribute ax, we first

input it to both CoN and DecoN with all kinds of at-

tributes word embeddings {a1, a2, ..., an} where n is the

number of attributes. Two transformers would take at-

tribute embeddings as conditions and operate the coupling

and decoupling in parallel, then output 2n transformed em-

beddings {fx
o · T+(a

1), fx
o · T+(a

2), ..., fx
o · T+(a

n)} and

{fx
o · T−(a

1), fx
o · T−(a

2), ..., fx
o · T−(a

n)}. We compute

the distances between fx
o and the transformed embeddings:

di+ = ‖fx
o − fx

o · T+(a
i)‖2,

di− = ‖fx
o − fx

o · T−(a
i)‖2.

(7)

To compare two distances, we define Relative Moving Dis-

tance as di = di−−di+ and perform binary classification for

each attribute (Fig. 4): 1) If di ≥ 0, i.e. fx
o ·T+(a

i) is closer

to f i
o than fx

o ·T−(a
i), we tend to believe fx

o has attribute ai.

2) If di < 0, i.e. fx
o ·T−(a

i) is closer, we tend to predict that

fx
o does not have attribute ai. Previous zero/few-shot learn-

ing methods usually classify the instances via measuring the

distance between the embedded instances and fixed points

like prototype/label/centroid embeddings. Differently, Rel-

ative Moving Distance compares the distance before and

after applying the coupling and decoupling operation.

Training. To enhance the RMD-based classification perfor-

mance, we further use a triplet loss function. Let X denote

the set of attributes that fx
o has, the loss can be described as:

Ltri =
X∑

i

[di+ − di− + α]+ +
A−X∑

j

[dj− − d
j
+ + α]+, (8)

where α=0.5 is triplet margin. di+ should be less than di−
for the attributes that fx

o has and greater than di− for the

attributes fx
o does not have. The total loss of SymNet is

Ltotal =λ1Lsym + λ2Laxiom

+ λ3L
a
cls + λ4L

o
cls + λ5Ltri,

(9)

where Laxiom = Lclo + Linv + Lcom.

Inference. In practice, for n attribute categories, we use

RMDs d = {di}ni=1 as the attribute scores, i.e. Sa =
{Si

a}
n
i=1 = {di}ni=1 and obtain attribute probability with

Sigmoid function: pia = Sigmoid(Si
a). Notably, we also

consider the scale and use a factor γ to adjust the score

before Sigmoid. Our method can be operated in parallel,

i.e., we simultaneously compute the RMD values of n at-

tributes. We input [B, n, 300] sized tensor where B is the

mini-batch size and 300 is the object embedding size. CoN

and DecoN would output two [B, n, 300] sized embeddings

Relative Moving DistanceAdjusting Decision Boundary

�� ����� ⋅ ��(��)��� ⋅ ��(��)
��� ���� ��� ⋅ ��(��)��� ⋅ ��(��)���

For Each SampleHas Attribute    ?��

Figure 4. Comparison between typical method and our Relative

Moving Distance (RMD) based recognition. Previous methods

mainly try to adjust the decision boundary in latent space. Our

RMD based approach moves the embedding point with T+ and

T− and classifies by comparing their moving distances.

after transformation. Then we can compute RMDs {di}ni=1

at the same time. Our method has approximately the same

speed as the typical FC classifier. The inference speed from

features to RMD is about 41.0 FPS and the FC classifier

speed is about 45.8 FPS. The gap can be further omitted if

considering the overhead of the feature extractor.

3.5. Discussion: Composition Zero­Shot Learning

With robust and effective symmetry learning for

attribute-object, we can further apply SymNet to CZSL [12,

41]. The goal of CZSL is to infer the unseen attribute-object

pairs in test set, i.e. a prediction is true positive if and only

if both attribute and object classifications are accurate. The

pair candidates are available during testing, thus the predic-

tions of impossible pairs can be masked.

We propose a novel method to address this task based

on Relative Moving Distance (RMD). With Relative Mov-

ing Distance di = di− − di+, the probabilities of attribute

category are computed as pia = Sigmoid(di). For object

category, we input the object embedding to 2-layer FC with

Softmax to obtain the object scores So = {Sj
o}

m
j=1, where

m is the number of object categories. The object category

probability pj = Softmax(Sj
o) and po = {pio}

m
j=1. We

then use pijao to represent the probability of an attribute-

object pair in test set which is composed of the i-th attribute

category and j-th object. The pair probabilities are given

by pijao = pia × pjo. The impossible compositions would be

masked according to the benchmarks [12, 41].

4. Experiment

4.1. Data and Metrics

Our experiments are conducted on MIT-States [12] and

UT-Zappos50K [41]. MIT-States contains 63440 images

covering 245 objects and 115 attributes. Each image is at-

tached with one single object-attribute composition label

and there are 1262 possible pairs in total. We follow the

setting of [24] and use 1262 pairs/34562 images for training

and 700 pairs/19191 images as the test set. UT-Zappos50K

is a fine-grained dataset with 50025 images of shoes anno-

tated with shoe type-material pairs. We follow the setting

and split from [25], using 83 object-attribute pairs/24898
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images as train set and 33 pairs/4228 images for testing.

The training and testing pairs are non-overlapping for both

datasets, i.e. the test set contains unseen attribute-object

pairs composed of seen attributes and objects. We report the

Top-1, 2, 3 accuracies on the unseen test set as evaluation

metrics. We also evaluate our model under the generalized

CZSL setting of TMN [32], since the ”open world” setting

from [25] brings biases towards unseen pairs [2].

4.2. Baselines

We compare SymNet with baselines following [24] and

[25], as well as previous state-of-the-arts. If not specified,

the adopted methods are based on ResNet-18 backbone.

Visual Product trains two simple classifiers for attributes

and objects independently and fuses the outputs by mul-

tiplying their margin probabilities: P (a, o) = P (a)P (o).
The classifiers can be either linear SVMs [24] or single

layer softmax regression models [25].

LabelEmbed (LE) is proposed by [24]. It combines the

word vectors [31] of attribute and object and uses 3-layer

FC to transform the pair embedding into a transform matrix.

The classification score is the product of transform matrix

and visual feature: T (ea, eb)
⊤
φ(I). It has three variants:

1. LabelEmbed Only Regression (LEOR) [24] changes

the target to minimize the Euclidean distance between

T (ea, eb) and the weight of pair SVM classifier wab.

2. LabelEmbed With Regression (LE+R) [24] com-

bines the losses of LE and LEOR aforementioned.

3. LabelEmbed+ [25] embeds the attribute, object vec-

tors, and image features into a semantic space and also

optimizes the input representations during training.

AnalogousAttr [4] trains linear classifiers for seen compo-

sitions and uses tensor completion to generalize to the un-

seen pairs. We report the reproduced results from [25].

Red Wine [24] uses SVM weights as the attribute or object

embeddings to replace the word vectors in LabelEmbed.

AttrOperator [25] regards attributes as linear transforma-

tions and object word vectors [31] after transformation as

pair embeddings. It takes the pair with the closest distance

to the image feature as the recognition result. Besides the

top-1 accuracy directly reported in [25], we evaluate the

top-2, 3 accuracies with the open-sourced code.

TAFE-Net [36] uses word vectors [23] of attribute-object

pair as task embedding of its meta learner. It generates a bi-

nary classifier for each existing composition. We report the

results based on VGG-16 which is better and more com-

plete than the result based on ResNet-18.

GenModel [26] projects the visual features of images and

semantic language embeddings of pairs into a shared latent

space. The prediction is given by comparing the distance

between visual features and all candidate pair embeddings.

TMN [32] adopts a set of small FC-based modules and con-

figure them via a gating function in a task-driven way. It can

Method
MIT-States UT-Zappos

Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

Visual Product [24] 9.8/13.9∗ 16.1 20.6 49.9∗ / /

LabelEmbed (LE) [24] 11.2/13.4∗ 17.6 22.4 25.8∗ / /

- LEOR [24] 4.5 6.2 11.8 / / /

- LE + R [24] 9.3 16.3 20.8 / / /

- LabelEmbed+ [25] 14.8* / / 37.4* / /

AnalogousAttr [4] 1.4 / / 18.3 / /

Red Wine [24] 13.1 21.2 27.6 40.3 / /

AttOperator [25] 14.2 19.6 25.1 46.2 56.6 69.2

TAFE-Net [36] 16.4 26.4 33.0 33.2 / /

GenModel [26] 17.8 / / 48.3 / /

SymNet (Ours) 19.9 28.2 33.8 52.1 67.8 76.0

Table 1. Results of CZSL on MIT-States and UT-Zappos.

be generalized to unseen pairs via re-weighting these prim-

itive modules.

4.3. Implementation Details

For two datasets, we use ImageNet pre-trained ResNet-

18 [10] as the backbone to extract image features and do not

fine-tune it following previous methods. We use the 300-

dimensional pre-trained GloVe [31] vectors as the word em-

beddings. The 512-dimensional ResNet-18 feature is first

transformed to 300-dimensional by a single FC. The main

modules of our SymNet, CoN and DecoN, have the same

structures but independent weights as depicted in Fig. 3:

two FC layers of sizes 768/300 with Sigmoid convert the

attribute embedding to 300-dimensional attention and be

multiplied to the input image representation. The represen-

tation after attention is concatenated to the attribute embed-

ding and then compressed to the original dimension by the

other two 300-sized FC layers. Each hidden FC in CoN and

DecoN is followed by BatchNorm and ReLU layers.

For each training image, we randomly sample another

image with the same object label but different attribute as

the negative sample to compute the losses (Sec. 3.3). We

train SymNet with SGD optimizer on single NVIDIA GPU.

We use cross-validation to determine the hyper-parameters,

e.g., learning rate, weights, epochs. For MIT-States, the

model is trained with learning rate 5e-4 and batch size 512

for 320 epochs. The loss weights are λ1 = 0.05, λ2 =
0.01, λ3 = 1, λ4 = 0.01, λ5 = 0.03. For UT-Zappos, the

model is trained with learning rate 1e-4 and batch size 256

for 600 epochs. The loss weights are λ1 = 0.01, λ2 =
0.03, λ3 = 1, λ4 = 0.5, λ5 = 0.5. Notably, the weights on

two datasets are different. Because MIT-States has diverse

attributes and objects, while UT-Zappos contains similar

fine-grained shoes. Different range and scale lead to dis-

tinct embedding spaces and different parameters for RMD.

4.4. Compositional Zero­Shot Learning

To evaluate the symmetry learning in compositional

zero-shot task, we conduct experiments on widely-used

benchmarks: MIT-States [12] and UT-Zappos [41].

Composition Learning. The results of CZSL are shown

in Tab. 1, where the first five rows are baselines from
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Model
Val AUC Test AUC

Seen Unseen HM
1 2 3 1 2 3

AttOperator [25] 2.5 6.2 10.1 1.6 4.7 7.6 14.3 17.4 9.9

Red Wine [24] 2.9 7.3 11.8 2.4 5.7 9.3 20.7 17.9 11.6

LabelEmbed+ [25] 3.0 7.6 12.2 2.0 5.6 9.4 15.0 20.1 10.7

GenModel [26] 3.1 6.9 10.5 2.3 5.7 8.8 24.8 13.4 11.2

TMN [32] 3.5 8.1 12.4 2.9 7.1 11.5 20.2 20.1 13.0

SymNet (Ours) 4.3 9.8 14.8 3.0 7.6 12.3 24.4 25.2 16.1

Table 2. Results of generalized CZSL on MIT-States. All methods

(Sec. 4.2) use ResNet-18 [10] as the backbone.

MIT-States UT-Zappos

Method Attribute Object Attribute Object

AttrOperator [25] 14.6 20.5 29.7 67.5

GenModel [26] 15.1 27.7 18.4 68.1

SymNet 18.9 28.8 38.0 65.4

Table 3. Attribute learning results on two benchmarks.

[24, 25] (the scores with ∗ are reproduced by [25], the oth-

ers are from [24]). SymNet outperforms all baselines on

two benchmarks. Although we use a simple product to com-

pose the attribute and object scores, we still achieve 2.1%

and 3.8% improvements over the state-of-the-art [26] on

two benchmarks respectively. On UT-Zappos, most previ-

ous approaches do not surpass the Visual Product baseline,

while ours outperforms it by 2.2%. To further evaluate our

SymNet, we additionally conduct the comparison on gener-

alized CZSL setting from recent state-of-the-art TMN [32].

The results are shown in Tab. 2. SymNet also outperforms

previous methods significantly, which strongly proves the

effectiveness of our method.

Attribute Learning. We also compare the attribute accu-

racy alone on two benchmarks in Tab. 3. We reproduce the

results of AttrOperator [25] with its open-sourced code. For

all methods involved, the individual attribute and object ac-

curacy do not consider the relations between attributes and

objects. The object recognition module of our method is a

simple 3-layer MLP classifier with the visual image features

from ResNet-18 backbone. SymNet outperforms previous

methods by a large margin, i.e. 3.8% on MIT-States and

8.3% on UT-Zappos. Our RMD-based attribute recognition

is particularly effective. In addition, our object classifica-

tion performance is comparable to AttrOperator [25] and

GenModel [26]. Accordingly, the main contribution of the

CZSL improvement of SymNet comes from attribute learn-

ing rather than object recognition.

4.5. Image Retrieval after Attribute Manipulation

To qualitatively evaluate SymNet, we further report the

image retrieval results after attribute manipulation. We first

train SymNet on MIT-States or UT-Zappos, then use trained

CoN and DeCoN to manipulate the image embeddings. For

an image with pair label (a, o), we remove the attribute a

with DeCoN and add an attribute b with CoN, then we re-

trieve the top-5 nearest neighbors of the manipulated em-

beddings. This task is much more difficult than the normal

attribute-object retrieval [25, 24, 32] because of the com-

Heavy 
Water

Sliced 
Fruit

Top-5 Attribute Manipulation Retrieval of MIT-States

to 
Murky 
Water

to 
Ripe 
Fruit

Top-5 Attribute Manipulation Retrieval of UT-Zappos

Synthetic 
Ankle boot

to 
Full grain  

leather 
Ankle boot

Rubber 
Sandal

to 
Synthetic 

Sandal

Figure 5. Image Retrieval on MIT-States, UT-Zappos. We conduct

the retrieval after the attribute manipulation.

plex semantic manipulation and recognition. Retrieval re-

sults are shown in Fig. 5, where the imaged on the left are

original ones and right are the nearest neighbors after ma-

nipulation. SymNet is capable of retrieving a certain num-

ber of correct samples among top-5 nearest neighbors, es-

pecially in a fine-grained dataset like UT-Zappos. This sug-

gests that our model has well exploited the learned symme-

try in attribute transformation and learned the contextuality

and compositionality of attributes.

4.6. Visualization in Latent Space

To verify the robustness and principles in transforma-

tions, we use t-SNE [21] to visualize the image embeddings

before or after transformations in latent space in Fig. 6.

Specifically, we first visualize the group axioms related

transformations: 1) Closure is verified by comparing {f i
o ·

T+(a
i) ·T−(a

i) v.s. f i
o ·T−(a

i)} and {f i
o ·T−(a

j) ·T+(a
j)

v.s. f i
o · T+(a

j)}. 2) Invertibility is verified by comparing

{f i
o ·T+(a

j) ·T−(a
j) v.s. f i

o ·Te} and {f i
o ·T−(a

i) ·T+(a
i)

v.s. f i
o · Te}. 3) Commutativity is verified by comparing

{f i
o ·T+(a

i) ·T−(a
j) v.s. f i

o ·T−(a
j) ·T+(a

i)}. The results

are shown in Fig. 6 (a,b). We observe that SymNet can ro-

bustly operate the transformations and the axiom objectives

are well satisfied during embedding transformations.

Then, to verify the symmetry property, we visual-

ize the sample embeddings in Relative Moving Space in

Fig. 6(c,d): 1) for the sample f i
o which do not have attribute

aj , f i
o · T+(a

j) should be far from f i
o. On the contrary,

f i
o ·T−(a

j) are relatively close to f i
o because of the symme-

try. 2) For the sample f i
o with attribute ai, f i

o ·T+(a
i) should

be close to f i
o and f i

o · T−(a
i) should be far from f i

o. We

can also find that the relative moving distance rules are all

satisfied, i.e. the symmetry is well learned by our SymNet.

4.7. Ablation Study

To evaluate different components of our method, we de-

sign ablation studies and report the results in Tab. 4.

Objectives. To evaluate the objectives constructed from
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MIT-States

Closure

UT-Zappos

Commutativity

f i
o

f i
o ⋅ T+(ai) ⋅ T−(aj)

f i
o ⋅ T−(aj) ⋅ T+(ai) f i

o ⋅ T−(aj) ⋅ T+(aj)

f i
o ⋅ T+(aj)

f i
o ⋅ T+(ai) ⋅ T−(ai)

f i
o ⋅ T−(ai)

o = flat shoes, ai = canvas, aj = cottono = ceiling, ai = cracked, aj = draped

Closure

(a) Closure and Commutativity

MIT-States UT-Zappos

Invertibility

o = eggs, ai = frozen, aj = diced ai = faux leather, aj = patent leather

o = mid-calf boots

f i
o f i

o ⋅ T+(aj) ⋅ T−(aj)f i
o ⋅ T−(ai) ⋅ T+(ai)

f i
o ⋅ T+(aj)f i

o ⋅ T−(ai)

(b) Invertibility

MIT-States UT-Zappos

Symmetry

o = pasta, ai = cooked, aj = ruffled o = sandals, ai = nubuck, aj = nylon

f i
o f i

o ⋅ T+(aj)f i
o ⋅ T−(aj)

(c) Symmetry-1

MIT-States UT-Zappos

Symmetry

o = fence, ai = broken o = clogs and mules shoes, ai = suede

f i
o f i

o ⋅ T+(ai) f i
o ⋅ T−(ai)

(d) Symmetry-2

Figure 6. Visualization of symmetry and the group axioms by t-SNE [21]. The points with colors in a same dotted box should be close.

Method
MIT-States UT-Zappos

Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

SymNet 19.9 28.2 33.8 52.1 67.8 76.0

SymNet w/o Lsym 18.3 27.5 33.4 51.1 67.0 76.0

SymNet w/o Laxiom 16.9 25.5 30.9 47.6 65.4 73.6

SymNet w/o Linv 17.9 26.7 32.5 50.8 67.4 76.1

SymNet w/o Lcom 17.8 27.0 32.7 51.2 67.6 75.8

SymNet w/o Lclo 18.0 27.0 32.8 51.1 67.2 76.0

SymNet w/o Lcls 10.3 18.9 25.9 28.7 51.2 65.2

SymNet w/o Ltri 17.8 26.8 32.6 49.2 65.3 74.2

SymNet w/o Lsym & Ltri 17.7 27.0 33.0 50.1 66.1 75.6

SymNet w/o Ltri & Lcls 10.5 19.4 26.7 28.6 51.4 65.6

SymNet w/o Lsym & Lcls 9.3 17.0 22.7 27.4 48.2 64.1

SymNet only Lsym 9.4 16.9 22.5 20.4 38.9 53.5

SymNet w/o attention 18.0 26.9 32.7 48.5 65.0 75.6

SymNet L1 dist. 7.1 11.2 14.3 37.5 53.3 62.3

SymNet Cos dist. 11.3 20.7 28.5 18.7 41.1 60.0

Table 4. Results of ablation studies.

group axioms and the core principle symmetry, we conduct

tests of these objectives by removing them. In Tab. 4, Sym-

Net shows obvious degradations without the constraints of

these principles. This is in line with our assumption that a

transformation framework that covers the essential princi-

ples can largely promote compositional learning.

Attention. Removing the attention module drops 1.9% and

3.6% accuracy on two benchmarks.

Distance Metrics. SymNet with other distance metrics, i.e.,

L1 and cosine distances, perform much worse than L2.

5. Conclusion

In this paper, we propose the symmetry property of

attribute-object compositions. Symmetry reveals profound

principles in composition transformations. To an object,

giving it an attribute it already has, or erasing an attribute

it does not have, would all result in the same object. To

learn the symmetry, we construct a framework inspired by

group theory to couple and decouple attribute-object com-

positions, and use group axioms and symmetry as the learn-

ing objectives. When applied to CZSL, our method achieves

state-of-the-art performance. In the future, we consider

to study the transformation with varying degrees, e.g.,

not-peeled, half-peeled and totally-peeled

and apply SymNet to GAN-related tasks.
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