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Abstract

Word-level sign language recognition (WSLR) is a fun-

damental task in sign language interpretation. It requires

models to recognize isolated sign words from videos. How-

ever, annotating WSLR data needs expert knowledge, thus

limiting WSLR dataset acquisition. On the contrary, there

are abundant subtitled sign news videos on the internet.

Since these videos have no word-level annotation and ex-

hibit a large domain gap from isolated signs, they cannot

be directly used for training WSLR models.

We observe that despite the existence of large domain

gaps, isolated and news signs share the same visual con-

cepts, such as hand gestures and body movements. Moti-

vated by this observation, we propose a novel method that

learns domain-invariant descriptors and fertilizes WSLR

models by transferring knowledge of subtitled news sign to

them. To this end, we extract news signs using a base WSLR

model, and then design a classifier jointly trained on news

and isolated signs to coarsely align these two domains. In

order to learn domain-invariant features within each class

and suppress domain-specific features, our method further

resorts to an external memory to store the class centroids of

the aligned news signs. We then design a temporal attention

based on the learnt descriptor to improve recognition per-

formance. Experimental results on standard WSLR datasets

show that our method outperforms previous state-of-the-art

methods significantly. We also demonstrate the effectiveness

of our method on automatically localizing signs from sign

news, achieving 28.1 for AP@0.5.

1. Introduction

Word-level sign language recognition (WSLR), as a fun-

damental sign language interpretation task, aims to over-

come the communication barrier for deaf people. However,

WSLR is very challenging because it consists of complex

and fine-grained hand gestures in quick motion, body move-

ments and facial expressions.

Recently, deep learning techniques have demonstrated
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Figure 1: Our model transfers the knowledge from web

news signs to WSLR models by learning domain-invariant

features. Example frames in the figure are identified by our

model as the signature that best summarizes the gesture.

their advantages on the WSLR task [21, 14, 28, 16]. How-

ever, annotating WSLR datasets requires domain-specific

knowledge, therefore even the largest existing datasets have

a limited number of instances, e.g., on average 10 to 50 in-

stances per word [21, 14, 26]. This is in an order of mag-

nitude fewer than common video datasets [5] on e.g. ac-

tion learning and recognition [5, 44]. The limited amount

of training data for the sign recognition task may lead to

overfitting or otherwise restrict the performance of WSLR

models in real-world scenarios. On the other hand, there are

abundant subtitled sign news videos easily attainable from

the web which may potentially be beneficial for WSLR.

Despite the availability of sign news videos, transferring

such knowledge to WSLR is very challenging. First, subti-

tles only provide weak labels for the occurrence of signs

and there is no annotation of temporal location or cate-

gories. Second, such labels are noisy. For example, a subti-

tle word does not necessarily indicate if the word is signed.

Third, news signs typically span over 9-16 frames [4],

which is significantly different from the videos (on average

60 frames [21, 14]) used to train WSLR models in terms

of gesture speed. Therefore, directly augmenting WSLR
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datasets with news sign examples fails to improve recogni-

tion performance.

In this paper, we present a method that transfers the

cross-domain knowledge in news signs to improve the per-

formance of WSLR models. More specifically, we first de-

velop a sign word localizer to extract sign words by em-

ploying a base WSLR model in a sliding window manner.

Then, we propose to coarsely align two domains by jointly

training a classifier using news signs and isolated signs.

After obtaining the coarsely-aligned news words represen-

tations, we compute and store the centroid of each class

of the coarsely-aligned new words in an external memory,

called prototypical memory.

Since the shared visual concepts between these domains

are important for recognizing signs, we exploit prototypi-

cal memory to learn such domain-invariant descriptors by

comparing the prototypes with isolated signs. In particular,

given an isolated sign, we first measure the correlations be-

tween the isolated sign and news signs and then combine the

similar features in prototypical memory to learn a domain-

invariant descriptor. In this way, we acquire representations

of shared visual concepts across domains.

After obtaining the domain-invariant descriptor, we pro-

pose a memory-augmented temporal attention module that

encourages models to focus on distinguishable visual con-

cepts among different signs while suppressing common ges-

tures, such as demonstrating gestures (raising and putting

down hands) in the isolated sign videos. Therefore, our

network focuses on the visual concepts shared within each

class and ignore those commonly appearing in different

classes, thus achieving better classification performance.

In summary, (i) we propose a coarse domain align-

ment approach by jointly training a classifier on news signs

and isolated signs to reduce their domain gap; (ii) we de-

velop prototypical memory and learn a domain-invariant de-

scriptor for each isolated sign; (iii) we design a memory-

augmented temporal attention over the representation of

isolated signs and guide the model to focus on learning

features from common visual concepts within each class

while suppressing distracting ones, thus facilitating classi-

fier learning; (iv) experimental results demonstrate that our

approach significantly outperforms state-of-the-art WSLR

methods on the recognition accuracy by a large margin of

12% on WLASL and 6% on MSASL. Furthermore, we

demonstrate the effectiveness of our method on localizing

sign words from sentences automatically, achieving 28.1

AP@0.5. Therefore, our method has a prominent potential

for this process.

2. Related Works

Our work can be viewed as a semi-supervised learning

method from weakly- and noisy-labelled data. In this sec-

tion, we briefly review works in the relevant fields.

(a) (b)

Figure 2: Visualizing sign word training samples from two

domains using t-SNE [25] before (a) and after (b) coarse

domain alignment. Filled circles are isolated signs; empty

crosses are news signs. Colors represent different classes.

2.1. Word­level Sign Language Recognition

Earlier WSLR models rely on hand-crafted features [39,

35, 38, 2, 9, 8]. Temporal dependencies are modelled us-

ing HMM [33, 32] or DTW [24]. Deep models learn spa-

tial representations using 2D convolutional networks and

model temporal dependencies using recurrent neural net-

works [21, 14]. Some methods also employ 3D convolu-

tional networks to capture spatio-temporal features simulta-

neously [13, 40, 21, 14]. In addition, several works [18, 17]

exploit human body keypoints as inputs to recurrent nets.

It is well known that training deep models require a large

amount of training data. However, annotating WSLR sam-

ples requires expert knowledge, and existing WSLR video

datasets [14, 21] only contain a small number of examples,

which limits the recognition accuracy. Our method aims at

tackling this data insufficiency issue and improving WSLR

models by collecting low-cost data from the internet.

2.2. Semi­supervised Learning from Web Videos

Some works [23, 41, 10] attempt to learn visual repre-

sentations through easily-accessible web data. In partic-

ular, [23] combines curriculum learning [1] and self-pace

learning [20] to learn a concept detector. [41] introduces

a Q-learning based model to select and label web videos,

and then directly use the selected data for training. Re-

cently, [10] found that pretraining on million-scale web

data improves the performance of video action recognition.

These works demonstrate the usefulness of web videos in a

semi-supervised setting. Note that, the collected videos are

regarded as individual samples in prior works. However,

our collected news videos often contain multiple signs in a

video, which brings more challenges to our task.

2.3. Prototypical Networks and External Memory

Prototypical networks [31] aim at learning classification

models in a limited-data regime [42]. During testing, proto-
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typical networks calculate a distance measure between test

data and prototypes, and predict using nearest-neighbour

principle. A prototypical network provides a distance-based

partition of the embedding space and facilitates the retrieval

based on the nearest neighbouring prototypes in its essence.

External memory equips a deep neural network with ca-

pability of leveraging contextual information. They are

originally proposed for document-level question answering

(QA) problems in natural language processing [37, 34]. Re-

cently, external memory mechanisms have been applied to

visual tracking [27], image captioning [7], image classifi-

cation [43] and movie comprehension [41]. In general, ex-

ternal memory often serves as a source providing additional

offline information to the model during training and testing.

3. Proposed Approach

3.1. Notation

A WSLR dataset with N labeled training examples is

denoted by Ds = {Ii, Li}
N
i=1

, where Ii ∈ R
l×h×w×3 is an

input RGB video; l is the number of frames (on average 64);

h and w are the height and width of the frame respectively,

and Li ∈ R
K is a label of K classes. We also consider

a complementary set of sign news data denoted by Dn =
{Si, Ti}

M
i=1

. Similarly, Si is an RGB video, but with an

average length of 300 frames. Ti is a sequence of English

tokens representing the subtitles corresponding to Si.

3.2. Overview

We observe that despite the domain difference between

signs from news broadcasts and isolated signs, samples

from the same class share some common visual concepts,

such as hand gestures and body movements. In other words,

these shared visual concepts are more suitable to represent

the cross-domain knowledge and invariant to domain dif-

ferences. Motivated by this intuition, we encourage mod-

els to learn such cross-domain features and exploit them to

achieve better classification performance.

To this end, we first extract news signs from Si and

train a classifier jointly using news and isolated signs. In

this fashion, we are able to coarsely align these two do-

mains in the embedding space. Then, we exploit proto-

types to represent the news signs and store in an exter-

nal prototypical memory (Sec. 3.3). Furthermore, for each

isolated sign video, we learn a domain-invariant descriptor

from the external memory by measuring its correlation with

the contents in each memory cell (Sec. 3.4). Based on our

learnt domain-invariant descriptor, we design a memory-

augmented temporal attention module to let isolated sign

representation focus on temporally similar signing gestures,

thus promoting the classification accuracy. Figure 3 illus-

trates an overview of our method.

3.3. Constructing Prototypical Memory

3.3.1 Extracting words from weakly-labelled videos

In order to utilize the data from news broadcasts, we need

to localize and extract news signs from the subtitled videos.

Specifically, we first pre-process the subtitles by lemmatiz-

ing [29, 22] the tokens and convert lemmas into lowercase.

Then, for each isolated sign class cj , j = 1, ...,K, we col-

lect video clips which contains the word cj in the processed

subtitles. To do so, we apply a classifier F pretrained on

isolated signs Ds to the collected videos in a sliding win-

dow manner. For each window, we acquire the classifica-

tion score of each class cj . For each video Si, we choose the

sliding window that achieves the highest classification score

for cj , i.e., s∗ij = argmaxsi⊏Si
F(cj |si), where si ⊏ Si de-

notes that si is a sliding window from Si. Lastly, we discard

windows with a class score lower than a threshold ǫ. We use

S∗

j to denote the set of news sign video clips collected for

cj , i.e., S∗

j = {s∗ij | ∀i : F(cj |s
∗

ij) > ǫ}.

3.3.2 Joint training for coarse domain alignment

Although F can exploit the knowledge learned from iso-

lated signs to recognize news signs to some extent, we ob-

serve that F struggles to make confident predictions. In

particular, F produces many false negatives and therefore

misses valid news signs during the localization step. This is

not surprising by acknowledging the domain gap. This phe-

nomenon mainly comes from the domain gap between news

signs and isolated ones. As can be seen in Figure 2a, the fea-

tures of isolated signs and news ones exhibit different distri-

butions, which is undesirable when transferring knowledge

between these two domains. To tackle this issue, we pro-

pose to first train a classifier jointly using sign samples from

both domains, denoted by F̂ .

We use I3D [5, 36] as the backbone network for both F
and F̂ . For feature extraction, we remove its classification

head and use the pooled feature maps from the last inflated

inception submodule. Figure 2b shows the feature represen-

tations of these two domain videos after the coarse domain

alignment, where the domain gap is significantly reduced.

3.3.3 Prototypical memory

In order to exploit the knowledge of news signs when clas-

sifying isolated signs, we adopt the idea of external mem-

ory. We propose to encode the knowledge of news signs

into prototypical memory, where a prototype [31] is stored

in a memory cell. Specifically, for class cj , we define its

prototype mj as the mean of the feature embeddings of all

the samples in cj :

mj =
1

|S∗

j |

∑

s∗
ij
∈S∗

j

F̂(s∗ij). (1)
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Figure 3: Overview of our approach to transfer knowledge of coarsely aligned news signs to WSLR model using domain-

invariant descriptor and memory-augmented temporal attention.

A prototypical memory M ∈ R
K×d is constructed as an

array of prototypes, i.e. M = [m1,m2, ...,mK ], where d
is the dimension of the prototype features.

Despite the abundance of sign news videos, the num-

ber of extracted samples is much less due to the domain

gap. Recall that our classifier F̂ is able to minimize the do-

main gap. It would be a solution of using F̂ to re-collect

samples. However, we observe that the performance of the

classifier F̂ on WSLR decreases and using F̂ to select news

sign video clips does not generate more news sign samples.

This phenomenon can also be explained in Figure 2b. Since

F̂ aims to minimize the domain gap, each cluster becomes

less concentrated, which leads to the decrease of the classi-

fication accuracy.

Prototype representation provides us with a robust way

to represent news signs in a limited-data regime. It induces

a partition of the embedding space based on a given similar-

ity measurement, which facilitates effective retrieval of sim-

ilar visual concepts encoded in the news signs. By arrang-

ing them in an external memory, we link our classification

model to a knowledge base of high-level visual features. In

the next section, we will explain how to use these memory

cells to learn a domain-invariant descriptor and then employ

the domain-invariant feature to promote WSLR model.

3.4. Learning Domain­invariant Descriptor

After the two domains are coarsely aligned, our method

will focus on learning domain-invariant descriptor using the

prototypical memory. In this way, we are able to extract the

common concepts from these two domains. For a proto-

typical memory M ∈ R
K×d and an isolated sign feature

X ∈ R
t×d, where t is determined by the number of the

video frames, our goal is to generate a class-specific com-

mon feature from the prototypical memory.

Since xi and mi are extracted by two different backbone

networks F and F̂1, these features are embedded in differ-

ent spaces. Therefore, in order to measure the correlation

between X and M, we employ two different projection ma-

trices to project these two space in to a common one first

and then compute their normalized dot product in the com-

mon embedding space:

r(X,M) = σ
[

XWX(MWM )T
]

, (2)

where σ(·) is a softmax function, i.e., σ(z)i = ezi/
∑

j e
zj

applied in row-wise; WX ∈ R
d×d′

and WM ∈ R
d×d′

are

two projection matrices for X and M, respectively.

Eq. 2 defines the correlation between the isolated sign

and the features in prototypical memory cells in the com-

mon embedding space. According to the feature correla-

tions, we reweighted the features in the memory in the com-

mon embedding space, as follows:

U = r(X,M)M(WM +Wδ), (3)

where the perturbation matrix Wδ ∈ R
d×d′

allows our

model to compensate for the errors during the domain align-

1For simplicity, we also refer the backbones of these two classifiers to

as F and F̂
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ment. We then map U back to the input space as a resid-

ual of X and finally acquire the domain-invariant descriptor

P ∈ R
1×d via maxpooling:

Z = UWu +X, (4)

P = maxpool(Z), (5)

where Wu ∈ R
d′
×d is a linear mapping. Next, we explain

how to utilize P to learn word sign representations.

3.5. Memory­augmented Temporal Attention

Since collecting isolated signs from continuous sen-

tences involves a laborious frame-by-frame annotation pro-

cess, existing isolated sign datasets are mostly collected

in controlled environments for demonstration purposes. In

particular, signs in isolated datasets often consist of demon-

strating gestures, such as raising up or putting down the

hands, and those gestures appear in sign videos regardless

of words. This will increase the difficulty of learning a

WSLR classifier since common gestures emerge in all the

classes. A good WSLR model is supposed to focus on those

discriminative temporal regions while suppressing demon-

strating gestures.

Our attention module is designed to capture salient tem-

poral information using the similarity between the domain-

invariant descriptor P and the isolated sign representation

X. Since the domain-invariant descriptor P is acquired

from the prototypical memory, we call our attention as

memory-augmented temporal attention. Specifically, be-

cause P and X represent different semantics and lie in

their own feature space, we compute their similarity matrix

S ∈ R
1×t by first projecting them into a shared common

space:

S = PWP (XWQ)
T , (6)

where WP , WQ are linear mappings in R
d×d′′

. This op-

eration compares the domain-invariant descriptor with the

feature of an isolated sign on each temporal region in a

pairwise manner. Then we normalize the similarity ma-

trix S with a softmax function to create the attention map

A ∈ R
1×t:

A = σ(S). (7)

Eq. 7 indicates that the attention map A describes the sim-

ilarity of P and X in the embedded common space. To

acquire the attended features for isolated signs, we design

a scheme similar to squeeze-and-excitation [12]. In partic-

ular, we first introduce a linear mapping WV ∈ R
d×d′′

to

embed X to a low-dimensional space for attention opera-

tion and then lift it up back to the input space of X using

linear mapping WO ∈ R
d′′

×d with d′′ < d. Namely, our

attended isolated sign representation V ∈ R
1×d is derived

as follows:

V = A(XWV WO) (8)

Table 1: Statistics of datasets. We use #class to denote the

number of different classes in each dataset; train, validation,

test denote numbers of video samples in each split.

#class Train Validation Test

WSASL100 [21] 100 1442 338 258

WSASL300 [21] 300 3548 901 668

MSASL100 [14] 100 3658 (-4%) 1021 (-14%) 749 (-1%)

MSASL200 [14] 200 6106 (-4%) 1743 (-15%) 1346 (-1%)

We remark Eq. 8 aggregates features along channels and

therefore learns a channel-wise non-mutually-exclusive re-

lationship, while [12] aggregates feature maps across spa-

tial dimension to produce descriptors for each channel. We

then complement the feature representation of isolated signs

with such channel-wise aggregated information by adding

V as a residual to P for final classification. In this way, our

model learns to concentrate on features from salient tempo-

ral regions and explicitly minimizes the influence of irrele-

vant gestures.

3.6. Optimization

We adopt the binary cross-entropy loss function as in [5].

Specifically, given a probability distribution p over different

classes of signs, the loss L is computed as:

L = −
1

NK

N
∑

i=1

K
∑

j=1

[

yij log(pij) + (1− yij)log(1− pij)
]

where N is the number of samples in the batch; K is the

number of classes; pij denotes the probability for the i-th
sample belonging to the j-th class, and y is the label of the

sample.

4. Experiments

4.1. Setup and Implementation Details

Datasets. We evaluate our model on the WLASL [21] and

MSASL [14] datasets. Both datasets are introduced recently

supporting large-scale word-level sign language recogni-

tion. These videos record native American Sign Language

(ASL) signers or interpreters, demonstrating how to sign a

particular English word in ASL. We note that some links

used to download MSASL videos have expired and the re-

lated videos are not accessible. As a result, we obtain 7%

less data for training ([21, 14] use both training and vali-

dation data for retraining models) and 1% fewer videos for

testing on MSASL. Therefore, results on MSASL should be

taken as indicative. Detailed dataset statistics2 are summa-

rized in Table 1. In all experiments we follow public dataset

split released by the dataset authors.

2MSASL misses partial data due to invalid download links as discussed

in Section 4.1. The percentage of missing data is shown in brackets.
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Figure 4: Visualization of memory-augmented temporal attention on WLASL and MSASL. We present the extracted news

signs in red boxes and isolated signs in green boxes. We use red to represent high-attention regions and light yellow for

low-attention regions.

Implementation details. Inflated 3D ConvNet (I3D) [5] is

a 3D convolutional network originally proposed for action

recognition. Considering its recent success on WSLR [21,

14], we use I3D as our backbone network and initialize

it with the pretrained weights on Kinetics [5]. When ex-

tracting the word samples, we choose sliding windows of

sizes 9∼16 considering the common time span for a sign

word [4]. We set threshold ǫ for localizing news signs

to 0.3 for WLASL100 and MSASL100, and to 0.2 for

WLASL300 and MSASL200, respectively.

Training and testing. We observe that although WLASL

and MSASL datasets are collected from the different Inter-

net sources, they have some videos in common. In order to

avoid including testing videos in the training set, we do not

merge the training videos from the two datasets. Instead,

we train and test models on these two datasets separately.

Our training and testing strategies follow [21, 14].

Specifically, during training, we apply both spatial and tem-

poral augmentation. For spatial augmentations, we ran-

domly crop a square patch from each frame. We also apply

random horizontal flipping to videos because horizontally

mirroring operation does not change the meaning of ASL

signs. For temporal augmentation, we randomly choose

64 consecutive frames and pad shorter videos by repeating

frames. We train our model using the Adam optimizer [15]

with an initial learning rate of 10−3 and a weight decay

of 10−7. During testing, we feed an entire video into the

model. Similar to [21, 14], we choose hyper-parameters

on the training set, and report results by retraining on both

training and validation sets using the optimal parameters.

4.2. Qualitative Results

Visualizing memory-augmented attention We visualize

the output of the memory-augmented temporal attention in

Fig. 4. The first example is the word “jacket” from WLASL.

It can be seen that the temporal attention module filters out

the starting and ending gestures in the video and learns to

focus on the middle part of the video, where the sign is

performed. The second example is the word “brown” from

MSASL. In this case, the attention map shows two peaks.

By examining the video, we find that the sign is actually

performed twice in a row with a slight pause in between.

Generating sign signatures The temporal attention facil-

itates to select representative frames from sign videos, re-

ferred to as “sign signatures”. In Fig. 1, the sign signa-

tures are selected from the frames with the highest attention

score from testing examples. The sign signatures generated

by our model are visually consistent with those manually

identified from the news signs. A potential usage for sign

signatures is to help to automatically create summary , e.g.,

thumbnails, for videos on sign language tutorial websites.

4.3. Baseline Models

We compare with two baseline WSLR models, i.e., Re-

current Convolutional Neural Networks (RCNN) and I3D.

Both RCNN and I3D are suggested in [21, 14] to model the
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Table 2: Recognition accuracy (%) on WLASL. RCNN refers to the Recurrent Convolution Neural Networks; I3D refers to

the plain I3D setting; I3D + n.w. denotes the setting where extracted news words are directly added into the training set.

We use macro. to denote the macro average accuracy and use micro. to denote the micro average accuracy. (∗) Results of

MSASL are indicative due to the missing training data.

WLASL100 WLASL300 MSASL100∗ MSASL200∗

micro. macro. micro. macro. micro. macro. micro. macro.

top1 top5 top1 top5 top1 top5 top1 top5 top1 top5 top1 top5 top1 top5 top1 top5

RCNN [21, 14] 25.97 55.04 25.28 54.13 19.31 46.56 18.93 45.76 15.75 39.12 16.34 39.16 8.84 26.00 8.49 25.94

I3D [21, 14] 65.89 84.11 67.01 84.58 56.14 79.94 56.24 78.38 80.91 93.46 81.94 94.13 74.29 90.12 75.32 90.80

I3D + n.w. 61.63 82.56 62.18 82.72 54.19 80.69 54.71 80.99 77.70 93.59 75.41 90.34 75.40 90.34 76.68 90.69

Ours 77.52 91.08 77.55 91.42 68.56 89.52 68.75 89.41 83.04 93.46 83.91 93.52 80.31 91.82 81.14 92.24

spatio-temporal information in word-level sign videos and

achieve state-of-the-art results on both datasets.

RCNN. In RCNN, it uses a 2D convolutional network to ex-

tract spatial features on frames. Then recurrent neural net-

works, such as GRU [6] or LSTM [11], are stacked on top of

the convolutional network to model temporal dependencies.

In our experiment, we use the implementation from [21]

which uses a two-layer GRU on top of VGG-16.

I3D. I3D [5] is a 3D convolutional neural network that in-

flates the convolution filters and pooling layers of 2D con-

volutional networks. I3D is recently adapted for WSLR [21,

14] and achieves a prominent recognition accuracy. For

WLASL, we use pretrained weights from the authors

of [21]. For MSASL, we report our reproduced results.

4.4. Quantitative Results

4.4.1 Comparison of Recognition Performance

We report recognition performance on two metrics: (i)

macro average accuracy (macro.), which measures the ac-

curacy for each class independently and calculates the av-

erage, as reported in [14]; (ii) micro average accuracy (mi-

cro.), which calculates the average per-instance accuracy, as

reported in [21]. We summarize the results in Table 2.

In Table 2, I3D+n.w. results indicate that directly adding

news signs to the training set does not help the training and

even harms the model performance in most cases. This

demonstrates the influence of the domain gap. Moreover,

the degradation in performance also reveals the challenge of

transferring knowledge from the news words to the WSLR

models. We also notice that on MSASL200, the recognition

accuracy improves after adding the news words despite the

large domain gap. Although the improvement is minor, this

shows the validity of our collected news sign videos.

As Table 2 shows, RCNN performs poorly mainly be-

cause its limited capacity to capture temporal motion de-

pendency. Our proposed method surpasses previous state-

of-the-art I3D model on both datasets. Because we use the

same backbone network (I3D) as the baseline models, we

conclude that the improvements come from the knowledge

transferred from news words. Since the news words do not

exhibit irrelevant artefacts such as idling and arm raising,

they let the model focus more on the actual signing part in

isolated words and produce more robust features.

We observe that our proposed model outperforms previ-

ous state-of-the-art by a large margin on WLASL. This is

because WLASL has even fewer examples (13-20 in each

class) compared to MSASL (40-50). For fully supervised

models, the number of examples in WLASL is very scarce

and it requires an efficient way to learn good representa-

tions. In this regard, our proposed approach is able to trans-

fer the knowledge from the news words and helps the learn-

ing process in such a limited-data learning regime.

4.4.2 Word-level Classifier as Temporal Localizer

Lack of training data is one of the main obstacles for both

word-level and sentence-level sign language recognition

tasks [3]. One such problem for sentence-level sign recog-

nition is the lack of accurate temporal boundary annotations

for signs, which can be useful for tasks such as continuous

sign language recognition [19]. We employ our word-level

classifier as a temporal localizer to provide automatic anno-

tations for temporal boundaries of sign words in sentences.

Setup. Since there is no ASL dataset providing frame-

level temporal annotations, we manually annotate temporal

boundaries for 120 random news word instances to validate

our ideas. The word classes are from WLASL100. Our

expert annotators are provided with a news sentence and a

isolated sign video. They are asked to identify the starting

and end frame of the sign word in the news sentence.

Annotation quality control. We use temporal-IoU (tIoU)

to verify the annotation quality, which is widely used to

evaluate temporal action localization results [30]. For the

two time intervals I1 and I2, their tIoU is computed as

tIoU = (I1 ∩ I2)/(I1 ∪ I2). The initial average tIoU be-

tween the annotations is 0.73. We discard those entries

with tIoU<0.5. For the remaining entries, an agreement

is reached by discussion. We keep 102 annotated entries.

Results. We demonstrate the improvement of the word rec-

ognizer by localization accuracy. To this end, we employ

classifiers in a sliding window fashion of 9-16 frames and
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Table 3: Comparison on temporal localization of sign words

by mAP. Columns are different tIoU levels.

tIoU 0.1 0.3 0.5 0.7

plain I3D [21, 14] 27.4 23.9 15.3 02.4

Ours 42.8 38.1 28.1 08.1

identify a sign word if the predicted class probability is

larger than 0.2. We compare I3D with our model by com-

puting mAP at different tIoUs. As shown in Table 3, our

method achieves higher localization performance. and pro-

vides an option for automatic temporal annotations.

4.5. Analysis and Discussions

We investigate the effect of different components of our

model by conducting experiments on WLASL100.

Effect of coarse domain alignment. We first study the ef-

fect of coarse domain alignment as mentioned in Sec. 3.3.2.

To this end, we extract features for news signs using clas-

sifier F without coarse alignment, and store class centroids

as memory. In Table 4, the model achieves better perfor-

mance when coarse alignment is used. By training F̂ jointly

on samples from two domains, the classifier aligns the do-

mains in the embedding space. And when coarse domain

alignment is not applied, the domain gap leads to less rel-

evant prototypes and prevents from learning good domain-

invariant features.

Effect of cross-domain knowledge. To investigate the in-

fluence of cross-domain knowledge, we explore three set-

tings to produce the prototypical memory: (i) simulating

the case where only isolated signs are available. As an al-

ternative, we use F to extract features for isolated signs and

use their class centroids as memory. In the remaining two

settings, we investigate the effectiveness of news sign pro-

totypes. To this end, we use F̂ to extract features for both

isolated and news sign words: (ii) employing centroids of

only isolated word features as memory; (iii) using both iso-

lated and news word features to compute centroids.

As seen in Table 5, only using the aligned model with

news signs as memory achieves best performance. We fur-

ther analyze performance degradation in other settings as

follows. Setting (i), the model only retrieves information

from the isolated signs thus does not benefit from cross-

domain knowledge. Setting (ii), the representations of iso-

lated signs are compromised due to the coarse alignment,

thus providing even worse centroids than (i). Setting (iii),

averaging cross-domain samples produces noisy centroids

since their embeddings are not well clustered.

5. Conclusion

In this paper, we propose a new method to improve the

performance of sign language recognition models by lever-

Table 4: Effect of coarse domain alignment on the recogni-

tion accuracy (%). The “wo. coarse align.” row denotes the

setting without coarse domain alignment. The “w. coarse

align.” row shows results with coarse domain alignment.

micro. macro.

top1 top5 top1 top5

wo. coarse align. 70.93 87.21 71.30 86.25

w. coarse align. 77.52 91.08 77.55 91.42

Table 5: Effect of sign news on the recognition accuracy

(%). Rows correspond to different settings to produce ex-

ternal memory. The “model” column shows the model to

extract features, with F the plain I3D and F̂ the I3D after

coarse alignment. The “memory” column indicates whether

isolated signs (iso.) or news signs (news) are used.

model memory micro. macro.

iso. news top1 top5 top1 top5

F ✓ ✗ 72.48 89.92 72.80 89.80

F̂ ✓ ✗ 72.09 87.21 72.38 86.75

F̂ ✓ ✓ 66.67 86.05 67.27 86.13

F̂ ✗ ✓ 77.52 91.08 77.55 91.42

aging cross-domain knowledge in the subtitled sign news

videos. We coarsely align isolated signs and news signs

by joint training and propose to store class centroids in

prototypical memory for online training and offline infer-

ence purpose. Our model then learns a domain-invariant

descriptor for each isolated sign. Based on the domain-

invariant descriptor, we employ temporal attention mecha-

nism to emphasize class-specific features while suppressing

those shared by different classes. In this way, our classifier

focuses on learning features from class-specific representa-

tion without being distracted. Benefiting from our domain-

invariant descriptor learning, our classifier not only outper-

forms the state-of-the-art but also can localize sign words

from sentences automatically, significantly reducing the la-

borious labelling procedure.
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