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Figure 1: Illustration of person trajectory prediction. (1) A person walks towards a car (data from the VIRAT/ActEV dataset).

The green line is the actual future trajectory and the yellow-orange heatmaps are example future predictions. Although these

predictions near the cars are plausible, they would be considered errors in the real video dataset. (2) To combat this, we

propose a new dataset called “Forking Paths”; here we illustrate 3 possible futures created by human annotators controlling

agents in a synthetic world derived from real data. (3) Here we show semantic segmentation of the scene. (4-6) Here we

show the same scene rendered from different viewing angles, where the red circles are future destinations.

Abstract

This paper studies the problem of predicting the distri-

bution over multiple possible future paths of people as they

move through various visual scenes. We make two main

contributions. The first contribution is a new dataset, cre-

ated in a realistic 3D simulator, which is based on real

world trajectory data, and then extrapolated by human an-

notators to achieve different latent goals. This provides the

first benchmark for quantitative evaluation of the models to

predict multi-future trajectories. The second contribution is

a new model to generate multiple plausible future trajecto-

ries, which contains novel designs of using multi-scale lo-

cation encodings and convolutional RNNs over graphs. We

refer to our model as Multiverse. We show that our model

achieves the best results on our dataset, as well as on the

real-world VIRAT/ActEV dataset (which just contains one

possible future). 1

1. Introduction

Forecasting future human behavior is a fundamental

problem in video understanding. In particular, future path

prediction, which aims at forecasting a pedestrian’s future

trajectory in the next few seconds, has received a lot of at-

tention in our community [20, 1, 15, 26]. This functionality

is a key component in a variety of applications such as au-

tonomous driving [4, 6], long-term object tracking [19, 48],

safety monitoring [30], robotic planning [42, 43], etc.

∗Work partially done during a research internship at Google.
1Code and models are released at https://next.cs.cmu.edu/

multiverse

Of course, the future is often very uncertain: Given

the same historical trajectory, a person may take differ-

ent paths, depending on their (latent) goals. Thus recent

work has started focusing on multi-future trajectory predic-

tion [53, 6, 26, 34, 54, 23].

Consider the example in Fig. 1. We see a person moving

from the bottom left towards the top right of the image, and

our task is to predict where he will go next. Since there are

many possible future trajectories this person might follow,

we are interested in learning a model that can generate mul-

tiple plausible futures. However, since the ground truth data

only contains one trajectory, it is difficult to evaluate such

probabilistic models.

To overcome the aforementioned challenges, our first

contribution is the creation of a realistic synthetic dataset

that allows us to compare models in a quantitative way in

terms of their ability to predict multiple plausible futures,

rather than just evaluating them against a single observed

trajectory as in existing studies. We create this dataset us-

ing the 3D CARLA [11] simulator, where the scenes are

manually designed to be similar to those found in the chal-

lenging real-world benchmark VIRAT/ActEV [36, 3]. Once

we have recreated the static scene, we automatically re-

construct trajectories by projecting real-world data to the

3D simulation world. See Fig. 1 and 3. We then semi-

automatically select a set of plausible future destinations

(corresponding to semantically meaningful locations in the

scene), and ask human annotators to create multiple possi-

ble continuations of the real trajectories towards each such

goal. In this way, our dataset is “anchored” in reality, and
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yet contains plausible variations in high-level human behav-

ior, which is impossible to simulate automatically.

We call this dataset the “Forking Paths” dataset, a refer-

ence to the short story by Jorge Luis Borges.2 As shown in

Fig. 1, different human annotations have created forkings of

future trajectories for the identical historical past. So far, we

have collected 750 sequences, with each covering about 15

seconds, from 10 annotators, controlling 127 agents in 7 dif-

ferent scenes. Each agent contains 5.9 future trajectories on

average. We render each sequence from 4 different views,

and automatically generate dense labels, as illustrated in

Fig. 1 and 3. In total, this amounts to 3.2 hours of trajec-

tory sequences, which is comparable to the largest person

trajectory benchmark VIRAT/ActEV [3, 36] (4.5 hours), or

5 times bigger than the common ETH/UCY [24, 32] bench-

mark. We therefore believe this will serve as a benchmark

for evaluating models that can predict multiple futures.

Our second contribution is to propose a new probabilistic

model, Multiverse, which can generate multiple plausible

trajectories given the past history of locations and the scene.

The model contains two novel design decisions. First, we

use a multi-scale representation of locations. In the first

scale, the coarse scale, we represent locations on a 2D grid,

as shown in Fig. 1(1). This captures high level uncertainty

about possible destinations and leads to a better representa-

tion of multi-modal distributions. In the second fine scale,

we predict a real-valued offset for each grid cell, to get more

precise localization. This two-stage approach is partially in-

spired by object detection methods [41]. The second nov-

elty of our model is to design convolutional RNNs [58] over

the spatial graph as a way of encoding inductive bias about

the movement patterns of people.

In addition, we empirically validate our model on the

challenging real-world benchmark VIRAT/ActEV [36, 3]

for single-future trajectory prediction, in which our model

achieves the best-published result. On the proposed simu-

lation data for multi-future prediction, experimental results

show our model compares favorably against the state-of-

the-art models across different settings. To summarize, the

main contributions of this paper are as follows: (i) We in-

troduce the first dataset and evaluation methodology that al-

lows us to compare models in a quantitative way in terms

of their ability to predict multiple plausible futures. (ii) We

propose a new effective model for multi-future trajectory

prediction. (iii) We establish a new state of the art result

on the challenging VIRAT/ActEV benchmark, and compare

various methods on our multi-future prediction dataset.

2. Related Work

Single-future trajectory prediction. Recent works have

tried to predict a single best trajectory for pedestrians or ve-

hicles. Early works [35, 59, 62] focused on modeling person

2https://en.wikipedia.org/wiki/The_Garden_of_

Forking_Paths

motions by considering them as points in the scene. These

research works [21, 60, 33, 30] have attempted to predict

person paths by utilizing visual features. Recently Liang et

al. [30] proposed a joint future activity and trajectory pre-

diction framework that utilized multiple visual features us-

ing focal attention [29, 28]. Many works [23, 50, 4, 18, 64]

in vehicle trajectory prediction have been proposed. CAR-

Net [50] proposed attention networks on top of scene se-

mantic CNN to predict vehicle trajectories. Chauffeur-

net [4] utilized imitation learning for trajectory prediction.

Multi-future trajectory prediction. Many works have

tried to model the uncertainty of trajectory prediction. Var-

ious papers (e.g. [20, 43, 44] use Inverse Reinforcement

Learning (IRL) to forecast human trajectories. Social-

LSTM [1] is a popular method using social pooling to pre-

dict future trajectories. Other works [49, 15, 26, 2] like

Social-GAN [15] have utilized generative adversarial net-

works [14] to generate diverse person trajectories. In vehi-

cle trajectory prediction, DESIRE [23] utilized variational

auto-encoders (VAE) to predict future vehicle trajectories.

Many recent works [54, 6, 53, 34] also proposed proba-

bilistic frameworks for multi-future vehicle trajectory pre-

diction. Different from these previous works, we present

a flexible two-stage framework that combines multi-modal

distribution modeling and precise location prediction.

Trajectory Datasets. Many vehicle trajectory datasets [5,

7] have been proposed as a result of self-driving’s surging

popularity. With the recent advancement in 3D computer

vision research [63, 27, 51, 11, 45, 47, 16], many research

works [39, 12, 10, 9, 57, 66, 52] have looked into 3D sim-

ulated environment for its flexibility and ability to generate

enormous amount of data. We are the first to propose a

3D simulation dataset that is reconstructed from real-world

scenarios complemented with a variety of human trajectory

continuations for multi-future person trajectory prediction.

3. Methods

In this section, we describe our model for forecasting

agent trajectories, which we call Multiverse. We focus on

predicting the locations of a single agent for multiple steps

into the future, Lh+1:T , given a sequence of past video

frames, V1:h, and agent locations, L1:h, where h is the his-

tory length and T − h is the prediction length. Since there

is inherent uncertainty in this task, our goal is to design

a model that can effectively predict multiple plausible fu-

ture trajectories, by computing the multimodal distribution

p(Lh+1:T |L1:h, V1:h). See Fig. 2 for a high level summary

of the model, and the sections below for more details.

3.1. History Encoder

The encoder computes a representation of the scene from

the history of past locations, L1:h, and frames, V1:h. We en-

code each ground truth location Lt by an index Yt ∈ G

representing the nearest cell in a 2D grid G of size H ×W ,
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Figure 2: Overview of our model. The input to the model is the ground truth location history, and a set of video frames,

which are preprocessed by a semantic segmentation model. This is encoded by the “History Encoder” convolutional RNN.

The output of the encoder is fed to the convolutional RNN decoder for location prediction. The coarse location decoder

outputs a heatmap over the 2D grid of size H ×W . The fine location decoder outputs a vector offset within each grid cell.

These are combined to generate a multimodal distribution over R2 for predicted locations.

indexed from 1 to HW . Inspired by [22, 31], we encode

location with two different grid scales (36×18 and 18×9);

we show the benefits of this multi-scale encoding in Sec-

tion 5.4. For simplicity of presentation, we focus on a single

H ×W grid.

To make the model more invariant to low-level visual

details, and thus more robust to domain shift (e.g., between

different scenes, different views of the same scene, or be-

tween real and synthetic images), we preprocess each video

frame Vt using a pre-trained semantic segmentation model,

with K = 13 possible class labels per pixel. We use the

Deeplab model [8] trained on the ADE20k [65] dataset, and

keep its weights frozen. Let St be this semantic segmenta-

tion map modeled as a tensor of size H ×W ×K.

We then pass these inputs to a convolutional RNN [58,

56] to compute a spatial-temporal feature history:

He
t = ConvRNN(one-hot(Yt)⊙ (W ∗ St), H

e
t−1) (1)

where ⊙ is element wise product, and ∗ represents 2D-

convolution. The function one-hot(·) projects a cell index

into an one-hot embedding of size H × W according to

its spatial location. We use the final state of this encoder

He
t ∈ R

H×W×denc , where denc is the hidden size, to ini-

tialize the state of the decoders. We also use the temporal

average of the semantic maps, S = 1
h

∑h

t=1 St, during each

decoding step. The context is represented as H = [He
h, S].

3.2. Coarse Location Decoder

After getting the context H, our goal is to forecast future

locations. We initially focus on predicting locations at the

level of grid cells, Yt ∈ G. In Section 3.3, we discuss how to

predict a continuous offset in R
2, which specifies a “delta”

from the center of each grid cell, to get a fine-grained loca-

tion prediction.

Let the coarse distribution over grid locations at time t

(known as the “belief state”) be denoted by Ct(i) = p(Yt =
i|Yh:t−1,H), for ∀i ∈ G and t ∈ [h + 1, T ]. For brevity,

we use a single index i to represent a cell in the 2D grid.

Rather than assuming a Markov model, we update this using

a convolutional recurrent neural network, with hidden states

HC
t . We then compute the belief state by:

Ct = softmax(W ∗HC
t ) ∈ R

HW (2)

Here we use 2D-convolution with one filter and flatten the

spatial dimension before applying softmax. The hidden

state is updated using:

HC
t = ConvRNN(GAT(HC

t−1), embed(Ct−1)) (3)

where embed(Ct−1) embeds into a 3D tensor of size H ×
W × de and de is the embedding size. GAT(HC

t−1) is

a graph attention network [55], where the graph structure

corresponds to the 2D grid in G. More precisely, let hi

be the feature vector corresponding to the i-th grid cell in

HC
t−1, and let h̃i be the corresponding output in H̃C

t−1 =
GAT(HC

t−1) ∈ R
H×W×ddec , where ddec is the size of the

decoder hidden state. We compute these outputs of GAT

using:

h̃i =
1

|Ni|

∑

j∈Ni

fe([vi, vj ]) + hi (4)

where Ni are the neighbors of node vi in G with each node

represented as vi = [hi, Si], where Si collects the cell i’s

feature in S. fe is some edge function (implemented as

an MLP in our experiments) that computes the attention

weights.

The graph-structured update function for the RNN en-

sures that the probability mass “diffuses out” to nearby grid

cells in a controlled manner, reflecting the prior knowledge

that people do not suddenly jump between distant locations.

This inductive bias is also encoded in the convolutional
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structure, but adding the graph attention network gives im-

proved results, because the weights are input-dependent and

not fixed.

3.3. Fine Location Decoder

The 2D heatmap is useful for capturing multimodal dis-

tributions, but does not give very precise location predic-

tions. To overcome this, we train a second convolutional

RNN decoder HO
t to compute an offset vector for each pos-

sible grid cell using a regression output, Ot = MLP(HO
t ) ∈

R
H×W×2. This RNN is updated using

HO
t = ConvRNN(GAT(HO

t−1), Ot−1) ∈ R
H×W×ddec

(5)

To compute the final prediction location, we first flatten the

spatial dimension of Ot into Õt ∈ R
HW×2. Then we use

Lt = Qi + Õti (6)

where i is the index of the selected grid cell, Qi ∈ R
2 is

the center of that cell, and Õti ∈ R
2 is the predicted off-

set for that cell at time t. For single-future prediction, we

use greedy search, namely i = argmaxCt over the belief

state. For multi-future prediction, we use beam search in

Section 3.5.

This idea of combining classification and regression is

partially inspired by object detection methods (e.g., [41]).

It is worth noting that in concurrent work, [6] also de-

signed a two-stage model for trajectory forecasting. How-

ever, their classification targets are pre-defined anchor tra-

jectories. Ours is not limited by the predefined anchors.

3.4. Training

Our model trains on the observed trajectory from time 1

to h and predicts the future trajectories (in xy-coordinates)

from time h+1 to T . We supervise this training by provid-

ing ground truth targets for both the heatmap (belief state),

C∗
t , and regression offset map, O∗

t . In particular, for the

coarse decoder, the cross-entropy loss is used:

Lcls = −
1

T

T
∑

t=h+1

∑

i∈G

C∗
ti log(Cti) (7)

For the fine decoder, we use the smoothed L1 loss used in

object detection [41]:

Lreg =
1

T

T
∑

t=h+1

∑

i∈G

smoothL1
(O∗

ti, Oti) (8)

where O∗
ti = L∗

t −Qi is the delta between the true location

and the center of the grid cell at i and L∗
t is the ground

truth for Lt in Eq.(6). We impose this loss on every cell to

improve the robustness.

The final loss is then calculated using

L(θ) = Lcls + λ1Lreg + λ2‖θ‖
2
2 (9)

where λ2 controls the ℓ2 regularization (weight decay), and

λ1 = 0.1 is used to balance the regression and classification

losses.

Note that during training, when updating the RNN, we

feed in the predicted soft distribution over locations, Ct.

See Eq. (2). An alternative would be to feed in the true val-

ues, C∗
t , i.e., use teacher forcing. However, this is known to

suffer from problems [40].

3.5. Inference

To generate multiple qualitatively distinct trajectories,

we use the diverse beam search strategy from [25]. To

define this precisely, let Bt−1 be the beam at time t − 1;

this set contains K trajectories (history selections) Mk
t−1 =

{Ŷ k
1 , . . . , Ŷ k

t−1}, k ∈ [1,K], where Ŷ k
t is an index in G,

along with their accumulated log probabilities, P k
t−1. Let

Ck
t = f(Mk

t−1) ∈ R
HW be the coarse location output prob-

ability from Eq. (2) and (3) at time t given inputs Mk
t−1.

The new beam is computed using

Bt = topK
(

{P k
t−1+log(Ck

t (i))+γ(i)|∀i ∈ G, k ∈ [1,K]}
)

(10)

where γ(i) is a diversity penalty term, and we take the top

K elements from the set produced by considering values

with k = 1 : K. If K = 1, this reduces to greedy search.

Once we have computed the top K future predictions, we

add the corresponding offset vectors to get K trajectories by

Lk
t ∈ R

2. This constitutes the final output of our model.

4. The Forking Paths Dataset

In this section, we describe our human-annotated simu-

lation dataset, called Forking Paths, for multi-future trajec-

tory evaluation.

Existing datasets. There are several real-world datasets

for trajectory evaluation, such as SDD [46], ETH/UCY [37,

24], KITTI [13], nuScenes [5] and VIRAT/ActEV [3, 36].

However, they all share the fundamental problem that one

can only observe one out of many possible future trajec-

tories sampled from the underlying distribution. This is

broadly acknowledged in prior works [34, 54, 6, 15, 44, 43]

but has not yet been addressed.

The closest work to ours is the simulation used in [34,

54, 6]. However, these only contain artificial trajectories,

not human generated ones. Also, they use a highly simpli-

fied 2D space, with pedestrians oversimplified as points and

vehicles as blocks; no other scene semantics are provided.

Reconstructing reality in simulator. In this work, we use

CARLA [11], a near-realistic open source simulator built

on top of the Unreal Engine 4. Following prior simula-

tion datasets [12, 47], we semi-automatically reconstruct

static scenes and their dynamic elements from the real-

world videos in ETH/UCY and VIRAT/ActEV. There are

4 scenes in ETH/UCY and 5 in VIRAT/ActEV. We exclude

2 cluttered scenes (UNIV & 0002) that we are not able to re-

construct in CARLA, leaving 7 static scenes in our dataset.
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Figure 3: Visualization of the Forking Paths dataset. On the left is examples of the real videos and the second column

shows the reconstructed scenes. The person in the blue bounding box is the controlled agent and multiple future trajectories

annotated by humans are shown by overlaid person frames. The red circles are the defined destinations. The green trajectories

are future trajectories of the reconstructed uncontrolled agents. The scene semantic segmentation ground truth is shown in

the third column and the last column shows all four camera views including the top-down view.

For dynamic movement of vehicle and pedestrian, we

first convert the ground truth trajectory annotations from the

real-world videos to the ground plane using the provided

homography matrices. We then match the real-world trajec-

tories’ origin to correct locations in the re-created scenes.

Human generation of plausible futures. We manually se-

lect sequences with more than one pedestrian. We also re-

quire that at least one pedestrian could have multiple plau-

sible alternative destinations. We insert plausible pedestri-

ans into the scene to increase the diversity of the scenarios.

We then select one of the pedestrians to be the “controlled

agent” (CA) for each sequence, and set meaningful destina-

tions within reach, like a car or an entrance of a building.

On average, each agent has about 3 destinations to move to-

wards. In total, we have 127 CAs from 7 scenes. We call

each CA and their corresponding scene a scenario.

For each scenario, there are on average 5.9 human an-

notators to control the agent to the defined destinations.

Specifically, they are asked to watch the first 5 seconds of

video, from a first-person view (with the camera slightly be-

hind the pedestrian) and/or an overhead view (to give more

context). They are then asked to control the motion of the

agent so that it moves towards the specified destination in a

“natural” way, e.g., without colliding with other moving ob-

jects (whose motion is derived from the real videos, and is

therefore unaware of the controlled agent). The annotation

is considered successful if the agent reached the destination

without colliding within the time limit of 10.4 seconds. All

final trajectories in our dataset are examined by humans to

ensure reliability.

Note that our videos are up to 15.2 seconds long. This is

slightly longer than previous works (e.g. [1, 15, 30, 49, 26,

62, 64]) that use 3.2 seconds of observation and 4.8 seconds

for prediction. (We use 10.4 seconds for the future to allow

us to evaluate longer term forecasts.)

Generating the data. Once we have collected human-

generated trajectories, 750 in total after data cleaning, we

render each one in four camera views (three 45-degree and

one top-down view). Each camera view has 127 scenarios

in total and each scenario has on average 5.9 future trajecto-

ries. With CARLA, we can also simulate different weather

conditions, although we did not do so in this work. In ad-

dition to agent location, we collect ground truth for pixel-

precise scene semantic segmentation from 13 classes in-

cluding sidewalk, road, vehicle, pedestrian, etc. See Fig. 3.

5. Experimental results

This section evaluates various methods, including our

Multiverse model, for multi-future trajectory prediction on

the proposed Forking Paths dataset. To allow comparison

with previous works, we also evaluate our model on the

challenging VIRAT/ActEV [3, 36] benchmark for single-

future path prediction.

5.1. Evaluation Metrics

Single-Future Evaluation. In real-world videos, each tra-

jectory only has one sample of the future, so models are

evaluated on how well they predict that single trajectory.

Following prior work [30, 1, 15, 49, 23, 18, 6, 44], we in-

troduce two standard metrics for this setting.

Let Y i = Y i
t=(h+1)···T be the ground truth trajectory of

the i-th sample, and Ŷ i be the corresponding prediction. We

then employ two distance-based error metrics: i) Average

Displacement Error (ADE): the average Euclidean distance

between the ground truth coordinates and the prediction co-
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ordinates over all time instants:

ADE =

∑N

i=1

∑T

t=h+1‖Y
i
t − Ŷ i

t ‖2

N × (T − h)
(11)

ii) Final Displacement Error (FDE): the Euclidean distance

between the predicted points and the ground truth point at

the final prediction time:

FDE =

∑N

i=1‖Y
i
T − Ŷ i

T ‖2
N

(12)

Multi-Future Evaluation. Let Y ij = Y
ij

t=(h+1)···T be the

j-th true future trajectory for the i-th test sample, for ∀j ∈
[1, J ], and let Ŷ ik be the k’th sample from the predicted

distribution over trajectories, for k ∈ [1,K]. Since there is

no agreed-upon evaluation metric for this setting, we simply

extend the above metrics, as follows: i) Minimum Average

Displacement Error Given K Predictions (minADEK): sim-

ilar to the metric described in [6, 43, 44, 15], for each true

trajectory j in test sample i, we select the closest overall

prediction (from the K model predictions), and then mea-

sure its average error:

minADEK =

∑N

i=1

∑J

j=1 minKk=1

∑T

t=h+1‖Y
ij
t − Ŷ ik

t ‖2

N × (T − h)× J
(13)

ii) Minimum Final Displacement Error Given K Predictions

(minFDEK): similar to minADEK, but we only consider the

predicted points and the ground truth point at the final pre-

diction time instant:

minFDEK =

∑N

i=1

∑J

j=1 minKk=1‖Y
ij
T − Ŷ ik

T ‖2

N × J
(14)

iii) Negative Log-Likelihood (NLL): Similar to NLL metrics

used in [34, 6], we measure the fit of ground-truth samples

to the predicted distribution.

5.2. Multi­Future Prediction on Forking Paths

Dataset & Setups. The proposed Forking Paths dataset in

Section 4 is used for multi-future trajectory prediction eval-

uation. Following the setting in previous works [30, 1, 15,

1, 15, 49, 34], we downsample the videos to 2.5 fps and ex-

tract person trajectories using code released in [30], and let

the models observe 3.2 seconds (8 frames) of the controlled

agent before outputting trajectory coordinates in the pixel

space. Since the length of the ground truth future trajecto-

ries are different, each model needs to predict the maximum

length at test time but we evaluate the predictions using the

actual length of each true trajectory.

Baseline methods. We compare our method with two

simple baselines, and three recent methods with released

source code, including a recent model for multi-future

prediction and the state-of-the-art model for single-future

prediction: Linear is a single layer model that predicts

the next coordinates using a linear regressor based on

the previous input point. LSTM is a simple LSTM [17]

encoder-decoder model with coordinates input only. Social

LSTM [1]: We use the open source implementation from

(https://github.com/agrimgupta92/sgan/). Next [30]

is the state-of-the-art method for single-future trajectory

prediction on the VIRAT/ActEV dataset. We train the

Next model without the activity labels for fair compari-

son using the code from (https://github.com/google/

next-prediction/). Social GAN [15] is a recent multi-

future trajectory prediction model trained using Minimum

over N (MoN) loss. We train two model variants (called PV

and V) detailed in the paper using the code from [15] .

All models are trained on real videos (from VI-

RAT/ActEV – see Section 5.3 for details) and tested on

our synthetic videos (with CARLA-generated pixels, and

annotator-generated trajectories). Most models just use tra-

jectory data as input, except for our model (which uses tra-

jectory and semantic segmentation) and Next (which uses

trajectory, bounding box, semantic segmentation, and RGB

frames).

Implementation Details. We use ConvLSTM [58] cell for

both the encoder and decoder. The embedding size is set

to 32, and the hidden sizes for the encoder and decoder are

both 256. The scene semantic segmentation features are ex-

tracted from the deeplab model [8], pretrained on the ADE-

20k [65] dataset. We use Adadelta optimizer [61] with an

initial learning rate of 0.3 and weight decay of 0.001. Other

hyper-parameters for the baselines are the same to the ones

in [15, 30]. We evaluate the top K = 20 predictions for

multi-future trajectories. For the models that only output

a single trajectory, including Linear, LSTM, Social-LSTM,

and Next, we duplicate the output for K times before eval-

uating. For Social-GAN, we use K different random noise

inputs to get the predictions. For our model, we use diver-

sity beam search [25, 38] as described in Section 3.5.

Quantitative Results. Table 1 lists the multi-future eval-

uation results, where we divide the evaluation according

to the viewing angle of camera, 45-degree vs. top-down

view. We repeat all experiments (except “linear”) 5 times

with random initialization to produce the mean and standard

deviation values. As we see, our model outperforms base-

lines in all metrics and it performs significantly better on

the minADE metric, which suggests better prediction qual-

ity over all time instants. Notably, our model outperforms

Social GAN by a large margin of at least 8 points on all met-

rics. We also measure the standard negative log-likelihood

(NLL) metric for the top methods in Table 2.

Qualitative analysis. We visualize some outputs of the top

4 methods in Fig. 4. In each image, the yellow trajecto-

ries are the history trajectory of each controlled agent (de-

rived from real video data) and the green trajectories are the

ground truth future trajectories from human annotators. The

predicted trajectories are shown in yellow-orange heatmaps

for multi-future prediction methods, and in red lines for
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Method Input Types
minADE20 minFDE20

45-degree top-down 45-degree top-down

Linear Traj. 213.2 197.6 403.2 372.9

LSTM Traj. 201.0 ±2.2 183.7 ±2.1 381.5 ±3.2 355.0 ±3.6

Social-LSTM [1] Traj. 197.5 ±2.5 180.4 ±1.0 377.0 ±3.6 350.3 ±2.3

Social-GAN (PV) [15] Traj. 191.2 ±5.4 176.5 ±5.2 351.9 ±11.4 335.0 ±9.4

Social-GAN (V) [15] Traj. 187.1 ±4.7 172.7 ±3.9 342.1 ±10.2 326.7 ±7.7

Next [30] Traj.+Bbox+RGB+Seg. 186.6 ±2.7 166.9 ±2.2 360.0 ±7.2 326.6 ±5.0

Ours Traj.+Seg. 168.9 ±2.1 157.7 ±2.5 333.8 ±3.7 316.5 ±3.4

Table 1: Comparison of different methods on the Forking Paths dataset. Lower numbers are better. The numbers for the

column labeled “45 degrees” are averaged over 3 different 45-degree views. For the input types, “Traj.”, “RGB”, “Seg.” and

“Bbox.” mean the inputs are xy coordinates, raw frames, semantic segmentations and bounding boxes of all objects in the

scene, respectively. All models are trained on real VIRAT/ActEV videos and tested on synthetic (CARLA-rendered) videos.

Method Tpred = 1 Tpred = 2 Tpred = 3

(PV) [14] 10.08 ±0.25 17.28 ±0.42 23.34 ±0.47

(V) [14] 9.95 ±0.35 17.38 ±0.49 23.24 ±0.54

Next [27] 8.32 ±0.10 14.98 ±0.19 22.71 ±0.11

Ours 2.22 ±0.54 4.46 ±1.33 8.14 ±2.81

Table 2: Negative Log-likelihood comparison of different

methods on the Forking Paths dataset. For methods that

output multiple trajectories, we quantize the xy-coordinates

into the same grid as our method and get a normalized prob-

ability distribution prediction.

single-future prediction methods. As we see, our model cor-

rectly generally puts probability mass where there is data,

and does not “waste” probability mass where there is no

data.

Error analysis. We show some typical errors our model

makes in Fig. 5. The first image shows our model misses

the correct direction, perhaps due to lack of diversity in our

sampling procedure. The second image shows our model

sometimes predicts the person will “go through” the car

(diagonal red beam) instead of going around it. This may

be addressed by adding more training examples of “going

around” obstacles. The third image shows our model pre-

dicts the person will go to a moving car. This is due to the

lack of modeling of the dynamics of other far-away agents

in the scene. The fourth image shows a hard case where

the person just exits the vehicle and there is no indication of

where they will go next (so our model “backs off” to a sen-

sible “stay nearby” prediction). We leave solutions to these

problems to future work.

5.3. Single­Future Prediction on VIRAT/ActEV

Dataset & Setups. NIST released VIRAT/ActEV [3] for

activity detection research in streaming videos in 2018.

This dataset is a new version of the VIRAT [36] dataset,

with more videos and annotations. The length of videos

with publicly available annotations is about 4.5 hours. Fol-

lowing [30], we use the official training set for training and

the official validation set for testing. Other setups are the

same as in Section 5.2, except we use the single-future eval-

uation metric.

Quantitative Results. Table 3 (first column) shows the

evaluation results. As we see, our model achieves state-of-

the-art performance. The improvement is especially large

on Final Displacement Error (FDE) metric, attributing to

the coarse location decoder that helps regulate the model

prediction for long-term prediction. The gain shows that

our model does well at both single future prediction (on real

data) and multiple future prediction on our quasi-synthetic

data.

Generalizing from simulation to real-world. As de-

scribed in Section 4, we generate simulation data first by

reconstructing from real-world videos. To verify the qual-

ity of the reconstructed data, and the efficacy of learning

from simulation videos, we train all the models on the sim-

ulation videos derived from the real data. We then evaluate

on the real test set of VIRAT/ActEV. As we see from the

right column in Table 3, all models do worse in this sce-

nario, due to the difference between synthetic and real data.

We find the performance ranking of different methods are

consistent between the real and our simulation training data.

This suggests the errors mainly coming from the model, and

substantiates the rationality of using the proposed dataset to

compare the relative performance of different methods.

There are two sources of error. The synthetic trajectory

data only contains about 60% of the real trajectory data, due

to difficulties reconstructing all the real data in the simula-

tor. In addition, the synthetic images are not photo realis-

tic. Thus methods (such as Next [30]) that rely on RGB

input obviously suffer the most, since they have never been

trained on “real pixels”. Our method, which uses trajecto-

ries plus high level semantic segmentations (which transfers

from synthetic to real more easily) suffers the least drop in

performance, showing its robustness to “domain shift”. See

Table 1 for input source comparison between methods.

5.4. Ablation Experiments

We test various ablations of our model on both the

single-future and multi-future trajectory prediction to sub-

stantiate our design decisions. Results are shown in Ta-
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Figure 4: Qualitative analysis. The red trajectories are single-future method predictions and the yellow-orange heatmaps are

multi-future method predictions. The yellow trajectories are observations and the green ones are ground truth multi-future

trajectories. See text for details.

Figure 5: Error analysis. See text for details.

Method Trained on Real. Trained on Sim.

Linear 32.19 / 60.92 48.65 / 90.84

LSTM 23.98 / 44.97 28.45 / 53.01

Social-LSTM [1] 23.10 / 44.27 26.72 / 51.26

Social-GAN (V) [15] 30.40 / 61.93 36.74 / 73.22

Social-GAN (PV) [15] 30.42 / 60.70 36.48 / 72.72

Next [30] 19.78 / 42.43 27.38 / 62.11

Ours 18.51 / 35.84 22.94 / 43.35

Table 3: Comparison of different methods on the VI-

RAT/ActEV dataset. We report ADE/FDE metrics. First

column is for models trained on real video training set and

second column is for models trained on the simulated ver-

sion of this dataset.

ble 4, where the ADE/FDE metrics are shown in the “single-

future” column and minADE20/minFDE20 metrics (aver-

aged across all views) in the “multi-future” column. We

verify three of our key designs by leaving the module out

from the full model.

(1) Spatial Graph: Our model is built on top of a spatial

2D graph that uses graph attention to model the scene fea-

tures. We train model without the spatial graph. As we see,

the performance drops on both tasks. (2) Fine location de-

coder: We test our model without the fine location decoder

and only use the grid center as the coordinate output. As we

see, the significant performance drops on both tasks verify

the efficacy of this new module proposed in our study. (3)

Method Single-Future Multi-Future

Our full model 18.51 / 35.84 166.1 / 329.5

No spatial graph 28.68 / 49.87 184.5 / 363.2

No fine location decoder 53.62 / 83.57 232.1 / 468.6

No multi-scale grid 21.09 / 38.45 171.0 / 344.4

Table 4: Performance on ablated versions of our model on

single and multi-future trajectory prediction. Lower num-

bers are better.

Multi-scale grid: As mentioned in Section 3, we utilize two

different grid scales (36 × 18) and (18 × 9) in training. We

see that performance is slightly worse if we only use the fine

scale (36 × 18) .

6. Conclusion

In this paper, we have introduced the Forking Paths

dataset, and the Multiverse model for multi-future forecast-

ing. Our study is the first to provide a quantitative bench-

mark and evaluation methodology for multi-future trajec-

tory prediction by using human annotators to create a va-

riety of trajectory continuations under the identical past.

Our model utilizes multi-scale location decoders with graph

attention model to predict multiple future locations. We

have shown that our method achieves state-of-the-art per-

formance on two challenging benchmarks: the large-scale

real video dataset and our proposed multi-future trajectory

dataset. We believe our dataset, together with our mod-

els, will facilitate future research and applications on multi-

future prediction.
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haes, David Semedo, and Saverio Blasi. Trecvid 2018:

Benchmarking video activity detection, video caption-

ing and matching, video storytelling linking and video

search. In TRECVID, 2018. 1, 2, 4, 5, 7

[4] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale.

Chauffeurnet: Learning to drive by imitating the

best and synthesizing the worst. arXiv preprint

arXiv:1812.03079, 2018. 1, 2

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh

Vora, Venice Erin Liong, Qiang Xu, Anush Krish-

nan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.

nuscenes: A multimodal dataset for autonomous driv-

ing. arXiv preprint arXiv:1903.11027, 2019. 2, 4

[6] Yuning Chai, Benjamin Sapp, Mayank Bansal, and

Dragomir Anguelov. Multipath: Multiple probabilis-

tic anchor trajectory hypotheses for behavior predic-

tion. arXiv preprint arXiv:1910.05449, 2019. 1, 2, 4,

5, 6

[7] Ming-Fang Chang, John Lambert, Patsorn Sangk-

loy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett,

De Wang, Peter Carr, Simon Lucey, Deva Ramanan,

et al. Argoverse: 3d tracking and forecasting with rich

maps. In CVPR, 2019. 2

[8] Liang-Chieh Chen, George Papandreou, Iasonas

Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab:

Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs.

IEEE transactions on pattern analysis and machine

intelligence, 40(4):834–848, 2017. 3, 6

[9] Abhishek Das, Samyak Datta, Georgia Gkioxari, Ste-

fan Lee, Devi Parikh, and Dhruv Batra. Embodied

question answering. In CVPRW, 2018. 2

[10] César Roberto de Souza, Adrien Gaidon, Yohann

Cabon, and Antonio Manuel López. Procedural gen-
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