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Abstract

Referring expression comprehension aims to localize the

object instance described by a natural language expression.

Current referring expression methods have achieved good

performance. However, none of them is able to achieve real-

time inference without accuracy drop. The reason for the

relatively slow inference speed is that these methods artifi-

cially split the referring expression comprehension into two

sequential stages including proposal generation and pro-

posal ranking. It does not exactly conform to the habit of

human cognition. To this end, we propose a novel Real-

time Cross-modality Correlation Filtering method (RCCF).

RCCF reformulates the referring expression comprehension

as a correlation filtering process. The expression is first

mapped from the language domain to the visual domain and

then treated as a template (kernel) to perform correlation

filtering on the image feature map. The peak value in the

correlation heatmap indicates the center points of the tar-

get box. In addition, RCCF also regresses a 2-D object size

and 2-D offset. The center point coordinates, object size

and center point offset together to form the target bounding

box. Our method runs at 40 FPS while achieving leading

performance in RefClef, RefCOCO, RefCOCO+ and Ref-

COCOg benchmarks. In the challenging RefClef dataset,

our methods almost double the state-of-the-art performance

(34.70% increased to 63.79%). We hope this work can

arouse more attention and studies to the new cross-modality

correlation filtering framework as well as the one-stage

framework for referring expression comprehension.

1. Introduction

Referring expression comprehension [34, 32, 27] has at-

tracted much attention in recent years. A referring expres-

sion is a natural language description of a particular object
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Figure 1. Precision (IOU>0.5) versus inference time on the Re-

fCOCO testA set at single Titan Xp GPU. Our method RCCF

achieves 40 fps (0.25ms per image), which exceeds the real-time

speed of 25 fps and is significantly faster than existing methods

by a significant margin (12 times). The precision of RCCF also

outperforms the state-of-the-art methods.

in an image. Given such a referring expression, the target of

referring expression comprehension is to localize the object

instance in the image. It is one of the key tasks in the field

of machine intelligence to realize human-computer interac-

tion, robotics and early education.

Conventional methods for referring expression compre-

hension mostly formulate this problem as an object retrieval

task, where an object that best matches the referring expres-

sion is retrieved from a set of object proposals. These meth-

ods [32, 29, 28, 27] are mainly composed of two stages. In

the first stage, given an input image, a pre-trained object de-

tection network is applied to generate a set of object propos-

als. In the second stage, given an input expression, the best

matching region from the detected object proposals is se-

lected. Although existing two-stage methods have achieved

great advance, there are still some problems. 1) The perfor-

mance of the two-stage methods is very limited to the qual-
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ity of object proposals generated in the first stage. If the

target object is not accurately detected, it is impossible to

match the language in the second stage. 2) In the first stage,

a lot of extra object detection data, i.e., COCO [17] and Vi-

sual Genome [13], are indispensable to achieve satisfactory

result. 3) Two-stage methods are usually computationally

costly. For each object proposal, both feature extraction

and cross-modality similarity computation should be con-

ducted. However, only the proposal with highest similarity

is selected finally. As we can see in Figure 1, the accuracy

of current two-stage methods is reasonable while the infer-

ence speed still has a large gap to reach real-time.

The three aforementioned problems are difficult to solve

in existing two-stage frameworks. We reformulate refer-

ring expression comprehension as a cross-modality tem-

plate matching problem, where the language serves as the

template(filter kernel) and the image feature map is the

search space to perform correlation filtering on. Mathemat-

ically, referring expression comprehension aims to learn a

function f(z, x) that compares an expression z to a candi-

date image x and returns a high score in the corresponding

regions. The region is represented by 2-dim center point,

2-dim object size (height and width) and 2-dim offset to

recover the discretization error [15, 36, 6]. Our proposed

RCCF is end-to-end trainable. The language embedding is

used as correlation filter and applied to the feature map to

produce the heatmap for center point. For more accurate

localization, we compute the correlation map on multi-level

image feature and fuse the output maps to produce the final

heatmap of object center. Moreover, the width, height and

offset heatmap are regressed with visual feature only. Dur-

ing inference, the text is first embedded into visual space

and then slides on the image feature maps. The peak point

in the object center heatmap is selected as the center of the

target. The corresponding width, height and offset are col-

lected to form the target bounding box, which is the refer-

ring expression comprehension result.

The advantages of our proposed RCCF method can be

summarized as three-folds:

• The inference speed of our method reaches real-time

(40 FPS) with a single GPU, which is 12-times faster

than the two-stage methods.

• Our method can be trained with referring expression

dataset only, with no need for any additional object de-

tection data. Moreover, our one-stage model can avoid

error accumulation from the object detector in tradi-

tional two-stage methods.

• RCCF has achieved the state-of-the-art performance

in RefClef, RefCOCO, RefCOCO+ and RefCOCOg

datasets. Especially, in the RefClef dataset, our

method outperforms the state-of-the-art methods by

a significant margin from 34.70% to 63.79%, almost

double the performance of the state-of-the-art method.

2. Related Work

2.1. Referring Expression Comprehension

Conventional methods for referring expression compre-

hension are mostly composed of two-stage. In the first

stage, given an input image, a pre-trained object detection

network or an unsupervised method is applied to gener-

ate a set of object proposals. In the second stage, given

an input expression, the best matching region is selected

from the detected object proposals. With the development

of deep learning, the two-stage methods has achieved great

progress. The most two-stage methods focus on improv-

ing the second stage. Most of them [20, 9, 35, 32, 27, 28]

mainly focus on exploring how to mine context informa-

tion from the language and image or model the relationship

between referents, for example, MAttNet [32] proposed a

modular attention model to capture multi-modality context

information.

Though existing two-stage methods have achieved

pretty-well performance, there are some common problems.

Firstly, the performance of two-stage methods is limited to

the object detectors. Secondly, these methods waste a lot of

time in object proposals generation and features extraction

for each proposal. Therefore, we propose to localize the tar-

get object directly given an expression with our correlation

filtering based method.

2.2. Correlation Filtering

The correlation filtering is firstly proposed to train a lin-

ear template to discriminate between images and their trans-

lations. The correlation filtering is widely used in different

areas of computer vision. Object classification [14, 7, 26]

can be seen as a correlation filtering task, where the out-

put image feature vector can be seen as a filter kernel,

which performs correlation filtering on the weight matrix

of the last multi-layer perceptron. For single object track-

ing, which aims to localize an object in a video given the

object region in the first frame, the correlation filtering can

play a role in comparing the first frame with the rest ones.

The early works [2, 8] in tracking firstly transfer the im-

age into Fourier domain, and perform correlation filtering in

Fourier domain. Siamese FC [1] proposed to directly learn

a correlation layer on the spatial domain, where Siamese

FC compares two image features extracted from a Siamese

network.

Inspired by human visual perception mechanism, we be-

lieve that the process of performing language based visual

grounding can be analogized to the process of filter-based

visual response activation. Specifically, people generally

comprehend the semantic information of a sentence in a
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global way, and form a feature template about the sen-

tence description in the mind, then quickly perform atten-

tion matching on the image based on the template, wherein

the salient region with the highest response value is consid-

ered as the target matching region. To this end, we formu-

late the problem of referring expression comprehension as

a cross-modality correlation filtering process and solve with

a single-stage joint optimization paradigm.

3. Method

In this section, we introduce our proposed RCCF method

for referring expression comprehension. Our goal is to lo-

calize the object described by the reference expression di-

rectly without proposal generation step. To this end, we for-

mulate referring expression comprehension task as a cross-

modality template matching problem. In RCCF, we first

localize the center point of the object described by the ex-

pression by performing correlation filtering on the image

feature with a language-guided filter kernel. Then, we ap-

ply a regression module to regress the object size and center

point offset. The peak value in the correlation heatmap, the

regressed object size and center point offset together form

the target bounding box.

3.1. Framework

Let Q represent a query sentence and I ∈ R
H×W×3 de-

note the image of width W and height H . Our aim is to

find the object region described by the expression. The tar-

get object region is represented by its center point (xt, yt)
and the object size (wt, ht). Additionally, to recover the

discretization error caused by the output stride, we predict a

local offset (δxt, δyt) for the center point t. To sum up, the

referring expression comprehension can be formulated as a

mapping function (xt, yt, wt, ht, δxt, δyt) = φ(Q, I).

As shown in Figure 2, our proposed RCCF is composed

of three modules, i.e., expression and image encoder, cor-

relation filtering as well as size and offset regression mod-

ules. The expression and image encoder module includes

the language feature extractor L(·) and visual feature ex-

tractor E(·). The extracted features are represented as LQ

and EI respectively. The expression feature LQ is then

mapped from the language domain to the visual domain by

the cross-modality mapping function M(·). The correlation

filtering module treats the mapping result M(LQ) as the fil-

ter (kernel) to convolve with the visual feature map EI and

produces a heatmap C ∈ R
H
d
×

W
d , where d is the output

stride. The peak value of C indicates the center point of the

object (x, y) depicted by the expression. Moreover, the size

and offset regression module predicts the object size (w, h)
and local offset of the center point (δx, δy). Next, we will

introduce the three modules in detail.

3.2. Expression and Image Encoder

The expression encoder L(·) takes the expression as in-

put, and produces a 512-D feature vector. We first embed

the expression into a 1024-D vector, followed by a fully

connected layer to transform the vector into 512-D. Then

we feed the transformed feature into a Bi-LSTM to get the

expression feature LQ.

The image encoder E(·) adopts the Deep Layer Aggre-

gation (DLA) [31] architecture with deformable convolu-

tion [4]. DLA is an image classification network with hi-

erarchical skip connections. Following Centernet [36], we

use the modified DLA network with 34 layers, which re-

place the skip connection with the deformable convolution.

Because a referring expression may consist of various kinds

of semantic information such as attribute, relationship and

spatial location. To well match the expression, we use three

level visual features. As shown in Figure 2, we extract

three level features [E1
I , E

2
I , E

3
I ] = E(I) from the DLA

net which are transformed into a unified size H
d
× W

d
from

H
8d × W

8d , H
4d × W

4d , and H
2d × W

2d respectively. The size of

[E1
I , E

2
I , E

3
I ] are all 64 × H

d
× W

d
. When computing the

correlation map Ĉ, all three level features are utilized. Dur-

ing regression process, only E1
I with the highest resolution

is used for computational efficiency.

3.3. Cross­modality Correlation Filtering

The aim of cross-modality correlation filtering is to

localize the center of the target box (x, y). It con-

tains three steps, including language-guided kernel gen-

eration, cross-modality correlation operation and correla-

tion maps fusion. Firstly, we utilize three different lin-

ear functions to generate three filter kernels [k1, k2, k3] =
[M1(LQ),M2(LQ),M3(LQ)] from the expression feature

LQ. The three fully connected layers M1(·), M2(·) and

M3(·) serve as the cross-modality mapping function to

project from the expression space to the visual space. Each

kernel is a 64-D feature vector which is then reshaped into

a 64× 1× 1 filter for subsequent operations. Secondly, we

perform correlation operation on the three levels of visual

features with their corresponding language-mapped kernels

[C1, C2, C3] = [k1 ∗E
1
I , k2 ∗E

2
I , k3 ∗E

3
I ], where ∗ denotes

convolution operation. Thirdly, the three correlation maps

are pixel-wisely averaged and fed into an activation func-

tion Ĉ = Sigmod(C
1+C2+C3

3 ). The size of Ĉ, C1, C2 and

C3 are all R
H
d
×

W
d . The location with highest score in Ĉ is

the center point of the target object.

We train the center point prediction network following

[15, 36]. For the ground-truth center point (x̃g, ỹg), we

compute a low-resolution equivalent (xg, yg) = ⌊ (x̃g,ỹg)
d

⌋
by considering the output stride d. We use the Gaussian ker-

nel Cxy = exp
(

− (x−xg)2+(y−yg)2

2σ2

t

)

to splat the ground-
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Figure 2. Overview of the proposed RCCF framework. a) Expression and Image Encoder: Bi-LSTM and DLA structure are used for

expression and visual feature extraction. b) Cross-modality Correlation Filtering: the extracted language feature is mapped into three

different filter kernels. Then we perform correlation filtering on three levels of image features with the corresponding kernel to generate

three correlation maps respectively. Finally, we fuse the three correlation maps by pixel-wise averaging. The center point corresponds

to the peak value of the fused heatmap. c) Size and Offset Regression: the 2-dim object size and the local offset for the center point are

regressed based on the last-level image feature only. The target object region is obtained by combining the estimated center point, the

object size and the local offset.

truth center point in a heatmap C ∈ [0, 1]
W
d
×

H
d , where Cxy

is the value of C at the spatial location (x, y) and σt is the

standard deviation corresponding to the object size. The

training objective is a penalty-reduced pixel-wise logistic

regression with focal loss [16]:

Lc = −
∑

xy



















(

1− Ĉxy

)α

log
(

Ĉxy

)

if Cxy = 1

(1− Cxy)
β
(

Ĉxy

)α

otherwise

log
(

1− Ĉxy

)

(1)

where α and β are hyper-parameters of the focal loss. We

empirically set α to 2, and β to 4 in our experiments.

3.4. Size and Offset Regression

As shown in Figure 2, the module contains two par-

allel branches. The size regression branch predicts the

Ŵ ∈ R
H
d
×

W
d and Ĥ ∈ R

H
d
×

W
d while the offset regres-

sion branch estimates ∆̂x ∈ R
H
d
×

W
d and ∆̂y ∈ R

H
d
×

W
d .

The regressed size and offset maps are pixel-wisely corre-

sponded to the estimated center points heatmap Ĉ.

Both branches take the visual feature E1
I as input. The

regression is conducted without using any expression fea-

tures. The reason is that the spatial structure information

is important for the regression, adding expression features

may destroy the rich spatial information in the visual fea-

tures. Both size and offset regression branches contain a

3 × 3 convolutional layer with ReLU followed by a 1 × 1
convolutional layer.

L1 loss function is used during training. The object size

loss Lsize and the local offset regression loss Loff are de-

fined as:

Lsize =
∣

∣

∣
Ŵxgyg − wg

∣

∣

∣
+
∣

∣

∣
Ĥxgyg − hg

∣

∣

∣

Loff =
∣

∣

∣
∆̂xxgyg − δxg

∣

∣

∣
+
∣

∣

∣
∆̂yxgyg − δyg

∣

∣

∣
,

(2)

where wg and hg are the ground truth width and height of

the target box and δxg = (x
g

d
− xg) and δyg = (

yg

d
− yg)

are the ground truth offset vector. Ŵxgyg is the value of Ŵ

at the spatial location (xg, yg) while Ĥxgyg , ∆̂xxgyg and

∆̂yxgyg are defined similarly. Note that the regression loss

acts only at the location of the center point (xg, yg), all other

locations are ignored.

3.5. Loss and Inference

The final loss is the weighted summation of three loss

terms:

Loss = Lc + λsizeLsize + λoffLoff (3)
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where we set λsize to 0.1 and λoff to 1. λsize is equivalent

to a normalized coefficient for the object size.

During inference, we select the point (xt, yt) with the

highest confidence score in the heatmap Ĉ as the target cen-

ter point. The target size and offset are obtained from the

corresponding position in the Ŵ , Ĥ , ∆̂x and ∆̂y as Ŵxt,yt
,

Ĥxt,yt
, ∆̂xxt,yt

and ∆̂yxt,yt
. The coordinates of the top-

left and bottom-right corner of the target box are obtained

by:

(xt + ∆̂xxt,yt
−

Ŵxt,yt

2
, yt + ∆̂yxt,yt

−
Ĥxt,yt

2
,

xt + ∆̂xxt,yt
+

Ŵxt,yt

2
, yt + ∆̂yxt,yt

+
Ĥxt,yt

2
).

(4)

4. Experiments

In this section, we first introduce the experimental setting

and implementation details, and then evaluate our method

on four public benchmarks comparing to the state-of-the-art

methods. After that, we analyze in detail the effectiveness

of each component in our framework through a set of abla-

tion experiments. Finally, we conduct an efficiency analysis

followed by the qualitative results analysis.

4.1. Experimental Setting

Dataset. The experiments are conducted and evaluated on

four common referring expression benchmarks, including

RefClef [11], RefCOCO [11], RefCOCO+ [11] and Ref-

COCOg [20]. RefClef is also known as Refitgame, and is a

subset of the ImageCLEF dataset. The other three datasets

are all built on MS COCO images. RefCOCO and Re-

fCOCO+ are collected in an interactive game, where the

referring expressions tend to be short phrases. Compar-

ing to RefCOCO, RefCOCO+ forbids using absolute loca-

tion words and takes more attention on appearance descrip-

tion. To produce longer expressions, RefCOCOg is col-

lected in a non-interactive setting. RefClef has 130, 363 ex-

pressions for 99, 296 objects in 19, 997 images. RefCOCO

has 142, 210 expressions for 50, 000 objects in 19, 994 im-

ages, RefCOCO+ has 141, 565 expressions for 49, 856 ob-

jects in 19, 992 images, and RefCOCOg has 104, 560 ex-

pressions for 54, 822 objects in 26, 711 images.

Both RefCOCO and RefCOCO+ are divided into four

subsets: ‘train’, ‘val’, ‘testA’ and ‘testB’. The focus of the

‘testA’ and ‘testB’ are different. An image contains mul-

tiple people in ‘testA’ and multiple objects in ‘testB’. For

RefCOCOg, we follow the split in [32]. For fair compari-

son, we used the split released by [35] for RefClef.

Evaluation Metric. Following the detection proposal set-

ting in the previous works, we use the Prec@0.5 to evaluate

our method, where a predicted region is correct if its inter-

section over union (IOU) with the ground-truth bounding

box is greater than 0.5.

Params

(Million)

FLOPs

(Billion)

Top-1 Error

(%)

VGG16 138 15.3 28.07

ResNet-101 44.5 7.6 21.75

DLA-34 18.4 3.5 25.32

Table 1. The parameters, computation and top-1 error on ImageNet

validation of the three backbone networks used in referring expres-

sion comprehension methods.

4.2. Implementation Details

We set hyper-parameters following Centernet [36]. Our

RCCF method is also robust to these hyper-parameters. All

experiments are conducted on the Titan Xp GPU and CUDA

9.0 with Intel Xeon CPU E5-2680v4@2.4G.

The resolution of the input image is 512 × 512, and we

set the output stride to 4. Thereby the output resolution is

128× 128. Our proposed model is trained with Adam [12].

We train on 8 GPUs with a batch-size of 128 for 80 epochs,

with a learning rate of 5e-4 which is decreased by 10 at

the 60 epochs, and again at 70 epochs. We use random shift

and random scaling as the data augmentation. There is none

augmentation during inference. The visual encoder are ini-

tialized with the weights pretrained on COCO’s training im-

ages excluding the val/test set of RefCOCO series datasets,

and the language encoder and the output heads are randomly

initialized. For ablation study, we also conduct experiments

on the visual encoder initialized with ImageNet [5] pretrain.

Method Precise@0.5 (%)

SCRC [10] 17.93

GroundR [25] 26.93

MCB [3] 26.54

CMN [9] 28.33

VC [35] 31.13

GGRE [19] 31.85

MNN [3] 32.21

CITE [23] 34.13

IGOP [30] 34.70

Ours 63.79

Table 2. Comparison with the state-of-the-arts on RefClef.

4.3. Comparison to the State­of­the­art

We compare RCCF to the state-of-the-art methods on

four public benchmarks. The comparison results on Ref-

Clef dataset is shown in Table 2 while the results on the

other three dataset are illustrated in Table 3. The previ-

ous methods use a 16-layer VGGNet [26] or a 101-layer

ResNet [7] as the image encoder, while our proposed RCCF

adopts DLA-34 [31] to encode images. The reason is that

the VGG16 and ResNet-101 are not suitable for the key-
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point estimation alike tasks according to [15, 6] .

For fair comparison, we compare the two backbone net-

works with DLA-34 from three aspects in Table 1. We can

see the DLA-34 has the minimum parameters and computa-

tions (FLOPs), and its performance in image classification

on ImageNet [5] is worse than ResNet-101.

Therefore, the performance gain of our RCCF comes

from the framework itself, instead of more parameters or

more complex backbone network. The baselines we com-

pared with mainly use Faster-Rcnn [24], pretrained in object

detection dataset, i.e., COCO and Visual Genome, to gener-

ate object proposals first, then matches the expression with

all object proposals.

RefClef. The results in RefClef are presented in Table 2.

Comparing to the state-of-the-art methods in RefClef, our

method increases the state-of-the-arts by a significant mar-

gin from 34.70% to 63.79%, almost double the precision.

RefCOCO, RefCOCO+ and RefCOCOg. Refer to Ta-

ble 3, our method outperforms existing methods in all evalu-

ation sets on RefCOCO and RefCOCO+, and achieves com-

parable performance with the state-of-the-art method on Re-

fCOCOg. Our result is a slightly inferior to MAttNet [32]

in the RefCOCOg dataset. The performance gain of MAt-

tNet partly comes from the additional supervision, such as

attributes and class labels of region proposals, while our

method only utilizes the language-image pair. Additionally,

MAttNet uses a more complex backbone ResNet-101 while

we only use DLA-34.

In conclusion, our method can achieve pretty-well per-

formance in all of the four datasets. In addition, the two-

stage methods achieve much higher precision in the three

RefCOCO series datasets than in RefClef. It is owing that

all three RefCOCO series datasets are subsets of COCO,

so the two-stage methods can train a very accurate detec-

tor based COCO object detection dataset, while RefClef

does not have a such large corresponding object detection

dataset. Therefore, traditional two-stage methods are heav-

ily dependent on the object detector performance and the

object detection dataset, while our novel RCCF framework

avoid the explicit object detection stage and tackles the re-

ferring expression problem straightly.

4.4. Ablation Studies

In this section, we perform ablation studies from five dif-

ferent aspects on RefCOCO dataset to analyse the rational-

ity and effectiveness of the proposed components in RCCF.

The results are shown in Table 4.

Fusion Strategy. In the first two rows, we report the re-

sults on two different fusion manners for the output corre-

lation maps. In the first manner, we fuse the correlation by

pixel-wisely taking the maximum value. To accomplish it,

we concatenate the three output correlation maps, and ob-

tain pixel-wise maximum across all channels. In the second

manner, we generate the output heatmap by concatenating

the three correlation maps, followed by a 1×1 convolutional

layer. The results can be seen in the first row and the second

row in Table 4. We conclude both the maximum fusion and

concatenation are not as good as the average fusion shown

in row 10.

Filter Kernel Setting Here we perform ablation studies

on the different variations of language filters (kernels). 3×3
Filter (row 3) is the method by expanding the language filter

channels by 9 times, and reshaping it into 3 × 3. Then, we

perform correlation filter using the 3×3 kernels. The result

is almost the same with the ‘Ours’ with the 1 × 1 kernel

(row 10). Considering the additional computational cost,

we choose to use 1× 1 kernel.

In row 4, we only generate one filter from the language

feature, and perform correlation filtering on the three level

visual features with the same kernel. In this case, the preci-

sion has dropped about 3 points. This shows that the diver-

sity of the language kernels is important to match the visual

features of different levels.

Single Level Visual Feature. In row 5, we perform the

correlation filtering only based on the last level of the visual

feature E1
I with single language kernel. The performance

has dropped a lot from ”Ours”, but only dropped a little

from the single language filter, multi-level visual features

setting in row 4. Therefore, it can be concluded that the

different language filters are sensitive to the different level

of visual features.

Language-guided Regression. To verify whether the fea-

ture filtered by the language filter is suitable for the regres-

sion, we feed the concatenated feature of the three correla-

tion maps into two convolutional layers in two regression

branches. As shown in row 6, the performance drops a lot,

about 6 points. Therefore, it is not a good choice to use

language-guided features to regress the object size and off-

set in our RCCF framework.

Expression & Image Encoder. The row 7 to row 9 of Ta-

ble 4 show our method with various encoders. In row 7, to

explore the effect of the visual encoder pretrain model on

the performance, we initialize the DLA-34 with ImageNet

pretrain instead of COCO object detection pretrain. The

results have dropped about 2 points, but also achieved com-

parable results to the state-of-the-art method. It proves that

our method can also work well without any prior knowl-

edge from object detection. In row 8, we use GloVe [22]

as the word embedding. There is little change in the perfor-

mance, so our method is robust to the two different language

embeddings. In row 9, we replace the visual encoder with
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RefCOCO RefCOCO+ RefCOCOg

Method Visual Encoder testA testB testA testB test Time (ms)

1 MMI [20] VGG16 64.90 54.51 54.03 42.81 - -

2 NegBag [21] VGG16 58.60 56.40 - - 49.50 -

3 CG [19] VGG16 67.94 55.18 57.05 43.33 - -

4 Attr [18] VGG16 72.08 57.29 57.97 46.20 - -

5 CMN [9] VGG16 71.03 65.77 54.32 47.76 - -

6 Speaker [33] VGG16 67.64 55.16 55.81 43.43 - -

7 Speaker+Listener+Reinforcer [34] VGG16 72.94 62.98 58.68 47.68 - 1235

8 Spearker+Listener+Reinforcer [34] VGG16 72.88 63.43 60.43 48.74 - 1332

9 VC[35] VGG16 73.33 67.44 58.40 53.18 - 383

10 ParallelAttn [37] VGG16 75.31 65.52 61.34 50.86 - -

11 LGRANs [27] VGG16 76.6 66.4 64.0 53.4 - -

12 DGA [29] VGG16 78.42 65.53 69.07 51.99 63.28 330

13 Spearker+Listener+Reinforcer [34] ResNet-101 73.71 64.96 60.74 48.80 59.63 -

14 Spearker+Listener+Reinforcer [34] ResNet-101 73.10 64.85 60.04 49.56 59.21 -

15 MAttNet [32] ResNet-101 80.43 69.28 70.26 56.00 67.01 314

16 Ours DLA-34 81.06 71.85 70.35 56.32 65.73 25

Table 3. Comparison with state-of-the-art approaches on RefCOCO, RefCOCO+ and RefCOCOg.

(g)“Baseball player holding

the bat”
(j)“ woman” (k)“ person behind fence on

the left white hair”

(h)“ front guy in white” (i)“ woman under

umbrella left”
(l)“blond lady standing behind

girl sitting with glasses”

(d)“ The corner of the gray table 

visible to the right of the hand”

(b)“man's hand with ring

on it”
(e)“A steel chair near a lady

and back of the man”

(f)“space between two

train cars”
(c)“ table behind pizza

box”

(a)“the middle piece of the

chicken rollup”

Figure 3. Visualization results on RefCOCO series dataset. The first row (a-f) shows the comparisons of our approach with the state-of-

the-art method MAttNet. The second row shows some representative failure cases of our method. The red bounding-box represents the

prediction of our method, the blue bounding-box represents the prediction of MAttNet, and the green bounding-box is the corresponding

ground-truth.

a deeper network Hourglass-104 [15] in a single level set-

ting. Comparing to the row 5, this setting has just improved

a little, but this setting is much slower than our basic set-

ting with DLA-34 during inference and training. More than

100 hours are needed for training and the inference speed is

much lower.

4.5. Efficiency Analysis

Inference. As can be seen in Figure 1, our model runs

at 25ms per image on a single Titan Xp GPU and is the

only real-time method in referring expression comprehen-

sion area. In comparison, our method is 12 times faster

than the state-of-the-art two-stage method MAttNet which

needs to cost 314ms for an image. For more detail compar-

ison, the inference time per image of the first stage and the

second stage of MAttNet are 262ms and 52ms respectively.

The cost of either stage is longer than the total inference

time of our method. More comparisons of the timing and

precision can be found in Figure 1.

Training. Our method is also fast to train. Training

with DLA-34 on RefCOCO takes 35 hours in our syn-

chronized 8-GPU implementation (1.78s per 128 image-
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RefCOCO

Method testA testB Time(ms)

1 Maximum Fusion 77.16 69.15 25

2 Concatenation 79.85 69.83 26

3 3x3 Filter 80.83 72.01 26

4 Single Language Filter 77.66 68.87 24

5 Single Level Visual Feature 77.14 68.50 23

6 Language-guided Regression 75.13 66.16 24

7 ImageNet Pretrained 78.93 66.73 25

8 Glove Expression Encoder 81.05 71.17 25

9 Hourglass Image Encoder 78.12 69.38 80

10 Ours 81.06 71.85 25

Table 4. Ablation experiments on RefCOCO dataset.

language pairs mini-batch).

4.6. Qualitative Results Analyses

Correlation Map. Figure 4 shows the correlation map of

the object center. We can see that given different expres-

sions for the same image, the correlation map responses to

different locations. Otherwise, it can be seen that the re-

sponse is very high in areas near the center of object de-

scribed by the expression. Moreover, there are very small

responses in other locations. It shows that our model is ca-

pable to well match the expression and visual features.

Comparison to the State-of-the-art. In the first row of

Figure 3, we compare our method with the state-of-the-art

method MAttNet. Our method can accurately localize the

target objects under the guidance of the language, even if the

objects are hard to be detected for common object detectors.

For example, although the described objects ”piece” (Fig-

ure 3(a)) and ”space” (Figure 3(f)) are very abstract and not

included in the COCO categories, our method can still find

them through the expression. It proves that our method can

well match expression and visual features. While MAttNet

is dependent on the object detector, MAttNet will fail if the

object category is beyond the scope of the detector category

set.

Failure Case Analysis. The second row of Figure 3 il-

lustrates some possible failure cases. As shown in the Fig-

ure 3(g), we find the right object, but fail to accurately lo-

cate the bounding-box. Another example is shown in Fig-

ure 3(h), the target object is occluded heavily, and the model

cannot capture enough appearance information. In addi-

tion, the ground-truth error may occur. For example in Fig-

ure 3(j), there are more than one target objects described

by the expression. Some failure cases may be caused by

that target object lies in the background and it is difficult

to find the appearance feature described by the expression.

In addition, when expression is very complex and long, our

model may fail to understand it well, such as the case in

Figure 3(l). We leave how to solve these failure cases as

interesting future works.

“right bottom partial black”“guy with red pants standing”

“guy all the way right in front” “guy in the center most to the front”

“the green cup on the top right

has the word after on it”
“tall bottle with yellow tag”

Figure 4. Visualization of visual grounding results and correlation

map. On the left image, the red bounding-box represents the pre-

diction of our method while the green bounding-box represents the

ground-truth. The right image shows the corresponding predicted

correlation map for the center point of the object (pointed by the

blue arrow).

5. Conclusion and Future Works

In this paper, we propose a real-time and high-

performance framework for referring expression compre-

hension. Completely different from the previous two-stage

methods, our proposed RCCF directly localizes the object

given an expression by predicting the object center through

computing a correlation map between the referent and the

image. The RCCF is able to achieve state-of-the-art per-

formance in four referring expression datasets at real-time

speed. For future work, on the one hand, we plan to explore

how to capture more context information from expression

and image, and thus understand the expression better. On

the other hand, the referring expression is difficult to an-

notate, so we want to explore how to utilize other easy an-

notated types of datasets to train our method, like object

detection, image caption.
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