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Abstract

Existing automatic 3D image segmentation methods usu-

ally fail to meet the clinic use. Many studies have ex-

plored an interactive strategy to improve the image segmen-

tation performance by iteratively incorporating user hints.

However, the dynamic process for successive interactions

is largely ignored. We here propose to model the dynamic

process of iterative interactive image segmentation as a

Markov decision process (MDP) and solve it with reinforce-

ment learning (RL). Unfortunately, it is intractable to use

single-agent RL for voxel-wise prediction due to the large

exploration space. To reduce the exploration space to a

tractable size, we treat each voxel as an agent with a shared

voxel-level behavior strategy so that it can be solved with

multi-agent reinforcement learning. An additional advan-

tage of this multi-agent model is to capture the dependency

among voxels for segmentation task. Meanwhile, to enrich

the information of previous segmentations, we reserve the

prediction uncertainty in the state space of MDP and derive

an adjustment action space leading to a more precise and

finer segmentation. In addition, to improve the efficiency of

exploration, we design a relative cross-entropy gain-based

reward to update the policy in a constrained direction. Ex-

perimental results on various medical datasets have shown

that our method significantly outperforms existing state-of-

the-art methods, with the advantage of fewer interactions

and a faster convergence.

1. Introduction

Medical image segmentation has been widely recognized

as an essential procedure for subsequent medical image pro-

cesses such as structural and functional analysis, diagnosis

and treatment. The traditional dense manual annotation is

extremely inefficient for 3D medical images and its perfor-

mance highly depends on the physician’s experience. With

the development of convolutional neural networks (CNNs),

automatic segmentation has greatly improved the efficiency

∗Equal contribution

of medical image process [13, 16, 23]. However, the accu-

racy and robustness for the current automatic methods still

need to be improved for practical clinic use.

To get a better segmentation, interactive image segmen-

tation [5, 7, 20] is introduced to integrate user hints (mostly

in the form of points, scribbles and bounding boxes). This

kind of interactive methods has become a popular research

direction because it improves the performance of segmen-

tation by adding new labeling constraints to the prediction

model. Normally, a one-time interaction might not ensure

the segmentation accuracy. Therefore, many existing meth-

ods are compatible with the iteratively-refined mode: the

operator provides new hints according to the current result

to refine the segmentation until it is satisfactory. Moreover,

to reduce the number of interactions, the existing works

introduce the idea of replacing the initial hints with an

automatically-obtained coarse segmentation [5, 20]. Note

that in this paper, we refer to such methods incorporating a

coarse segmentation in the initial input as update methods

and we will focus on this kind of methods in this paper.

Concerning the current update methods, there exist two

main issues: 1) They usually ignore the dynamic process

for successive interactions. Although the segmentation can

be iteratively refined, the model always treat the segmen-

tation of each refinement step in isolation, with an absence

of the previous information. 2) Another problem is the loss

of prediction uncertainty when using the binary segmenta-

tion result, instead of a segmentation probability for each

voxel, as part of the model input. The rounding from dense

segmentation probability to binary segmentation prediction

may cause quantization error and accuracy loss.

To tackle the above two issues, this paper proposes

a novel interactive medical image segmentation update

method called Iteratively-Refined interactive 3D medical

image segmentation via Multi-agent Reinforcement Learn-

ing (IteR-MRL). We formulate the dynamic process of it-

erative interactive image segmentation as an MDP. Specif-

ically, at each refinement step, the model needs to decide

the labels of all voxels, according to the previous segmenta-
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tions and supervision information from the interaction. Af-

ter that, the model will get the feedback according to pre-

defined measurement of segmentation, and the above pro-

cess will be repeated until the maximum number of inter-

actions is reached. We then adopt the RL methods to solve

the MDP above, that is, to find the segmentation strategy

to maximize the accumulated rewards received at each re-

finement step. However, it will be intractable to use single-

agent RL for voxel-wise prediction due to the large explo-

ration space. In addition, considering that the voxels in the

segmentation task are interdependent, they can achieve bet-

ter segmentation by a more comprehensive grasp of the sur-

rounding information. To reduce the exploration space to

a tractable size and explicitly model the dependencies be-

tween voxels, we introduce the multi-agent reinforcement

learning (MARL) method. We treat each voxel as an agent

which decides its own label. All agents share the same pol-

icy and collaborate with each other through convolutional

kernels. Meanwhile, instead of considering the difference

between the current prediction and the ground truth, we de-

sign a relative cross-entropy gain-based reward to prompt

agents to explore more efficiently. Specifically, the algo-

rithm gives a positive reward for an improvement and vice

versa at each refinement step, so that the new prediction can

be forced to outperform the previous one. Compared with

supervised methods, such RL-based methods have the ad-

vantage of a faster refinement convergence. The problem

of prediction uncertainty loss in existing works caused by

segmentation map binarization can be settled by adopting

segmentation probability rather than binary segmentation as

part of the RL state. This augmented state space also de-

rives an adjustment action space leading to a more precise

and finer segmentation. Then the segmentation refinement

procedure can be regarded as a series of actions to adjust the

segmentation probability with a certain level. In this way,

the prediction uncertainty is reserved and the algorithm ex-

plores in a finer granularity and a denser space.

The experimental results indicate that the proposed IteR-

MRL is robust to different initial segmentations and various

medical datasets. Given the same initial segmentations, our

proposed interactive algorithm surpasses the state-of-the-art

update methods on different 3D medical image segmenta-

tion datasets including the images of brain tumor, heart and

prostate. We summarize our contributions as follows:

• We formulate the interactive image segmentation task

as an MDP and propose a novel voxel-wise interactive

segmentation framework based on MARL for 3D med-

ical images, enabling more effective utilization of user

interaction.

• We propose to reserve the prediction uncertainty via

the segmentation probability, which can enrich the

information of previous segmentations and lead to a

more precise and finer adjustment.

• Extensive experiments show that the segmentation is

significantly improved over the iteration sequence with

only a few interactions and a rapid convergence, by

considering the relative gain between two successive

steps.

2. Related work

Interactive image segmentation has been widely applied

to both natural [4, 22] and medical images [15, 19, 20]. “In-

teractive” refers that the operator provides some hints to the

segmentation model to achieve a better result. This section

will briefly review the existing works.

2.1. Graph­based interactive image segmentation

Traditional methods make use of low-level features such

as the histogram and similarities between pixels. GraphCut

[4] and GrabCut [17] incorporate user hints into Max-Flow

Min-Cut algorithm[3]. DenseCRF [10] considers pixel re-

lations from neighbors to all pixel pairs. [8] proposes to use

geodesic distance to calculate the distance between pixels,

which is sensitive to contrast and suitable for medical im-

ages. [21] introduces a segmentation method for fetal MRI

by learning from user annotations in only one slice.

2.2. CNN­based interactive image segmentation

Recently, using convolutional neural networks (CNNs)

has become popular for computer vision problems. Many

CNN-based methods have developed for interactive image

segmentation tasks. [22] is the first one to use CNN in in-

teractive image segmentation. [15] replaces the Gaussian

mixture model in GrabCut with a CNN for MRI segmenta-

tion. Another work, 3D U-Net [7] learns to produce a com-

plete segmentation from sparsely-annotated slices of one

3D medical image. In order to save the budget of the initial

user hints, the following methods, known as update meth-

ods, choose to take an automatically-produced segmenta-

tion as part of the model initial input. [20] proposes a two-

stage method called DeepIGeoS to refine the segmentation

using the initial coarse segmentation in input. However,

the refined segmentations after the first step cannot be ef-

ficiently used in this model. [5] extends DeepIGeoS to an

iterative version: Inter-CNN, which iteratively refines the

previous refined binary prediction in both training and test-

ing stages. One of their problems is the ignorance of the

dynamic process for successive interactions. Another prob-

lem is the accuracy loss caused by the quantization from

probability to binary segmentation.

2.3. RL­based interactive image segmentation

There are also some methods using RL to explicitly

model the dynamic process in interactive image segmen-

tation tasks. SeedNet [18] uses an RL agent to simulate
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Figure 1. The flow chart of iteratively-refined interactive image

segmentation approach. Given a coarse segmentation, the method

iteratively refines it with user interaction until the fine segmenta-

tion is good enough.

the user behavior which gives the hints to the segmenta-

tion model. Since our method uses RL as the segmenta-

tion model to predict the segmentation, our method is or-

thogonal with it. Polygon-RNN [6] identifies the object

segmentation as a polygon. Their model produces ver-

tices sequentially until the polygon is closed. The user can

contribute by adjusting the vertices. Based on this work,

Polygon-RNN++ [1] develops a faster and more accurate al-

gorithm by combining RL with graph neural network. How-

ever, these polygon-based methods cannot be applied to our

tasks because of the incompatibility of the 3D images with

polygon segmentation, and the extremely large action space

even with the meshing strategy.

3. Methodology

In this section, we formulate the interactive image seg-

mentation as an MDP and propose a novel MARL-based

interactive medical image segmentation method to exploit

the interaction information more efficiently.

3.1. Overview

In our work, we propose an iteratively-refined frame-

work based on update methods, as shown in Fig. 1, which

iteratively refines a coarse initial segmentation by integrat-

ing user interactions in order to get a more precise segmen-

tation result. The initial segmentation can be obtained from

any accessible segmentation methods.

As discussed in Sections 1 and 2, the main issue of the

existing supervised learning-based algorithms is that they

split the whole image refinement process into isolated steps.

To address this problem, we adopt RL to explicitly capture

the relation between successive predictions by designing the

reward as the relative improvement. As the large state space

and action space of voxel-wise prediction and the necessity

of the collaborations between interdependent voxels, we use

the idea of MARL: each voxel in a 3D image is regarded

as an agent. The work PixelRL [9] also sees each pixel as

an agent, but it focuses on general image processing tasks

without human interaction. In contrast, the interactive im-

age segmentation task is more suitable to adopt RL due to its

intrinct sequentiality. Unlike dealing with non-interactive

image processing tasks, we aim to better consider and ef-

fectively utilize external supervision signal from the user

during the interaction.

Fig. 2 introduces the framework of our proposed method

IteR-MRL. By utilizing the original 3D image, the previous

segmentation probability and the interactive information as

the state, the actor network in the middle gives an update to

the segmentation probability and produces a new one. Note

that the previous segmentation probability comes from the

previous update iteration and the interactive information is

the hint map transformed from user hints which will be in-

troduced in Subsection 3.2. The actor network outputs ac-

tions of agents which adjust previous segmentation proba-

bility and generate current segmentation probability. After-

wards, there are two subsequent operations for the current

segmentation probability. On the one side, it gives back

a reward signal to the network, by computing the relative

gain between previous and current cross entropy based on

ground truth and successive segmentation probabilities, for

parameter updating. On the other side, it is presented to the

user and the user provides feedback, i.e. clicks on object or

background for wrongly predicted areas. The click is repre-

sented as a red point on Fig. 2, which is enlarged for visu-

alization. Generally, with a coarse segmentation probability

produced by the initial method (any segmentation method)

as its initial segmentation, IteR-MRL iteratively refines the

segmentation probability until the segmentation is satisfac-

tory. In addition, the actor network employed here is de-

signed for MARL and it regards voxels on the 3D image as

agents who collaborates with each other.

It should be noticed that instead of quantizing the seg-

mentation probability to binary segmentation prediction

like previous methods [5, 20], we directly use the segmen-

tation probability as the previous segmentation information

and feed it into the model. The segmentation probability is

introduced to enrich the previous segmentation information

and achieve more accurate results. With the segmentation

probability, we can derive an adjustment action space leads

to a more precise and finer segmentation comparing with the

binary segmentation quantization. Specifically, we can ad-

just the segmentation probability at each step and choose the

best adjustment magnitude from a set of various scales. The

adjustment action for one agent in MARL model is based

on both its own and neighbors’ states, where neighbors are

considered as near voxels.

3.2. Multi­agent RL framework for interactive im­
age segmentation

In this subsection, we describe the MARL setting for in-

teractive image segmentation. Let x = (x1, · · · , xN ) be

one arbitrary image in the dataset and xi is the ith voxel

of x. We treat each xi as an agent whose policy is de-

fined as πi(a
(t)
i |s

(t)
i ). s

(t)
i and a

(t)
i are the state (image,

previous segmentation probability, user interaction) and ac-

tion (adjustment to previous probability) for xi at the step t;

a
(t)
i ∈ A and A is the action set; s

(t)
i ∈ S and S is the state

set. By using convolutional kernels, one agent can access to
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Figure 2. Overview of Iteratively-Refined interactive 3D medical image segmentation algorithm based on MARL (IteR-MRL). At each

refinement step, the state containing image, previous segmentation probability and the hint map is feeded into the actor network, then the

actor network produces current segmentation probability derived by its output actions. Next, the user gives back hint clicks (the red point)

based on error regions and new hint map is generated by hint transformation. At every step, the reward is determined by the relative gain

between previous and current segmentation cross entropy. Voxels are regarded as agents who collaborate with each other in our method.

its neighbors’ states as well.

From the point of view of the whole image, the previous

segmentation is refined to a new one. By taking the global

action a
(t) = (a

(t)
1 , · · · , a

(t)
N ), the image agent transfers to

the global state s
(t+1) = (s

(t+1)
1 , · · · , s

(t+1)
N ) and gets the

global reward r
(t) = (r

(t)
1 , · · · , r

(t)
N ).

We now define the state, action and reward of a single

agent xi in IteR-MRL.

State. For our problem formulation, the state for voxel

agent xi at the step t is the concatenation of its voxel

value bi, its previous segmentation probability p
(t)
i to be

object label and its two values on hint maps h
(t)
+,i and h

(t)
−,i:

s
(t)
i = [bi, p

(t)
i , h

(t)
+,i, h

(t)
−,i] with p

(t)
i ∈ [0, 1]. For the ini-

tial state s
(0)
i , the initial coarse segmentation probability de-

notes initial probability p
(0)
i .

Now we discuss the generation of a whole hint map.

Concerning the user interaction at step t, the hint map h
(t)

is transformed from the user’s hints which are in the form of

click points. By giving a hint point through a single click,

the user indicates that the area around it is one error region.

Intuitively, the closer one point is to the hint point, the more

likely its label is mispredicted. Hence, the hint map is in-

troduced to show the radiation area of the hint and spread

the local interaction to the whole image. The number and

positions of hints are chosen according to the user interac-

tion rule. Actually, there are two channels of hint map both

with the same size as the image: the object hint map h
(t)
+

and the background hint map h
(t)
− , respectively generated

from the object hint set hs
(t)
+ (hints on object) and the back-

ground hint set hs
(t)
− (hints on background). Hence, the

user hint map is the concatenation of these two hint maps:

h
(t) = [h

(t)
+ ,h

(t)
− ]. For one hint map h

(t)
ℓ , ℓ ∈ {+,−},

we define that h
(t)
ℓ = (h

(t)
ℓ,1, · · · , h

(t)
ℓ,N ). The element h

(t)
ℓ,i

on the hint map h
(t)
ℓ is calculated by the minimum distance

between xi and the corresponding hint set hs
(t)
ℓ :

h
(t)
ℓ,i = min

∀xj∈hs
(t)
ℓ

M(xi, xj), (1)

where M is a function to measure the distance between

two voxels. Previous related works adopt several distance-

measuring methods including geodesic [8], Gaussian and

Euclidean distance. In the paper, we use the geodesic

distance-based hint map to measure distances. The distance

between two voxels is the minimum value of the sum of

color gradients across all the paths connecting these two

voxels. (See the hint map in Fig. 2.)

Action. While previous works [5, 20] output directly the

segmentation probability from the network, we here pre-

dict the adjustment amount based on the previous probabil-

ity as actions to make the result more stable without abrupt

changes. The action a
(t)
i ∈ A for xi at time step t is to ad-

just the previous segmentation probability p
(t)
i by a certain

amount a
(t)
i . Hence, the segmentation probability p

(t+1)
i af-
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ter taking the action a
(t)
i is:

p
(t+1)
i = C1

0(p
(t)
i + a

(t)
i ), (2)

where Cb
a(x) = min(max(x, a), b) clips the value of x from

a to b. p
(t+1)
i is constrained to [0, 1] for it represents a prob-

ability. The action set A = {Ak} (k = 1, 2, · · · ,K) con-

tains K actions, allowing the agent to adjust the probability

to various degrees under different situations. For example,

it is reasonable to make a larger adjustment to a voxel when

it is closer to a hint click. Additionally, one voxel tends to

take one certain adjustment action when most of its neigh-

bor voxels choose this action.

Reward. To improve the efficiency of exploration, we de-

sign a relative cross-entropy gain-based reward to update

the model in a constrained direction. Specifically, the re-

ward is designed as the relative improvement from the pre-

vious segmentation to the current one, which is the de-

creased amount of the cross entropy Xi between the ground

truth yi and the segmentation probability pi:

r
(t)
i = X

(t−1)
i −X

(t)
i , (3)

X
(t)
i = −yi log(p

(t)
i )− (1− yi) log(1− p

(t)
i ). (4)

With (3), the agent gets a positive reward in the case its

probability moves closer towards the true voxel label and

vice versa. Instead of a distant goal, the relative gain pro-

vides the agent with a baseline to compare and surpass.

In general, the accumulated reward of one interactive se-

quence is

Ri =
∑T

t=1 γ
t−1r

(t)
i , (5)

where T is the total step number and the discount factor γ
takes a value in (0, 1].

3.3. Network and training

For fair comparison, the interactive network architecture

of [20] named R-net is adopted as the backbone to our algo-

rithm and all other baseline methods. We adapt the network

to the one in Fig. 3 in order to fit the RL training algorithm:

asynchronous advantage actor-critic (A3C) [14]. The net-

work firstly uses three 3D convolutional blocks to extract

low-level features. Then, the network is divided into pol-

icy head and value head, both have three 3D convolutional

blocks to extract specific high-level features. The function-

ality of the policy head is to predict the distribution of action

probabilities under a known state. In our case, given the im-

age, hint maps and previous segmentation probability, the

policy head predicts how likely it is to take each scale of

adjustment to the previous segmentation probability. The

functionality of the value head is to estimate the value of

the current state. Specifically, the value head evaluates how
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Figure 3. The network architecture for IteR-MRL. The policy and

value heads share the low-level features and extract their own high-

level features.

good the current combination of the image, hint maps and

the previous segmentation probability is.

We respectively use θp and θv to denote the parameters

of the policy and value heads. The input of the network is

the state at time step t: s
(t). The value head outputs the

estimated value of the current state V (s(t)). The gradient

for θv is computed by:

dθv = ∇θvA(s(t),a(t))2, (6)

A(s(t),a(t)) =
∑T

k=t γ
k−tr(k) − V (s(t)), (7)

where r(k) is the mean reward of all voxels at time step

k. A(s(t),a(t)) is the advantage at time step t of taking

a
(t) in condition of state s

(t), which indicates the actual

accumulated reward without being affected by the state and

reduces the variance of gradient. The policy head outputs

the action policy π(a(t)|s(t)), which is the probabilities of

taking each action a
(t). The gradient for θp is computed by:

dθp = −∇θpπ(a
(t)|s(t))A(a(t), s(t)). (8)

The two heads are jointly trained in an end-to-end manner.

4. Experiments

4.1. Datasets

In our paper, we do experiments on three 3D MRI

datasets. Each image is cropped based on its non-zero re-

gion before used. For each dataset, we access all the image

cases having ground truth and split them into several sets.

The initial method is defined as the segmentation method of

producing the initial coarse segmentations. If we use the im-

ages trained on initial method again in update method, the

coarse segmentation probability (initial segmentation prob-

ability for update method) will be too perfect to be refined

in update method because these images have already seen

the ground truth in initial method. Therefore, we propose

a new way for the dataset splitting: the dataset is split into

three parts, two training sets with an equal amount of im-

ages and one testing set. In detail, we randomly selected

Ntrain cases as the training set for initial method form-

ing Dtrain1 and randomly selected another Ntrain cases in
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the remaining dataset as the training set for update method

forming Dtrain2. The remaining Ntest cases are used as

testing forming Dtest. Note that the initial segmentation

probabilities data for Dtrain2 in update method are obtained

by testing Dtrain2 with initial method. The three datasets

are as follows:

BraTS2015. Brain Tumor Segmentation Challenge 2015

(BraTS) [12] provides a dataset for brain tumor segmenta-

tion in magnetic resonance images. We use Fluid-attenuated

Inversion Recovery (FLAIR) images which contain 274

cases and only segment the whole brain tumor. We set

Ntrain as 117 and Ntest as 40.

MM-WHS. Multi-Modality Whole Heart Segmentation

(MM-WHS) [24] contains multi-modality whole heart im-

ages covering the whole heart substructures. We use the 20

MRI cases and segment the left atrium blood cavity. We set

Ntrain as 8 and Ntest as 4.

NCI-ISBI2013. NCI-ISBI 2013 Challenge [2] aims at au-

tomated segment prostate structures. It provides 80 prostate

gland MRI data. We set Ntrain as 32 and Ntest as 16.

4.2. Settings

Evaluation metrics. Normally, medical image segmenta-

tion is evaluated by the dice score:

Dice(Sp, Sg) =
2|Sp ∩ Sg|

|Sp|+ |Sg|
, (9)

where Sp, Sg represent the prediction and the ground truth

respectively. | · | is the number of voxels in the area.

As we study the interactive image segmentation task, we

consider not only the dice score but also the user click num-

ber. Our goal is to get a high dice score with less user clicks.
User simulation. Since it would require large human re-

sources to conduct the experiments with real physicians, we

simulate user clicks like other works. While previous works

usually give many clicks (≈ 40) for training but a few clicks

for testing, our interaction policies for training and testing

are consistent. Hence, the training setting is similar to that

of testing in order to reduce the bias between training and

testing. In one training/testing sequence of an image, we

give Nclick clicks each step. Specifically, the clicks are se-

lected as the centers of the largest Nclick error regions. In

addition, a small disturbance ǫnoise is added to each click

point to force the model to be robust and also make it imi-

tate the behavior of a real user.

Implementation details. For the preprocessing, all the

images are normalized by the mean and the standard vari-

ation of the whole dataset D = [Dtrain1, Dtrain2, Dtest].
Each image is cropped by the bounding box based on its

non-zero region with an extension of [0, 10] voxels and then

resized to the size of 55 × 55 × 30. Data augmentation in-

volves flipping in three directions and random rotation with

angle range [−π/8, π/8] in three directions.

Update

Initial
BG V-Net HighRes3DNet DeepIGeoS(P-Net)

Initial 0 77.15 75.39 82.16

Min-cut 27.46 80.69 77.05 84.08

DeepIGeoS(R-Net) 82.97 85.80 85.72 84.83

InterCNN 85.17 85.56 87.29 86.54

IteR-MRL 86.14 88.53 87.43 87.50

Table 1. Combination with different initial methods

Step 0 1 2 3 4 5

Clicks 0 5 10 15 20 25

Min-Cut
77.15 79.52 79.97 80.22 80.46 80.69

(+2.37) (+0.45) (+0.25) (+0.24) (+0.23)

DeepIGeoS(R-Net)
77.15 85.62 85.74 85.73 85.75 85.80

(+8.47) (+0.12) (-0.01) (+0.02) (+0.05)

InterCNN
77.15 83.19 84.39 85.16 85.52 85.56

(+6.04) (+1.20) (+0.77) (+0.36) (+0.04)

IteR-MRL
77.15 84.35 86.78 87.61 88.18 88.53

(+7.20) (+2.43) (+0.83) (+0.57) (+0.35)

Table 2. Performance improvement in one interactive sequence

Figure 4. Performance improvement shown by curves

As the proposed IteR-MRL can be easily adapted to the

interaction-free mode, we firstly train a pure segmentation

model IteR-MRL0 as the pretrained model for IteR-MRL.

IteR-MRL0 is trained for 1000 epochs and IteR-MRL fine-

tunes on IteR-MRL0 for 500 epochs. The learning rate

adopts the step decay schedule with an initial learning rate

10−4. Parameter setting is as follows: T = 5, Nclick = 5,

γ = 0.95, ǫnoise = [−3, 3]3. We use Adam algorithm for

optimization with minibatch size 1.

The model training time with one Nvidia Titan X GPU

varies from several hours to two days for different datasets.

The average inference time for each update step is 894ms,

which includes 424ms of the interaction simulation time.

4.3. Results

For fair comparison, we apply denseCRF to all the mod-

els compatible with CRF as the final refinement processing.

Comparisons with state-of-the-art methods. We com-

pare IteR-MRL with three state-of-the-art methods: Min-

Cut [10], DeepIGeoS(R-Net) [20] and InterCNN [5].

In Table 1, the update methods receive the coarse seg-

mentations from four different initial segmentation meth-

ods: BG (set all voxel labels to background), V-Net [13],

HighRes3DNet [11] and DeepIGeoS(P-Net) [20]. The ex-

perimental results show that IteR-MRL achieves better per-

formances than baselines under each initial method, which
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truth

DeepIGeoS

(R-Net)
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Figure 5. Visualization of different update methods

Dataset BRATS2015 MM-WHS NCI-ICBI2013

Initial 77.15 79.60 79.34

Min-Cut 80.69 83.21 79.92

DeepIGeoS(R-Net) 85.80 85.21 79.97

InterCNN 85.56 84.76 82.14

IteR-MRL 88.53 86.92 82.71

Table 3. Performances on different datasets

shows the robustness and generalization of our method.

To validate whether considering the relative gain be-

tween successive predictions can result in rapid improve-

ments, we also analyze the performance improvement dur-

ing one refinement sequence in Table 2. We use V-Net here

as the initial method (77.15). For the first refinement step,

all the update methods have significant improvements in

performance (from +2.37 to +8.47). Starting from the sec-

ond step, most performances have encountered stagnation

(very little improvement) though with newly-added user

hints. DeepIGeoS(R-Net) even has a degradation (−0.01)

at the third step. While the other methods improve slowly

at each refinement step, IteR-MRL has a relative high im-

provement, which proves the effectiveness of considering

the relation gain between successive predictions. The large

improvement at each refinement step also leads to a good

result (88.53) in the end. In addition, we notice that IteR-

MRL’s performance at the second step has already sur-

passed the others’ final performances, achieving a reduction

of user click number. Fig. 4 provides a global view of per-

formance improvement in one interactive sequence.

Fig. 5 gives the visualization of different update methods

using V-Net as the initial method. Specifically, we visual-

ize the refined segmentations after five refinement steps. It

can be observed that while the other methods tend to pro-

duce a rather smooth boundary, IteR-MRL performs better

in capturing edge details.

The above results are obtained from the experiments

with the dataset BraTS2015. More experiments are also

conducted on the other two datasets MM-WHS and NCI-

ISBI2013 in Table 3 to verify the robustness, with the initial

method V-Net. The results prove that IteR-MRL has stable

performances on various types of datasets.

Actions States
IteR-MRL

±0.1 ±0.2 ±0.4 ±1.0 Probability Binary

X X 84.03

X X 84.29

X X 86.51

X X 87.20

X X X 87.88

X X X X 88.53

X X X X X 88.02

Table 4. Combination of different action and state settings

Step 0 1 2 3 4 5

Clicks 0 5 10 15 20 25

Absolute reward
77.15 85.55 86.53 87.59 87.75 87.65

(+8.40) (+0.98) (+1.06) (+0.16) (-0.10)

Relative reward
77.15 84.35 86.78 87.61 88.18 88.53

(+7.20) (+2.43) (+0.83) (+0.57) (+0.35)

Table 5. Influence of reward function on performance

Ablation study. We analyze the effect of different action

sets to the algorithm performance in Table 4. Specially,

when the action set only contains ±1.0 (line 1), the seg-

mentation probability becomes binary, because the segmen-

tation probability can only take the values 0 and 1. The

rest action sets are all designed for the states containing

segmentation probability. The influence of the action value

and the action number are both analyzed. For the influence

of value, we fix the number of actions and let action val-

ues vary: we try ±1.0, ±0.4, ±0.2 and ±0.1 (line 1, 2, 3,

4). Comparing the states adopting segmentation probabil-

ity to those of binary prediction, it can be found that the

latter has a poor performance caused by the loss of predic-

tion uncertainty. In addition, the results show that small

action values have better performances than the larger ones.

The reason is that a small action value allows IteR-MRL to

make more detailed adjustments, but a large one may over-

behave and never reach some specific states. For the influ-

ence of the action number, we gradually add new actions

to the action set (line 4, 5, 6, 7). It can be observed that

abundant actions lead to a better performance by provid-

ing IteR-MRL with various degrees of adjustment. In the

case with a high confidence, IteR-MRL tends to take a large

adjustment, which speeds up the refinement convergence.

However, the addition of ±1.0 relatively damages the per-

formance because an adjustment of ±1.0 is too extreme for

most of the cases. In general, we learn that the combination

of small and large actions except for ±1.0 works best and

finally choose A = {±0.1,±0.2,±0.4} as the ideal action

set in our model. Note that we have also thought about a

continuous action space, but the experimental result shows

that it is difficult to train and converge in a continuous ac-

tion space. In addition, since the final prediction presented

to the user is 0 or 1 for each voxel, we are not concerned

about the inability to reach the optimal final state with a

discrete action space.

In Table 5, we compare different designs for reward
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Slicei-1
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(a) (b)

Figure 6. The visualization for the relation between predictions and hints. (a) The visualization of one click and its influence on prediction

and hint maps. The slice with click and its two neighbor slices are shown. The user click is represented as red points. One row of five

figures form a group, which corresponds to one slice [Image, Previous prediction, Object hint map, Current prediction, Ground truth]. (b)

The visualization of prediction and hint map for each step. The figures in the first column are [Image, Ground truth, Initial prediction].

Afterwards, each column forms one step, which corresponds to [Object hint map, Background hint map, Prediction].

Step 0 1 2 3 4 5

Clicks 0 5 10 15 20 25

Good Interaction
77.15 84.35 86.78 87.61 88.18 88.53

(+7.20) (+2.43) (+0.83) (+0.57) (+0.35)

W/O Interaction
77.15 78.60 79.53 80.15 80.56 80.78

(+1.45) (+0.93) (+0.62) (+0.41) (+0.22)

Bad Interaction
77.15 76.86 75.47 74.84 74.29 72.76

(-0.29) (-1.39) (-0.63) (-0.55) (-1.53)

Table 6. Contribution of interactions to performance

functions. An alternative to the relative reward mentioned

before is the absolute reward, i.e. the difference between the

current prediction and ground truth. The results show that

the relative one performs better. A possible reason is that

the relative gain can better reflect the agent’s adjustment to

segmentation probability.

As we know, the interaction and the model can both

lead to the improvement of performance. We now analyze

how much the interaction contributes to the performance by

changing the interaction strategy. In addition to the good

interaction used before, two more comparative experiments

are done in Table 6. The one without interaction is to always

fill the hint maps with random noise and the model will not

receive any new interactive information. The other one with

bad interaction is to randomly choose the user click points

among all the voxels. In this case, the interaction may pass

the wrong message to the model. As a result, we find that

the meaningful interaction does help greatly improve the

performance. It can also be observed that the one with-

out interactions still has some gain of performance, which

may come from the iterative model itself. Moreover, the

degradation of the one with bad interactions indicates that

ineffective interaction can damage the performance.

To verify the usefulness of accumulated reward over im-

mediate reward, we analyze T , the total step number during

one refinement sequence for training. Table 7 shows that

accumulated reward outperforms immediate reward and the

latter has a bad performance for multi-step interaction.

Fig. 6 presents the visualization for the relation between

Step 0 1 2 3 4 5

Clicks 0 5 10 15 20 25

Immediate reward 77.15 84.44 81.26 78.36 76.07 74.89

(T = 1) (+7.29) (-3.18) (-2.90) (-2.29) (-1.18)

Accumulated reward 77.15 84.35 86.78 87.61 88.18 88.53

(T = 5) (+7.20) (+2.43) (+0.83) (+0.57) (+0.35)

Table 7. Accumulated reward v.s. immediate reward

predictions and hints. Fig. 6(a) shows the influence of user

interaction on prediction and hint maps. Since the data is

3D, we show the slice with click (the middle row) and its

two neighbor slices (rows on both sides). The red parts on

hint maps are the recommended object regions. We find

that the proposed algorithm can successfully correct the lo-

cal region around the user click (the red point). Besides, the

corresponding regions on neighbor slices are also improved.

In Fig. 6(b), we observe the change of predictions and hint

maps in one interactive sequence which contains five steps.

The user clicks are not shown because the slices with clicks

vary at each step and we only focus on changes of one spe-

cific slice. With the indications of hint maps, IteR-MRL

succeeds in refining the initial prediction step by step.

5. Conclusion

In this paper, we propose a novel iteratively-refined in-

teractive segmentation method for 3D medical images using

multi-agent reinforcement learning. The method explicitly

models the dynamic process of interactive image segmen-

tation task in order to get a rapid segmentation improve-

ment at each iteration. The experimental results show that

it performs better than the state-of-the-art methods and it is

robust to various initial segmentations and datasets.
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[10] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected CRFs with gaussian edge potentials. In

NeurIPS, pages 109–117, 2011.

[11] Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin,

M Jorge Cardoso, and Tom Vercauteren. On the compact-

ness, efficiency, and representation of 3D convolutional net-

works: brain parcellation as a pretext task. In IPMI, pages

348–360, 2017.

[12] Bjoern Menze, Andras Jakab, Stefan Bauer, Jayashree

Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya

Burren, Nicole Porz, Johannes Slotboom, Roland Wiest,

Levente Lanczi, Elisabeth Gerstner, et al. The multimodal

brain tumor image segmentation benchmark (BraTS). IEEE

Transactions on Medical Imaging, page 33, 2014.

[13] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-Net: Fully convolutional neural networks for volumetric

medical image segmentation. In 3DV, pages 565–571, 2016.

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In ICML, pages 1928–1937, 2016.

[15] Martin Rajchl, Matthew CH Lee, Ozan Oktay, Konstanti-

nos Kamnitsas, Jonathan Passerat-Palmbach, Wenjia Bai,

Mellisa Damodaram, Mary A Rutherford, Joseph V Hajnal,

Bernhard Kainz, et al. Deepcut: Object segmentation from

bounding box annotations using convolutional neural net-

works. IEEE Transactions on Medical Imaging, 36(2):674–

683, 2016.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image segmen-

tation. In MICCAI, pages 234–241, 2015.

[17] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

GrabCut: Interactive foreground extraction using iterated

graph cuts. In ACM Transactions on Graphics, volume 23,

pages 309–314, 2004.

[18] Gwangmo Song, Heesoo Myeong, and Kyoung Mu Lee.

Seednet: Automatic seed generation with deep reinforce-

ment learning for robust interactive segmentation. In CVPR,

pages 1760–1768, 2018.

[19] Guotai Wang, Wenqi Li, Maria A Zuluaga, Rosalind Pratt,

Premal A Patel, Michael Aertsen, Tom Doel, Anna L David,
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