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Abstract

We introduce FPConv, a novel surface-style convolu-

tion operator designed for 3D point cloud analysis. Un-

like previous methods, FPConv doesn’t require transform-

ing to intermediate representation like 3D grid or graph

and directly works on surface geometry of point cloud. To

be more specific, for each point, FPConv performs a lo-

cal flattening by automatically learning a weight map to

softly project surrounding points onto a 2D grid. Regu-

lar 2D convolution can thus be applied for efficient fea-

ture learning. FPConv can be easily integrated into var-

ious network architectures for tasks like 3D object classi-

fication and 3D scene segmentation, and achieve compa-

rable performance with existing volumetric-type convolu-

tions. More importantly, our experiments also show that

FPConv can be a complementary of volumetric convolu-

tions and jointly training them can further boost overall per-

formance into state-of-the-art results. Code is available at

https://github.com/lyqun/FPConv

1. Introduction

With the rapid development of 3D scan devices, it is

more and more easy to generate and access 3D data in the

form of point clouds. This also brings the challenging of

robust and efficient 3D point clouds analysis, which serves

as an important component in many real world applications

like robotics navigation, autonomous driving, augmented

reality applications and so on [35, 52, 3, 38].

Despite decades of development in 3D analysing tech-

nologies, it is still quite challenging to perform point cloud

based semantic analysis, largely due to its sparse and un-

ordered structure. Early methods [7, 8, 11, 28] utilized

hand-crafted features with complex rules to tackle this prob-
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Figure 1: Flattening Projection Convolution: flatten local

patch onto a grid plane and then apply 2D convolutions.

lem. Such empirical human-designed features would suffer

from limited performance in general scenes. Recently, with

the explosive growth of machine learning and deep learn-

ing techniques, Deep Neural Network (CNN) based meth-

ods have been introduced into this task [36, 37] and re-

veal promising improvements. However, both PointNet [36]

and PointNet++ [37] doesn’t support convolution operation

which is a key contributing factor in Convolutional Neural

Network (CNN) for efficient local processing and handling

large-scale data.

A straightforward extension of 2D CNN is treating 3D

space as a volumetric grid and using 3D convolution for

analysis [49, 39]. Although these approaches have achieved

success in tasks like object classification and indoor seman-

tic segmentation [30, 9], they still have limitations like cu-

bic growth rate of memory requirement and high computa-

tional cost, leading to insufficient analysis and low predica-

tion accuracy on large-scale scenes. Recently, [48, 44] are

proposed to approximate such volumetric convolutions with

point-based convolution operations, which greatly improves

the efficiency and preserves the output accuracy. However,

these methods are still difficult to capture fine details on sur-

face with relatively flat and thin structures.

In reality, data captured by 3D sensors and LiDAR are
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usually sparse that points fall near scene surfaces and al-

most no points interior. Hence, surfaces are more natural

and compact for 3D data representation. Towards this end,

works like [10, 51] establish connections among points and

apply graph convolutions in the corresponding spectral do-

main or focus on the surface represented by the graph [40],

which are usually impractical to create and sensitive to local

topological structures.

More recently, [43, 33, 18] are proposed to learn convo-

lution on a specified 2D plane. Inspired by these pioneering

works, we develop FPConv, a new convolution operation

for point clouds. It works directly on local surface of ge-

ometry without any intermediate grid or graph representa-

tion. Similar to [43], it works in projection-interpolation

manner but more general and implicit. Our key observa-

tion is that projection and interpolation can be simplified

into a single weight map learning process. Instead of ex-

plicitly projecting onto the tangent plane [43] for convolu-

tion, FPConv learns how to diffuse convolution weights of

each point along the local surface, which is more robust to

various input data and greatly improves the performance of

surface-style convolution.

As a local feature learning module, FPConv can be fur-

ther integrated with other operations in classical nerual net-

work architectures and works on various analysis tasks. We

demonstrate FPConv on 3D object classification as well as

3D scene semantic segmentation. Networks with FPConv

outperform previous surface-style approaches [43][18][33]

and achives comparable results with current start-of-the-art

methods. Moreover, our experiments also shows that FP-

Conv performs better at regions that are relatively flat thus

can be a complementary to volumetric-type works and joint

training helps to boost the overall performance into state-

of-the-art results.

To summarize, the main contributions of this work are as

follows:

• FPConv, a novel surface-style convolution for efficient

3D point cloud analysis.

• Significant improvements over previous surface-style

convolution based methods and comparable perfor-

mance with state-of-the-art volumetric-style methods

in classification and segmentation tasks.

• An in-depth analysis and comparison between surface-

style and volumetric-style convolution, demonstrating

that they are complementary to each other and joint

training boosts the performance into state-of-the-art.

2. Related Work

Deep learning based 3D data analysis has been a quite

hot research topic in recent years. In this section, we mainly

focus on point cloud analysis and briefly review previous

works according to their underling methodologies.

Volumetric-style point convolution Since a point cloud

disorderly distributes in a 3D space without any regular

structures, pioneer works sample points into grids for con-

ventional 3D convolutions apply, but limited by high com-

putational load and low representation efficiency [30, 49,

39, 41]. PointNet [36] proposes a shared MLP on every

point individually followed by a global max-pooling to ex-

tract global feature of the input point cloud. [37] extends it

with nested partitionings of point set to hierarchically learn

more local features, and many works follow that to approx-

imate point convolutions by MLPs [24, 25, 16, 46]. How-

ever, adopting such a representation can not capture the lo-

cal features very well. Recent works define explicit convo-

lution kernels for points, whose weights are directly learned

like image convolutions [17, 50, 12, 2, 44]. Among them,

KPConv [44] proposes a spatially deformable point convo-

lution with any number of kernel points which alleviates

both varying densities and computational cost, outperform

all associated methods on point analysis tasks. However,

there volumetric-style approaches may not capture uniform

areas very well.

Graph-style point convolution When the relationships

among points have been established, a Graph-style con-

volution can be applied to explore and study point cloud

more efficiently than volumetric-style. Convolution on a

graph can be defined as convolution in its spectral domain.

[6, 15, 10]. ChebNet [10] adopts Chebyshev polynomial

basis for representing the spectral filters to alleviate the cost

of explicitly computing the graph Fourier transform. Fur-

thermore, [20] uses a localized first-order approximation

of spectral graph convolutions for semi-supervised learning

on graph-structured data which greatly accelerates calcu-

lation efficiency and improves classification results. How-

ever, these methods are all depending on a specific graph

structure. Then [51] introduces a spectral parameterization

of dilated convolution kernels and a spectral transformer

network, sharing information across related but different

shape structures. In the meantime, [29, 5, 40, 32] focus on

graph learning on manifold surface representation to avoid

the spectral domain operation, while [45, 47] learn filters

on edge relationships instead of points relative positions.

Although a graph convolution combines features on local

surface patches and can be invariant to the deformations in

Euclidean space. However, reasonable relationships among

distinct points are not easy to establish.

Surface-style point convolution Since data captured

by 3D sensors typically represent surfaces, another main-

stream approach attempts to operate directly on surface ge-

ometry. Most works project a shape surface consist of

points to an intermediate grid structure, e.g. multi-view

RGB-D images, following with conventional convolutions
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Figure 2: Flattening module compared with traditional

method: we design a module to learn local flattening di-

rectly instead of learning projection and interpolation sepa-

rately.

[13, 26, 31, 4, 22]. Such methods often suffer from the

redundant representation of multi-view and the amubiguity

casued of by different viewpoints. [43] proposes project-

ing local neighborhoods of each point to its local tangent

plane and processing them with 2D convolutions, which is

efficient for analyzing dense point clouds of large-scale and

outdoor environments. However, this method relies heavily

on point tangent estimation, and this linear projection is not

always optimal for complex areas. [33] optimizes the calcu-

lation with parallel tangential frames, while [18] utilizes a

4-rotational symmetric field to define a domain for convolu-

tion on surface, which not only increase the robustness, but

also make the utmost of detailed information. However, ex-

isting surface-style learning algorithms cannot perform very

well on challenge datasets such as S3DIS [1] and ScanNet

[9], since they lose 1-dimensional information and they can-

not estimate the surface accurately.

Our method is inspired by surface-style point convolu-

tions. The network learns a non-linear projection for each

local patch, say flattening the local neighborhood points

into a 2D grid plane. Then 2D convolutions can be applied

for feature extraction. Although learning on surface will

lose 1-dimensional information, FPConv still achieves com-

parable performance with existing volumetric-style convo-

lutions. In addition, our FPConv can be integrated into

volumetric-style convolution and achieve state-of-the-art re-

sults.

3. FPConv

In this section, we formally introduce FPConv. We first

revisit the definition of convolution along point cloud sur-

face and then show it can be simplified into a weight learn-

ing problem under discrete setting. All derivations are pro-

vided in the form of point clouds.

3.1. Learn Local Flattening

Notation: Let p be a point from a point cloud P and

F(p) be a scalar function defined over points. Here F(p)
can encode signals like color, geometry or features from

intermediate network layers. We denote N (p) as a local

point cloud patch centered at p where N (p) =
{

qi =

qi − p
∣

∣

∣
||qi − p||2 < ρ, qi ∈ P

}

with ρ ∈ R being the

chosen radius.

Convolution on local surface: In order to convolve F
around the surface, we first extend it to a continuous func-

tion over a continuous surface. We introduce a virtual 2D

plane S with a continuous signal S(u) together with a map

π(·) which maps N (p) onto S and

S(π(qi)) = F(qi) (1)

The convolution at p is defined as:

X (p) =

∫

S

c(u)S(u)du (2)

where c(u) is a convolution kernel. We now describe

how to formulate the above convolution into a weight learn-

ing problem.

Local flattening by learning projection weights: As

shown in Eq.3, with π(·), N (p) will be mapped as scat-

tered points in S , thus we need a interpolation method to

estimate the full signal function S(u), as shown in Eq.3.

S(u) =
∑

i

w
(

u, π(qi)
)

S
(

π(qi)
)

(3)

Now if we discretize S into a grid plane with size of

Mw×Mh. For each grid S(vj), where j in
{

1, 2, ...,Mw×

Mh

}

, we can have from Eq.1 and Eq.3:

S(vj) =
∑

i

wjiF(qi) (4)

Where wji = w
(

vj , π(qi)
)

. Furthermore, we can rewrite

Eq.2 in an approximate discretized form as:

X (p) =

∫

S

c(u)S(u)du

=
∑

j

cj
∑

i

wjiF(qi)

= Mc ∗
(

WT
f × F (p)

)

(5)

Where cj is discretized convolution kernel weights,

and j in
{

1, 2, ...,Mw × Mh

}

. Let L = Mw × Mh,

Wf ∈ R
N×L, Wf (i, j) = w

(

vj , π(qi)
)

, and F (p) =
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Figure 3: Process of conducting FPConv on local region centered around point p. The input coordinates and features come

from N neighbor points randomly picked in a radius range of p. The output is Fout at p.

Binary Sparsity Continuous Sparsity

Figure 4: Left: binary sparsity, intensity at each position

should be 0 or 1. Right: continuous sparsity, intensity can

be in the range of 0 to 1.

(

F(q1), ...,F(qN )
)T

∈ R
N×C . Now we can see that

projection and interpolation can be combined into a single

weight matrix Wf where it only depends on the point loca-

tion w.r.t the center point.

3.2. Implementation

According to Eq.5, we can design a module to learn pro-

jection weights directly instead of learning projection and

interpolation separately, as shown in Fig.2. We also want

this module to have two properties: first, it should be in-

variant to input permutation since the local point cloud is

unordered; second, it should be adaptive to input geometry,

hence the projection should combine local coordinates and

global information of local patch. Therefore, we first use

pointnet [36] to extract the global feature of local region,

namely distribution feature, which is invariant to permuta-

tion. Then we concatenate the distribution feature to each

of the input points, as shown in Fig.3. After that, a shared

MLPs is employed to predict the final projection weights.

After projection, 2D convolution is applied on obtained

grid feature plane. To extract a local feature vector, global

convolution or pooling can be applied on the last layer of

2D convolution network.

However, feature intensity of pixels in grid plane may

be unbalanced when the summation of feature intensities

received from points in local region is varying, which can

break the stability of a neural network and make the training

hard to converge. In order to balance the feature intensity of

grid plane, we further introduce two normalization methods

on learned projection weights.

Dense Grid Plane: Let projection weights matrix be

W ∈ R
(N×L). One possible way to obtain a dense grid

plane is normalizing W at the first dimension by dividing

their summation to make sure the summation of intensities

received at each pixel is equal to 1. This is similar to bi-

linear interpolation method. In our implementation, we use

softmax to avoid being divided by zero, which is shown in

Eq.6.

Wij =
eWij

∑N

k=1 e
Wkj

(6)

Sparse Grid Plane: Due to natural sparsity of point

cloud, normalize the projection weights to get a dense grid

plane may not be optimal. In this case, we design a 2-step

normalization which can preserve the sparsity of projection

weights matrix, and then the grid plane. Moreover, we con-

duct ablation studies on our proposed two normalization

techniques.

First step is to normalize at second dimension to balance

the intensity given out by local neighbor points. Here, we

add a positive ǫ to avoid being divided by zero. As shown

in Eq.7, Wi· indicates i-th row of W .

Wij =
Wij

||Wi·||2 + ǫ
(7)

Second step is to normalize at first dimension to balance

the intensity received at each pixel position. It can be im-

plemented similar to first step by dividing by summation of

each column. However, we choose another method shown

in Eq.8 to maintain a continuous sparsity, where W·j indi-

cates j-th column of W . Examples of continuous sparsity

and binary sparsity are shown in Fig.4.
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Figure 5: Network Architectures for Large Scene Segmentation: our segmentation architecture is composed of 4 downsam-

pling layers for multi-scale analysis and apply skip connections for combination of features from encoder and decoder.

Figure 6: Residual FPConv Block: operations at the short-

cut connection are optional, shared MLP is only required

when Dout is not equal to Din, which is similar to projec-

tion shortcut [14]. FPS (Farthest Point Sampling [37]) and

Pooling is needed for downsampling.

Wij =
Wij

MAX
(

||W·j ||2, 1
) (8)

4. Architecture

4.1. Residual FPConv Block

To build a deep network for segmentation and classi-

fication, we develop a bottleneck-design residual FPConv

block inspired by [14], as shown in Fig.6. This block takes

a point cloud as input, applying a stack of shared MLP, FP-

Conv, and shared MLP, where shared MLPs are responsible

for reducing and then increasing (or restoring) dimensions,

similar to 1 × 1 convolutions in residual convolution block

[14].

4.2. Multi­Scale Analysis

As shown in Fig.6 and Fig.5, we design other operations

for multi-scale analysis:

Farthest Point Sampling: we use iterative farthest point

sampling to downsample the point cloud. As mentioned

in PointNet++ [37], FPS has better coverage of the entire

point set given the same number of centroids compared with

random sampling.

Pooling: we use max-pooling to group local features.

Given an input point cloud Pn and a downsampled point

cloud Pm with their corresponding features Fn and Fm,

we group neighbors for each point in Pm with radius of r

and apply pooling operator on features of grouped points, as

shown in Eq.9, where Pneb =
{

x
∣

∣

∣
||x−yi||2 < r, x ∈ Pn

}

Figure 7: Parallel Residual Block: combine different types

(Surface-Conv or Volume-Conv) of convolution kernel for

fusion.

for any yi ∈ Pm.

Fout(yi) = Pooling
(

F(Pneb)
)

(9)

FPConv with FPS: similar to pooling operation, this

block applies FPConv on each point of downsampled point

cloud and search neighbors over full point cloud, as shown

in Eq.10.

Fout(yi) = FPConv
(

F(Pneb)
)

(10)

Upsampling: we use K nearest neighbors interpolation

to upsample point cloud by euclidean distance. Given a

point cloud Pm with features Fm and a target point cloud

Pn, we compute feature for each point in Pn by interpolat-

ing its K neighbor points searched over Pm.

In the upsampling phase, skip connection and a shared

MLPs is used for fusing features from encoder and decoder.

K nearest neighbors upsampling and shared MLPs can be

replaced by de-convolution, but it does not lead to a sig-

nificant improvement as mentioned in [44], so we do not

employ it in our experiments.

Architecture shown in Fig.5 is designed for large scene

segmentation, including four layers of downsampling and

upsampling for multi-scale analysis. For classification task,

we apply a global pooling on the last layer of downsampling

to obtain global feature for representing full point cloud,

and then use a fully connected network for classification.

4.3. Fusing Two Convolutions

As one of our main contributions, we also try to an-

swer a question ”Can we combine two convolutions for fur-

ther boosting the performance?” The answer is yes but only
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Method Conv. Samp. ScanNet S3DIS S3DIS-6

SPGraph [21] G - - 58.0 62.1

ResGCN [23] G - - 53.8 60.0

HPEIN [19] G FPS 61.8 61.9 67.8

PointNet [36] V FPS - 41.1 47.6

PointNet++ [37] V FPS 33.9 - -

PointCNN [25] V FPS 45.8 57.3 -

PointConv [48] V FPS 55.6 58.3† -

KPConv [44] V Grid 68.4 65.4 69.6

TangentConv [43] S Grid 43.8 52.6 -

SurfaceConv [33] S - 44.2 - -

TextureNet [18] S QF [18] 56.6 - -

FPConv (ours) S FPS 63.9 62.8 68.7

FP ⊕ PointConv S + V - - 64.4 -

FP ⊗ PointConv S + V FPS - 64.8 -

FP ⊕ KPConv S + V - - 66.7 -

Table 1: Mean IoU of large scene segmentation result. The

second column is the convolution type (graph, surface or

volumetric-style) and third column indicates sampling strat-

egy. S3DIS-6 represents 6-fold cross validation. ⊕ is fusion

in final feature level while ⊗ is fusion in convolutional fea-

ture level by applying parallel block. † indicates our imple-

mentation.

works when the two convolutions are in different types or

complementary (please see Section 6), say surface-style and

volumetric-style.

In this section, we propose two convenient and quick

fusion strategies, by combining two convolution operators

in a single framework. First one is fusing different convo-

lutional features, similar to inception net [42]. As shown

in Fig.7, we design a parallel residual block. Given an in-

put feature, apply multiple convolutions in parallel and then

concatenate their outputs as fused feature. This strategy is

suitable for some compatible methods, such like SA Mod-

ule of PointNet++ [37], PointConv [48], both using point

cloud as input and applying downsampling strategy, which

is the same used in our architecture.

While for other incompatible methods, such as Tex-

tureNet [18] using mesh as an additional input, and KPConv

[44] applying grid downsampling, we have second fusion

strategy by concatenating their output features in the last

second layer of networks, an then applying a tiny network

for fusion.

5. Experiments

To demonstrate the efficacy of our proposed convolution,

we conduct experiments on point cloud semantic segmenta-

tion and classification tasks. ModelNet40 [49] is used for

Method Conv. Samp. Accuracy

PointNet [36] V FPS 89.2

PointNet++ [37] V FPS 90.7

PointCNN [25] V FPS 92.2

PointConv [48] V FPS 92.5

KPConv [44] V Grid 92.9

FPConv (ours) S FPS 92.5

Table 2: Classification Accuracy on ModelNet40

shape classification. Two large scale datasets named Stan-

ford Large-Scale 3D Indoor Space (S3DIS) [1] and ScanNet

[9] are used for 3D point cloud segmentation. We imple-

ment our FPConv with PyTorch [34]. Momentum gradient

descent optimizer is used to optimize a point-wise cross en-

tropy loss, with a momentum of 0.98, and an initial learning

rate of 0.01 scheduled by cosine LR scheduler [27]. Leaky

ReLU and batch normalization are applied after each layer

except the last fully connected layer. We trained our models

100 epochs for S3DIS, 300 epochs for ScanNet.

5.1. 3D Shape Classification

ModelNet40 [49] contains 12311 3D meshed models

from 40 categories, with 9843 for training and 2468 for

testing. Normal is used as additional input feature in our

model. Moreover, randomly rotation among the z-axis and

jittering are also used for data augmentation. As shown

in Table.2, our model achieves state-of-the-art performance

among surface-style methods.

5.2. Large Scene Semantic Segmentation

Data. S3DIS [1] contains 3D point clouds of 6 areas, totally

272 rooms. Each point in the scan is annotated with one of

the semantic labels from 13 categories (chair, table, floor,

wall etc. plus clutter). To prepare the training data, 14k

points are randomly sampled from a randomly picked block

of 2m by 2m. Both sampling are on-the-fly during training.

While for testing, all points are covered. Each point is rep-

resented by a 9-dim vector of XYZ, RGB, and normalized

location w.r.t to the room (from 0 to 1). In particular, the

sampling rate for each point is 0.5 in every training epoch.

ScanNet [9] contains 1513 3D indoor scene scans, split

into 1201 for training and 312 for testing. There are 21

classes in total and 20 classes are used for evaluation while 1

class for free space. Similar to S3DIS, we randomly sample

the raw data in blocks then sample points on-the-fly during

training. Each block is of size 2m by 2m, containing 11k

points represented by a 6-dim vector, XYZ and RGB.

Pipeline for fusion. As mentioned in Section 4.3, we pro-

pose two fusion strategies for fusing conv-kernels of dif-

ferent types. In our experiment, we select PointConv [48]
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Method oA mAcc mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointConv† [48] 85.4 64.7 58.3 92.8 96.3 77.0 0.0 18.2 47.7 54.3 87.9 72.8 61.6 65.9 33.9 49.3

KPConv [44] - 70.9 65.4 92.6 97.3 81.4 0.0 16.5 54.4 69.5 80.2 90.1 66.4 74.6 63.7 58.1

FPConv (ours) 88.3 68.9 62.8 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9

FP ⊗ PointConv 88.2 70.2 64.8 92.8 98.4 81.6 0.0 24.2 59.1 63.0 79.5 88.6 68.1 67.9 67.2 52.4

FP ⊕ PointConv 88.6 71.5 64.4 94.2 98.5 82.4 0.0 25.5 62.9 63.1 79.8 87.9 53.5 68.3 67.1 54.5

KP ⊕ PointConv 89.4 71.5 65.5 94.6 98.4 81.4 0.0 17.8 56.0 71.7 78.9 90.1 66.8 72.6 65.0 58.7

FP ⊕ KPConv 89.9 72.8 66.7 94.5 98.6 83.9 0.0 24.5 61.1 70.9 81.6 89.4 60.3 73.5 70.8 57.8

Table 3: Detailed semantic segmentation scores on S3DIS Area-5. ⊕ represents fusion in final feature level while ⊗ represents

fusion in convolutional feature level. Note that PointConv† indicates our implementation on S3DIS.

and KPConv [44] rigid for comparison on S3DIS. We ap-

ply both two fusion strategies on PointConv with FPConv,

and the second strategy, fusion on final feature level on FP-

Conv with KPConv and PointConv with KPConv. In our

experiments, KPConv rigid is used for fusion, while its de-

formable version is ignored for missing released pre-trained

model and hyper-parameters setting. Thus, in the latter part,

we use KPConv to represent KPConv rigid.

Results. Following [36], we report the results on two set-

tings for S3DIS, the first one is evaluation on Area 5, and

another one is 6-fold cross validation (calculating the met-

rics with results from different folds merged). We report the

mean of class-wise intersection over union (mIoU), overall

point-wise accuracy (oA) and the mean of class-wise accu-

racy (mAcc). For Scannet [9], we report the mIoU score

tested on ScanNet bencemark.

Results (mIoU) are shown in Table.1. Detailed results of

S3DIS including mIoU of each class are shown in Table.3.

As we can see, FPConv outperforms all the existing surface-

style learning methods with large margins. Specifically,

the mIoU of FPConv on Scannet [9] benchmark reaches

63.9%, which outperforms the previous best surface-style

method by 7.3%. In addition, our FPConv fused with KP-

Conv achieves state-of-the-art performance on S3DIS.

Even though mIoU of S3DIS of our FPConv is lower

than KPConv, there are still IoUs of some classes outper-

form the ones of KPConv, such as ceiling, floor, board, etc.

Particularly, we find that all of these classes are flat objects,

which should have small curvatures. Based on this discov-

ery, we further conduct several ablation studies to explore

the relationship between segmentation performance of FP-

Conv and objects curvatures, as shown in next section.

6. Ablation Study

Two ablation studies are conducted, the first one is ex-

ploring fusion of surface-style and volumetric-style convo-

lutions. Another one is the effect of detailed configurations,

normalization methods and plane size on FPConv.

6.1. On Fusion of S.Conv and V.Conv

We firstly study the performance for different combina-

tion methods of the two convolutions. Before that, we show

an experimental finding that they are complementary and

good at analyzing different specific scenes.

Performance vs. Curvature As experiments mentioned

in Section 5.2, we claim that FPConv can perform bet-

ter on area with small curvature. To be more convincing,

we analyzed the relationship between overall accuracy and

curvatures, which is shown in the left of Fig.9. We can

see that FPConv outperforms PointConv [48] and KPConv

[44] when curvatures are small, and FPConv cannot per-

form very well on structures which have large curvatures.

Moreover, the histogram of distribution of points curvatures

shown in the right of Fig.9 implies almost all points have

either large curvatures or small curvatures. This explains

why there is a huge performance degradation when curva-

ture increases. Furthermore, as shown in Fig.10, we high-

light points (in red) with incorrect prediction, and points

(in red) with large curvature. It is oblivious that incorrect

prediction is concentrated on area with large curvature and

FPConv performs well in flat area.

Ablation analysis on fusion method As mentioned

above, FPConv which is a surface-style convolution per-

forms better in flat area, worse in rough area and KPConv,

as a volumetric-style convolution performs oppositely. We

believe that they can be complementary to each other and

conduct 4 fusion experiments, FPConv ⊗ PointConv, FP-

Conv ⊕ PointConv, KPConv ⊕ PointConv, and FPConv ⊕
KPConv, where ⊕ represents fusion in final feature level

and ⊗ represents fusion in conv level. We don’t con-

duct fusion of FPConv and KPConv in conv level for their

incompatible downsampling strategies. As shown in Ta-

ble.3, fusion of FPConv with PointConv or KPConv brings

a great improvement, while fusion of PointConv with KP-

Conv brings little improvement. Therefore, we can claim

that our FPConv can be complementary to volumetric-style
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Input Ground Truth FP ⊕ KPConv KPConv [44] FPConv

Figure 8: Visualization of semantic segmentation results of S3DIS area 5. Images shown in second row is roomed version of

first row images. The two red bounding boxes show that two structures that KPConv [44] and FPConv cannot handle both of

them very well while FP ⊕ KPConv can do it much better.

Figure 9: Left: curvature versus cumulative accuracy.

Right: histogram of curvatures.

Figure 10: Relationship between accuracy and curvature.

Left: raw point cloud. Middle: prediction of FPConv with

incorrect points highlighted in red, and correct in green.

Right: points with large curvature are highlighted in red.

We can see that distribution of incorrect points is consistent

with large curvature points.

convolutions, which may direct the convolution design for

point cloud in the future.

Visualization of results are shown in Fig.8. Our FPConv

can capture better flat structures than KPConv, such as the

class column that does not shown in KPConv. While KP-

Conv can capture better complex structures, such as the

door. Moreover, the fusion of KPConv and FPConv can

achieve better results than both KPConv and FPConv.

6.2. On FPConv Architecture Design

We conduct 4 experiments as shown in Table.4, to study

influence of normalization method and the size of grid plane

on performance of FPConv. It tells us that, sparse-norm

which indicates 2-step normalization method mentioned in

Section 3.2 performs better than dense-norm. In addition,

Method mIoU mAcc oAcc

w sparse norm + 6x6 62.8 69.0 88.3

w dense norm + 6x6 61.6 68.5 87.6

w/o norm + 6x6 59.8 67.1 86.2

w sparse norm + 5x5 61.8 68.1 88.4

Table 4: Different normalization results on S3DIS area 5.

6x6 and 5x5 represent different plane sizes.

higher resolution of grid plane may achieve better perfor-

mance, while bring higher memory cost as well.

7. Conclusion

In this work, we propose FPConv, a novel surface-style

convolution operator on 3D point cloud. FPConv takes a

local region of point cloud as input, and flattens it onto a

2D grid plane by predicting projection weights, followed

by regular 2D convolutions. Our experiments demonstrate

that FPConv significantly improved the performance of

surface-style convolution methods. Furthermore, we dis-

cover that surface-style convolution can be a complemen-

tary to volumetric-style convolution and jointly training can

boost the performance into state-of-the-art. We believe that

surface-style convolutions can play an important role in fea-

ture learning of 3D data and is a promising direction to ex-

plore.
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[10] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in neural infor-

mation processing systems, pages 3844–3852, 2016. 2

[11] Aleksey Golovinskiy, Vladimir G Kim, and Thomas

Funkhouser. Shape-based recognition of 3d point clouds in

urban environments. In 2009 IEEE 12th International Con-

ference on Computer Vision, pages 2154–2161. IEEE, 2009.

1

[12] Fabian Groh, Patrick Wieschollek, and Hendrik PA Lensch.

Flex-convolution. In Asian Conference on Computer Vision,

pages 105–122. Springer, 2018. 2

[13] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jiten-
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