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Abstract

Previous researches of sketches often considered

sketches in pixel format and leveraged CNN based mod-

els in the sketch understanding. Fundamentally, a sketch is

stored as a sequence of data points, a vector format rep-

resentation, rather than the photo-realistic image of pix-

els. SketchRNN [7] studied a generative neural represen-

tation for sketches of vector format by Long Short Term

Memory networks (LSTM). Unfortunately, the representa-

tion learned by SketchRNN is primarily for the generation

tasks, rather than the other tasks of recognition and re-

trieval of sketches. To this end and inspired by the re-

cent BERT model [3], we present a model of learning

Sketch Bidirectional Encoder Representation from Trans-

former (Sketch-BERT). We generalize BERT to sketch do-

main, with the novel proposed components and pre-training

algorithms, including the newly designed sketch embedding

networks, and the self-supervised learning of sketch gestalt.

Particularly, towards the pre-training task, we present a

novel Sketch Gestalt Model (SGM) to help train the Sketch-

BERT. Experimentally, we show that the learned represen-

tation of Sketch-BERT can help and improve the perfor-

mance of the downstream tasks of sketch recognition, sketch

retrieval, and sketch gestalt.

1. Introduction

With the prevailing of touch-screen devices, e.g., iPad,

everyone can easily draw simple sketches. It thus supports

the demand of automatically understanding the sketches,

which have been extensively studied in [28, 22, 17] as a type

of 2D pixel images. Interestingly, the free-hand sketches re-

flect our abstraction and iconic representation that are com-

posed of patterns, structure, form and even simple logic of

objects and scenes in the world around us. Thus rather than
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being taken as 2D images, sketches should be intrinsically

analyzed from the view of sequential data, which however,

has less been touched in earlier works. Typically, a sketch

consists of several strokes where each stroke can be seen as

a sequence of points. We take the same 5-element vector

format representation for sketches as in [7]. Briefly speak-

ing, each point has 2-dimensional continuous position value

and 3-dimensional one hot state value which indicates the

state of the point.

According to Gestalt principles of perceptual grouping

[2], humans can easily perceive a sketch as a sequence of

data points. To analyze the sequential sketch drawings,

SketchRNN [7] aimed at learning neural representation of

sketches by combining variational autoencoder (VAE) with

a Long Short Term Memory networks (LSTM), primary

for the sketch generation. In contrast, human vision sys-

tems would be capable of both understanding semantics,

or abstracting the patterns from sketches. For instance, we

can easily both predict the category label of sketches from

“Ground Truth” column (sketch recognition task), and com-

plete the “Masked Input” column of sketches (sketch gestalt

task), as shown in Fig. 1. Comparably, this demands signif-

icant high quality in learning much more general and com-

prehensive sketch representation.

Formally, a new sketch Gestalt (sGesta) task is, for the

first time, proposed in this paper as in Fig. 1. The name

sketch Gestalt comes from the famous Gestalt theory which

emphasizes the whole structure of an object rather than

some parts. Particularly, the task of sketch gestalt aims at

recovering the masked parts of points in sketches and com-

pletes the shape of masked sketches. It needs to predict both

continuous position values and discrete state values which

are utilized to define the sketch points. We show that lever-

aging the sketch gestalt task helps better understanding the

general patterns of sketches.

To this end, this paper proposes a novel model of

learning Sketch Bidirectional Encoder Representation from

Transformer (Sketch-BERT), which is inspired by the re-

cent BERT model [3] from Natural Language Processing

(NLP). Essentially, the transformer structure exerts great
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Figure 1. Sketch Gestalt which aims at recovering the masked parts of points in sketches and complete the shape of masked sketches.

potential in modeling the sequential data; and we adopt the

weight-sharing multi-layer transformer structure from [16],

which share the merits of BERT and yet with much less to-

tal parameters. Particularly, a novel embedding method is

tailored for sketches, and encodes three level embeddings,

i.e., point, positional, and stroke embedding. A refinement

embedding network is utilized to project the embedding fea-

tures into the input feature space of transformer.

To efficiently train our Sketch-BERT, we introduce a

novel task – self-supervised learning by sketch gestalt,

which includes the targets of mask position prediction, and

mask state prediction. Correspondingly, we further present

in addressing these tasks, a novel Sketch Gestalt Model

(SGM), which is inspired by the Mask Language Model

in NLP. The pre-trained Sketch-BERT is capable of effi-

ciently solving the learning tasks of sketches. Particularly,

this paper considers the tasks of sketch recognition, sketch

retrieval, and sketch gestalt.

Contributions. We make several contributions in this pa-

per. (1) The BERT model is extended to sketches, that is,

we for the first time, propose a Sketch-BERT model in ef-

ficiently learning neural representation of sketches. Crit-

ically, our Sketch-BERT has several novel components,

which are significant different from the BERT model, in-

cluding the novel three-level embedding for sketches, and

self-supervised learning by sketch gestalt. (2) To the best

of our knowledge, a novel task – sketch Gestalt (sGesta) is

for the first time studied in this paper. This task is inspired

by the Gestalt principles of perceptual grouping. (3) A self-

supervised learning process by sketch gestalt, is presented.

Empirically, we show that the corresponding SGM for this

task can efficiently help pre-train our Sketch-BERT, and

thus significantly boost the performance of several down-

stream sketch tasks.

2. Related Works

Representation of Sketches. The research on representa-

tion of sketches has been lasted for a long time. As the stud-

ies of images and texts, learning discriminative feature for

sketches is also a hot topic for learning sketch representa-

tion. The majority of such works [11, 19, 28, 27, 20, 17]

achieved the goal through the classification or retrieval

tasks. Traditional methods always focused on hand-crafted

features, such as BoW [11], HOG [10] and ensemble struc-

tured features [19]. Recently, there are works that tried

to learn neural representation of sketches. Due to the

huge visual gap between sketches and images, Sketch-A-

Net [28] designed a specific Convolutional Neural Network

(CNN) structure for sketches, which achieved the state-of-

art performance at that time, with several following works

[27, 22]. On the other hand, TC-Net [20] utilized an auxil-

iary classification task to directly solve the sketch recogni-

tion by the backbone, e.g., DenseNet [12]. Different from

the above methods which directly utilized the pixel level

information from sketch images, researchers made use of

vector form representation of sketches in [17, 30].

Generation and Gestalt of Sketch. Sketch generation, as

another significant topic for learning sketches, also draws

more and more attention. In [14, 32, 18], they generated

sketches from images via convolutional neural networks

and translation losses. SketchRNN [7] employed LSTM

to solve both conditional and unconditional generation on

vector images of sketches. Reinforcement learning-based

models [31, 13] also worked well on learning stroke-wise

representation from pixel images of sketches. Besides the

generation task, we propose a new sketch gestalt task in

this paper. Despite this task shares the same goal as im-

age inpainting in completing the masked regions/parts, the

key differences come from several points, including, (1) the

models for image inpainting [26, 25] mostly predict pix-

els by existing parts in images; in contrast, sketch gestalt

aims at recovering the abstract shapes of some objects. (2)

the texture, color and background information are utilized

to help image inpainting models maintain the visual con-

sistency of whole images, while more abstract information,

e.g., shape, would be more advisable for sketches in com-

pleting the abstraction and iconic sketches.
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Transformers and Self-supervised Learning. Beside

CNN models, it is essential to learn sequence models for

learning how to represent sketches. Recurrent neural net-

works [9, 1] are the most successful sequential models dur-

ing the last decades. Recently, researchers believe that

“attention is all your need” [23]; and the models based

on Transformer are dominating the performance on al-

most all NLP tasks. Particularly, BERT [3] exploited the

mask language model as pre-training task. Further XLNet

[24] generalized the language modeling strategy in BERT.

Such models are all trained in a self-supervised way and

then fine-tuned on several downstream tasks. Inspired by

this, we design a novel self-supervised learning method for

sketches which can help Sketch-BERT understand the struc-

ture of sketches.The task of self-supervised learning [15] is

generally defined as learning to predict the withheld parts

of data. It thus forces the network to learn what we really

care about, such as, image rotation [6], image colorization

[29], and jigsaw puzzle [21]. However, most of previous

self-supervised learning models are specially designed for

images, rather than the sketch. Comparably, the first self-

supervised learning by sketch gestalt is proposed and stud-

ied in this paper.

.

3. Methodology

This section introduces our Sketch-BERT model and the

learning procedure. Particularly, our model embeds the in-

put sketch as a sequence of points. A weight-sharing multi-

layer transformer is introduced for sketches, and thus it per-

forms as the backbone to our Sketch-BERT. A novel self-

supervised learning task – sketch Gestalt task, is proposed

to facilitate training Sketch-BERT.

3.1. Embedding Sketches

Generally, a sketch is stored as a sequential set of strokes,

which is further represented as a sequence of points. As the

vector data format in [7], a sketch can be represented as a

list of points, where each point contains 5 attributes,

(∆x,∆y, p1, p2, p3) (1)

where ∆x and ∆y are the values of relative offsets between

current point and previous point; (p1, p2, p3) would be uti-

lized as a one-hot vector indicating the state of each point

(
∑

3

i=1
pi = 1); p2 = 1 indicates the ending of one stroke;

p3 = 1 means the ending of the whole sketch, and p1 = 1
represents the other sequential points of sketches. We nor-

malize the position offsets of each point by dividing the

maximum offset values, and make sure ∆x,∆y ∈ [0, 1].

Point Embedding. Sketches are then embedded as the se-

quential representation to learn Sketch-BERT. The point in-

formation (∆x,∆y, p1, p2, p3) is learned as an embedding

Ept = Wpt (∆x,∆y, p1, p2, p3)
T

(2)

where Wpt ∈ RdE×5 is the embedding matrix, and dE is

the dimension of the point embedding.

Positional Embedding. The position of each sequential

point should be encoded; and thus we introduce the posi-

tional embedding with learnable embedding weight Wps,

Eps = Wps1ps ∈ RdE (3)

where 1ps is one-hot positional vector. In particular, we set

the max length of each sketch sequence up to 250, while

remove the points of the sequence beyond 250, by default.

Stroke Embedding. We also learn to embed the sequences

of strokes. Inspired by the segment embedding in language

model [3], the strokes of sketch are also embedded as

Estr = Wstr1str ∈ RdE (4)

with the length of stroke sequence up to 50; where 1str is

corresponding one-shot stroke vector. Thus, we have the

following final sketch embedding as,

E = Ept + Eps + Estr (5)

Refine Embedding Network. We further employ a re-

fine embedding network to improve the embedding dimen-

sion from dE to dH , used in the transformer. Specif-

ically, the refine embedding network consists of several

fully-connected layers with the input and output dimen-

sions dE and dH , respectively. In our Sketch-Bert, we have

dE = 128, dH = 768, and the structure of refinement net-

work is 128 − 256 − 512 − 768, where the neurons of two

hidden layers are 256 and 512, respectively.

3.2. Weight­sharing Multi­layer Transformer

We adopt the weight-sharing multi-layer bidirectional

transformer as the backbone, inspired by the ALBERT [16]

and BERT [3]. Particularly, the weights are shared in the

layers of the encoder. This makes a faster convergence of

Sketch-BERT. Formally, we denote the sketch embedding

as

E = (E1,E2, · · · ,En) ∈ Rn×dH

where n is the true length of each sketch embedding. Hid-

den features will be updated by self-attention module in

each weight-sharing transformer layer. The final output fea-

tures from the Sketch-BERT encoder will be used for differ-

ent downstream tasks.
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Figure 2. Overview structure of Sketch-BERT for Sketch Gestalt Model and downstream tasks.

3.3. Self­Supervised Learning by Sketch Gestalt

Since the pre-training tasks over unlabeled text data in

NLP have shown great potential in improving the perfor-

mance of BERT, it is essential to introduce a self-supervised

learning task to facilitate pre-training our Sketch-BERT.

To this end, we define a novel self-supervised learning

process by sketch Gestalt (sGesta), which aims at recov-

ering the masked points in sketches as shown in Fig. 2(a).

Given a masked sketch in vector format smask = sgt · m
where m is the mask with the same shape of sgt, sketch

Gestalt targets at predicting scomp which has the same shape

and semantic information as sgt from the smask. Specif-

ically, the position mask at first two dimensions and state

mask at other dimensions can be predicted, individually.

To solve the self-supervised learning task, we present the

Sketch Gestalt Model (SGM). As in Eq (1), each point is

represented by the key information of both positional offset

(∆x,∆y) and state (p1, p2, p3), which will be masked and

predicted by our SGM, individually. We propose different

mask strategies for positional offset and state information to

help train our Sketch-BERT. By default, we mask 15% of all

positions and states respectively for each sketch sequence.

Mask Position Prediction. We divide the offset values for

points into two classes: 1) the offset for a point in a stroke;

2) the offset for a point as the start of a stroke. In sketches,

distributions of these two type offset values are quite differ-

ent, and there are also total distinctive value ranges of two

types of offset values. Thus we generate the masks by sam-

pling points in these two classes, proportional to the total

point number of each point type class, by setting (∆x,∆y)
of the masked point to 0.

Mask State Prediction. Quite similarly, there are imbal-

ance distributions of p1, p2, p3 for sketch points. In partic-

ular, there are always much more points with p1 than those

with p2 or p3. Thus, we mask the state of each point, in

term of the percentage of points with the state p1, p2, p3. If

the state of one point is masked, it has p1 = p2 = p3 = 0.

Embedding Reconstruction Network. Our SGM intro-

duces an embedding reconstruction network, which plays

the corresponding decoder of the refine embedding net-

work. In particular, given as the input the dH dimensional

embedding features, the reconstruction network predicts the

states and positions of each mask. Practically, we reverse

the structure of refine embedding network, and utilize the

structure as 768−512−256−128−5, with the neurons of

512, 256, and 128 of hidden layers, individually. We adopt

L1 loss for mask position prediction, to predict the contin-

uous position offset values; and, we use the standard cross

entropy loss for different state categories in mask state pre-

diction.

3.4. Learning Tasks by Sketch­BERT

We further elaborate how Sketch-BERT model could be uti-

lized for different downstream tasks after the pre-training

procedure by the self-supervised learning. For each task, we

give the formal definition and describe how the pre-trained

Sketch-BERT model can be utilized here. Especially, we

are interested in following tasks.

Sketch Recognition. This task takes a sketch s as input

and predicts its category label c. To fine-tune the Sketch-

BERT for recognition task, we add a [CLS] label, i.e., a

special token to the beginning of the sequential data of each

sketch, as shown in Fig. 2(b). For recognition tasks, our

Sketch-BERT serves as a generic feature extractor of each

sketch. A standard softmax classification layer as well as

cross entropy loss, is applied to the outputs of Sketch-BERT

(OC). The training sketches of recognition tasks have been

utilized to fine-tune the Sketch-BERT, and train the classi-

fication layer, as the standard practice in BERT [3].

Sketch Retrieval. Given a query sketch sq , sketch retrieval

task targets at finding sketches s1, . . . , sn with the same cat-

egory as the query sq . We add the [RET] label token to
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the beginning of sequential data of each sketch, and use the

Sketch-BERT to extract the features (OR) of each sketch,

as in Fig. 2(b). To conduct the retrieval task, the output

features are projected into a fully connected layer of 256

neurons, which is optimized by a triplet loss as in [20] by

minimizing the distance of sketches in the same class, and

maximizing the distance of sketches in different classes. In

addition, we also apply the cross entropy loss of learning

to predict the category of each sketch. The training data of

retrieval task is utilized to train the newly added fully con-

nected layer, and fine-tune the Sketch-BERT.

Sketch Gestalt. Inspired by the Gestalt principles of per-

ceptual grouping, this task is introduced to recover a re-

alistic sketch images scomp given an incomplete smask as

shown in Fig. 2(a). We directly utilize the SGM learned in

self-supervised learning step for this task.

4. Experiments and Discussion

4.1. Datasets and Settings

Datasets. Our model is evaluated on two large-scale sketch

datasets – QuickDraw dataset [7], and TU-Berlin dataset

[4] (1) QuickDraw dataset is collected from Google appli-

cation Quick, Draw!, an online game to draw a sketch less

than 20 seconds. There are about 50 million sketch draw-

ings across total 345 classes of common objects. Here we

follow the pre-process method and training split from [7],

where each class has 70K training samples, 2.5K validation

and 2.5K test samples in QuickDraw dataset. We also sim-

plify the sketches by applying the Ramer-Douglas-Peucker

(RDP) algorithm, leading to a maximum sequence length

of 321. (2) TU-Berlin contains less quantity but better qual-

ity sketch samples than QuickDraw. There are 250 object

categories in TU-Berlin with 80 sketches in each category.

Implementation Details. In our work, the Sketch-BERT

model has L = 8 weight-sharing Transformer layers with

the hidden size of H = 768 and the number of self-

attention heads of 12. The same with BERT, the feed-

forward size will be set to 4H in the weight-sharing trans-

former layer. The embedding size is set to 128 and the refine

embedding network is a fully-connected network of neurons

128 − 256 − 512 − 768. Correspondingly, the reconstruc-

tion network is composed of four fully-connected layers of

neurons 768 − 512 − 256 − 128 − 5. The max lengths

of input sketches are set as 250, and 500 for QuickDraw,

and TU-Berlin, respectively. We implement our Sketch-

BERT model with PyTorch. To optimize the whole model,

we adopt Adam optimizer with a learning rate of 0.0001.

In self-supervised learning, we leverage the whole training

data from QuickDraw to train the sketch gestalt model.

Competitors. We compare several baselines here. (1)

HOG-SVM [5]: It is a traditional method utilized HOG fea-

ture and SVM to predict the classification result. (2) En-

Methods
QuickDraw (%) TU-Berlin (%)

T-1 T-5 T-1 T-5

HOG-SVM [4] 56.13 78.34 56.0 –

Ensemble [19] 66.98 89.32 61.5 –

Bi-LSTM [9] 86.14 97.03 62.35 85.25

Sketch-a-Net∗ [27] – – 77.95 –

Sketch-a-Net [27] 75.33 90.21 47.70 67.00

DSSA [22] 79.47 92.41 49.95 68.00

ResNet18 [8] 83.97 95.98 65.15 83.30

ResNet50 [8] 86.03 97.06 69.35 90.75

TCNet [20] 86.79 97.08 73.95 91.30

Sketch-BERT (w./o.) 83.10 95.84 54.20 66.05

Sketch-BERT (w.) 88.30 97.82 76.30 91.40

Table 1. The Top-1 (T-1) and Top-5 (T-5) accuracy of our model

and other baselines on classification task; w./o., and w. indicate

the results without, and with the self-supervised learning by sketch

Gestalt, individually. ∗ means the results in original paper [27].

semble [19]: This model leverages several types of features

for sketches, we evaluate it on classification task. (3) Bi-

LSTM [9] : We employ a three-layer bidirectional LSTM

model to test the recognition and retrieval tasks on sequen-

tial data of sketches. The dimension of the hidden states

is set to 512 here. (4) Sketch-a-Net: [28]: The Sketch-

a-Net is a specifically designed convolutional neural net-

work for sketches. (5) DSSA[22] add an attention mod-

ule and a high-order energy triplet loss function to original

Sketch-A-Net model. (6) ResNet: We also evaluate resid-

ual network, one of the most popular convolutional neu-

ral network in computer vision field designed for image

recognition task. (7) TC-Net [20]: It is a network based

on DenseNet [12] for sketch based image retrieval task,

we leverage the pre-trained model for classification and re-

trieval tasks. (8) SketchRNN [7]: SketchRNN employed

a variational autoencoder with LSTM network as encoder

and decoder backbones to solve the sketch generation task,

in our experiments, we use this approach to test the sketch

gestalt task. The training and validation set of datasets are

employed to train our models and competitors, which are

further validated in the test set. For fair comparison of struc-

ture, we retrain all models on QuickDraw and TU-Berlin

datasets for different tasks.

4.2. Results on Sketch Recognition Task

Recognition or classification is a typical task for under-

standing or modeling data in term of semantic informa-

tion, so we first compare the classification results of our

model with other baselines. We use 100 categories with

5K train samples, 2.5K validation samples and 2.5K test

samples for QuickDraw dataset; whole categories of TU-

Berlin dataset with training split of 80%/10%/10% for

train/validation/test samples, respectively.
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Models
QuickDraw TU-Berlin

Top-1 (%) Top-5 (%) mAP (%) Top-1 (%) Top-5 (%) mAP(%)

Bi-LSTM [9] 70.91 89.52 60.11 31.40 59.60 23.71

Sketch-a-Net [27] 74.88 90.10 65.13 37.25 63.50 26.18

DSSA [22] 78.16 91.04 68.10 38.45 66.10 28.77

ResNet18 [8] 80.34 91.71 70.98 41.45 67.10 29.33

ResNet50 [8] 82.41 92.52 74.84 51.80 74.45 36.94

TCNet [20] 83.59 92.57 76.38 55.30 79.45 38.78

Sketch-BERT (w./o.) 63.13 84.70 55.10 32.50 57.90 24.14

Sketch-BERT (w.) 85.47 93.49 78.87 57.25 81.50 41.54

Table 2. The Top-1, Top-5 accuracy and mean Average Precision(mAP) of our model and other baselines on sketch retrieval task. w./o.,

and w. indicate the results without, and with the self-supervised learning by sketch gestalt.

From the results in Tab. 1, it is obvious that the Sketch-

BERT outperforms other baselines including both pixel im-

ages based models like Sketch-a-Net, ResNet18/50 or TC-

Net; and vector images based model like Bi-LSTM by a

considerable margin: about 2% on QuickDraw. This in-

dicates the effectiveness of our Sketch-BERT model, and

self-supervised pipeline by sGesta. Particularly, we give

the ablation study of our Sketch-BERT without using self-

supervised training (i.e., Sketch-BERT (w./o.) in Tab. 1).

It gives us the results of 5% dropping of top-1 accuracy on

QuickDraw dataset. In fact, this can reveal the power of

our SGM proposed in this paper. Furthermore, the Sketch-

BERT (w.) gets converged much faster than that of Sketch-

BERT (w./o.) if they are fine-tuned on the same training

data. For example, the convergence epoch reduces from 50

epochs of Sketch-BERT (w./o.), to only 5 epochs of Sketch-

BERT (w.), for the recognition task trained on TU-Berlin

dataset.

4.3. Results on Sketch Retrieval Task

We are particularly interested in the category-level

sketch retrieval and test sketch retrieval task over the same

dataset as the recognition task. To evaluate the performance

of different models, we report both Top-1/5 accuracy and

mean Average Precision (mAP). To make a fair comparison

to the other baselines We employ the typical triplet loss and

cross entropy loss, as our Sec. 3.4. Each model only serves

as the backbone to extract the sketch features from the a tu-

ple of anchor sketch, positive sketch, negative sketch. The

ranked retrieval results are compared.

The results are summarized in Tab. 2. Our Sketch-BERT

model with self-supervised learning tasks has a much higher

performance than the other baselines. It gives us about

2% improvement over the best second method — TCNet,

which is the state-of-the-art CNN based model for sketch

recognition. We notice that the vector based model – Bi-

LSTM only achieves 70% top-1 accuracy, while the oth-

ers CNN based models get the performance over 75% ac-

curacy. On the other hand, interestingly our Sketch-BERT

without self-supervised training by sGesta, achieves much

worse results than the other baselines on this retrieval task.

This further suggests that our SGM model proposed in self-

supervised learning step, can efficiently improve the gener-

alization ability of our Sketch-BERT. To sum up, the re-

sults from both sketch classification and sketch retrieval

tasks show the superiority of our Sketch-BERT model on

the sketch representation learning.

4.4. Results on Sketch Gestalt Task

Rather than discriminative neural representation, Sketch-

BERT model also has a good capacity for generative rep-

resentation like sketch gestalt task, where some part of

sketches have been masked, and predicted by the models. In

this section, our model is compared against SketchRNN [7],

which, to the best of our knowledge, is the only generative

model that is able to predict the masked sketch sequences.

This task is conducted on QuickDraw dataset: both models

are learned on training data, and predicted on the test data.

We illustrate some completed results from several

classes in QuickDraw dataset in Fig. 3. The four columns in

the figure represent (1) ground truth sketch, (2) incomplete

or masked input with a random 30% mask on position and

state together, (3) completed results from the SketchRNN,

(4) completed results from our Sketch-BERT model.

We can show that our Sketch-BERT model has a much

better ability in understanding and filling the masked

sketches in a more correct way than that of SketchRNN.

Particularly, we further analyze and compare these results.

As for the simple sketches, SketchRNN has a reasonable

ability in completing the missing parts of each sketch.

For example, we can observe the general good examples

from the first column of SketchRNN in Fig. 3. However,

SketchRNN is quite limited to fill the complicated sketches,

such as the flashlight,tiger, SketchRNN may be failed to

complete them. In contrast, our Sketch-BERT can still cor-

rectly capture both the shape and details of such sketches

as the results in the second and third columns of Fig. 3.

We also show more examples of different classes on sketch
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Ground Truth Masked Input SketchBERTSketchRNN Ground Truth Masked Input SketchBERTSketchRNNGround Truth Masked Input SketchBERTSketchRNN

onion hammer basketball

flashlight guitar tiger

floor lamp stethoscope helmet

Figure 3. Completion results on sketch gestalt of our Sketch-BERT and SketchRNN on QuickDraw dataset from 9 classes, onion,flashlight,

floor lamp, hammer, guitar, stethoscope,basketball, tiger,helmet.

Models
Classification Retrieval

Top-1 (%) Top-5 (%) Top-1 (%) Top-5(%)

Single 86.51 96.72 81.73 92.13

Position 87.37 97.01 82.22 91.98

State 86.83 96.88 81.87 92.15

Full 88.30 97.82 85.47 93.49

Table 3. The performance of classification and retrieval tasks on

QuickDraw dataset after different types of pre-training tasks.

gestalt task in supplementary material. Besides the qualita-

tive results, we also provide a user study as the quantitative

comparison in the supplementary material.

4.5. Pre­training Task Analysis

In this section, we give further ablation study and ana-

lyze how the self-supervised learning and models can affect

the performance on sketch representation learning.

Different Pre-training Tasks. First, we study the different

pre-training tasks in our model: (1) Single, means the tra-

ditional random mask strategy used in BERT; (2)Position,

means that only masks the position information according

to the mask strategy in our sketch gestalt model; (3)State,

masks the state information, (4) Full, is the full newly pro-

posed mask strategy in sketch gestalt model. We show the

performance of standard Sketch-BERT on the classification

and retrieval tasks after these pre-training tasks in Tab. 3.

It is clear that our sketch gestalt model plays an im-

portant role to improve the performance of Sketch-BERT,

0 200 400 600 800 1000
Iteration

0

1

2

3

4

Lo
ss

Loss Values With/Without Pre-training
w./o. pre-train
w. pre-train

Figure 4. Convergence Rate with/without Pre-training of Sketch-

BERT on QuickDraw dataset.

and we notice there is a consistent improvement over the

other mask models: Single (> 1.7%), Position (> 1%),

State (> 1.4%). This reveals the significance of a proper

mask model for learning the good neural representation of

sketches. Furthermore, we can find the position information

plays a more important role to sketch representation learn-

ing than the state information, as in Tab. 3.

Faster Convergence Rate of self-supervised learning by

Sketch Gestalt Model. In addition to the improvement

on classification, we also find that the pre-training sketch

gestalt model can significantly reduce the training epochs

for the convergence of classification task. As the curves

shown in Fig. 4, the Sketch-BERT will converge much
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Models
Classification (%) Retrieval(%)

Top-1 Top-5 Top-1 Top-5

345× 70K 88.30 97.82 85.47 93.49

345× 5K 85.73 97.31 82.44 92.13

200× 5K 84.89 97.14 81.87 92.07

100× 5K 85.82 97.31 81.91 92.01

Table 4. The performance of classification and retrieval tasks of

Sketch-BERT with different volumes of pre-training data.

Models
Classification Retrieval

Top-1 (%) Top-5 (%) Top-1 (%) Top-5(%)

6-8-256 84.83 96.42 81.06 91.86

12-8-256 86.34 97.15 83.23 92.13

12-16-1024 85.31 97.44 82.76 92.11

8-12-768 88.30 97.82 85.47 93.49

Table 5. The performance of classification and retrieval tasks for

different structures of Sketch-BERT (L−A−H).

faster after pre-training on Quick-Draw dataset, from about

50 to 5 epochs where one epoch has 50 Iterations in Fig. 4.

Different Volumes of Pre-training Tasks. We also study

how the volume of pre-training data affects the downstream

tasks. We test the classification and retrieval tasks on 100

classes with 5K training, 2K validation and 2K test samples

in QuickDraw dataset. By varying the number of classes

and the number of training samples in each class, we get

different settings for pre-training tasks as shown in Tab. 4.

We denote the volume of pre-training data as c× n , where

c is the number of classes and n is the number of train-

ing samples in each class. We can find there is no obvious

improvement after increasing the number of categories for

pre-training data. But the number of pre-training samples

in each class affects the performance in a more fundamental

way, as reflected by the 3% improvement on top-1 accuracy.

Sketch-BERT Architecture Analysis. We further com-

pare different variants of Sketch-BERT, as shown in Tab.5.

We show that a reasonable depth and width of the network

is important to Sketch-BERT. Particularly, We denote the

structure of Sketch-BERT by three key hyper-parameters

L − A − H: number of layers L, number of self-attention

heads A, hidden size H . It shows that the architecture

8 − 12 − 768 makes a good balance between the model

complexity and final performance of Sketch-BERT model,

if compared against the other variants. When hidden size is

small,e.g., H = 256, a deeper Sketch-BERT can help in-

crease the capacity for learning representation of sketches,

clarified by the 2% improvement from L = 6 to L = 12
on both classification and retrieval tasks. Nevertheless, we

found the Sketch-BERT with 12 layers (12−16−1024) has

slightly inferior results to the other variants, and hard to get

converged.

Sketch Gestalt by CNN based Model. We further con-

GatedConvMasked InputGround Truth

Figure 5. CNN based models for sketch gestalt Task. We employ

Gated Convolution [26] to complete the masked sketches.

duct experiment to show that the proposed sketch gestalt

task is very difficult. We use the Gated Convolution [26]

model to train on QuickDraw dataset with random masks.

It is difficult for such CNN based model to reconstruct the

shape of complicated sketches; and the results always ex-

ist artifacts. Since the different input requirement of image

inpainting and sketch gestalt, the “Masked Input” terms in

Fig. 5 use irregular masks which is fundamentally different

from the terms in Fig. 3. The models for image inpainting

always aim at recovering the masked parts by borrowing the

patches from other parts of the image, while it is not tailored

to sketch gestalt.

5. Conclusion

In this work, we design a novel Sketch-BERT model

for sketch representation learning which employs the effi-

cient self-supervised learning by sketch gestalt. A novel

sketch gestalt model is proposed for self-supervised learn-

ing task of sketches. The results on QuickDraw and TU-

Berlin datasets show the superiority of Sketch-BERT on

classification and retrieval tasks. We also conduct experi-

ments on sketch gestalt task to show the ability of Sketch-

BERT on generative representation learning. Furthermore,

the Sketch-BERT model can be extended to more tasks for

sketches like sketch based image retrieval and sketch gen-

eration which can be studied in future.

6. Acknowledgements

This work was supported in part by NSFC Projects

(U1611461,61702108), Science and Technology Commis-

sion of Shanghai Municipality Projects (19511120700),

Shanghai Municipal Science and Technology Major

Project (2018SHZDZX01), and Shanghai Research

and Innovation Functional Program (17DZ2260900).

86765



References

[1] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,

and Yoshua Bengio. Empirical evaluation of gated re-

current neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014. 2

[2] Agne Desolneux, Lionel Moisan, and Jean-Michel

Morel. Gestalt theory and computer vision. In The-

ory and Decision Library A:, 2004. 1

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018. (document), 1, 2,

3.1, 3.2, 3.4

[4] Mathias Eitz, James Hays, and Marc Alexa. How do

humans sketch objects? SIGGRAPH, 2012. 4.1

[5] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur,

and Marc Alexa. Sketch-based image retrieval:

Benchmark and bag-of-features descriptors. TVCG,

2010. 4.1

[6] S. Gidaris, P. Singh, and N. Komodakis. Unsuper-

vised rep- resentation learning by predicting image ro-

tations. In ICLR, 2018. 2

[7] David Ha and Douglas Eck. A neural representation

of sketch drawings. In ICLR, 2018. (document), 1, 2,

3.1, 4.1, 4.1, 4.4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, 2016. 4.1, 4.1

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural computation, 9(8):1735–1780,

1997. 2, 4.1, 4.1

[10] Rui Hu and John Collomosse. A performance evalu-

ation of gradient field hog descriptor for sketch based

image retrieval. CVIU, 2013. 2

[11] Rui Hu, Tinghuai Wang, and John Collomosse. A bag-

of-regions approach to sketch-based image retrieval.

In ICIP. IEEE, 2011. 2

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten,

and Kilian Q Weinberger. Densely connected convo-

lutional networks. In CVPR, pages 4700–4708, 2017.

2, 4.1

[13] Zhewei Huang, Wen Heng, and Shuchang Zhou.

Learning to paint with model-based deep reinforce-

ment learning. ICCV, 2019. 2

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and

Alexei A Efros. Image-to-image translation with con-

ditional adversarial networks. In CVPR, 2017. 2

[15] Alexander Kolesnikov, Xiaohua Zhai, and Lucas

Beyer. Revisiting self-supervised visual representa-

tion learning. In CVPR, 2019. 2

[16] Zhenzhong Lan, Mingda Chen, Sebastian Good-

man, Kevin Gimpel, Piyush Sharma, and Radu Sori-

cut. Albert: A lite bert for self-supervised learn-

ing of language representations. arXiv preprint

arXiv:1909.11942, 2019. 1, 3.2

[17] Lei Li, Changqing Zou, Youyi Zheng, Qingkun Su,

Hongbo Fu, and Chiew-Lan Tai. Sketch-r2cnn: An

attentive network for vector sketch recognition. arXiv

preprint arXiv:1811.08170, 2018. 1, 2

[18] Yijun Li, Chen Fang, Aaron Hertzmann, Eli Shecht-

man, and Ming-Hsuan Yang. Im2pencil: Controllable

pencil illustration from photographs. In CVPR, 2019.

2

[19] Yi Li, Yi-Zhe Song, and Shaogang Gong. Sketch

recognition by ensemble matching of structured fea-

tures. In BMVC, 2013. 2, 4.1, 4.1

[20] Hangyu Lin, Peng Lu, Yanwei Fu, Shaogang Gong,

Xiangyang Xue, and Yu-Gang Jiang. Tc-net for isbir:

Triplet classification network for instance-level sketch

based image retrieval. In ACM Multimedia, 2019. 2,

3.4, 4.1, 4.1

[21] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsi-

avash. Boosting self-supervised learning via knowl-

edge transfer. In CVPR, 2018. 2

[22] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and

Timothy M Hospedales. Deep spatial-semantic atten-

tion for fine-grained sketch-based image retrieval. In

Proceedings of the IEEE International Conference on

Computer Vision, 2017. 1, 2, 4.1, 4.1

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need.

In NeualPS, 2017. 2

[24] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-

bonell, Ruslan Salakhutdinov, and Quoc V Le. Xlnet:

Generalized autoregressive pretraining for language

understanding. arXiv preprint arXiv:1906.08237,

2019. 2

[25] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu,

and Thomas S Huang. Generative image inpainting

with contextual attention. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion, pages 5505–5514, 2018. 2

[26] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin

Lu, and Thomas S Huang. Free-form image inpainting

with gated convolution. In ICCV, pages 4471–4480,

2019. 2, 5, 4.5

[27] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timo-

thy M Hospedales, and Chen-Change Loy. Sketch me

that shoe. In Proceedings of the IEEE Conference on

96766



Computer Vision and Pattern Recognition, 2016. 2,

4.1, 1, 4.1

[28] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao

Xiang, and Timothy M Hospedales. Sketch-a-net:

A deep neural network that beats humans. IJCV,

122(3):411–425, 2017. 1, 2, 4.1

[29] R. Zhang, P. Isola, and A. A. Efros. Colorful image

colorization. In ECCV, 2016. 2

[30] Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-

Lin Liu, and Yoshua Bengio. Drawing and recogniz-

ing chinese characters with recurrent neural network.

TPAMI, 40(4):849–862, 2017. 2

[31] Tao Zhou, Chen Fang, Zhaowen Wang, Jimei Yang,

Byungmoon Kim, Zhili Chen, Jonathan Brandt, and

Demetri Terzopoulos. Learning to sketch with deep

q networks and demonstrated strokes. arXiv preprint

arXiv:1810.05977, 2018. 2

[32] Jun-Yan Zhu, Taesung Park, Phillip Isola, and

Alexei A Efros. Unpaired image-to-image translation

using cycle-consistent adversarial networks. In ICCV,

2017. 2

106767


