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Abstract

This paper considers learning deep features from long-
tailed data. We observe that in the deep feature space, the
head classes and the tail classes present different distribu-
tion patterns. The head classes have a relatively large spa-
tial span, while the tail classes have a significantly small
spatial span, due to the lack of intra-class diversity. This
uneven distribution between head and tail classes distorts
the overall feature space, which compromises the discrimi-
native ability of the learned features. In response, we seek
to expand the distribution of the tail classes during train-
ing, so as to alleviate the distortion of the feature space. To
this end, we propose to augment each instance of the tail
classes with certain disturbances in the deep feature space.
With the augmentation, a specified feature vector becomes
a set of probable features scattered around itself, which is
analogical to an atomic nucleus surrounded by the electron
cloud. Intuitively, we name it as “feature cloud”. The intra-
class distribution of the feature cloud is learned from the
head classes, and thus provides higher intra-class varia-
tion to the tail classes. Consequentially, it alleviates the
distortion of the learned feature space, and improves deep
representation learning on long tailed data. Extensive ex-
perimental evaluations on person re-identification and face
recognition tasks confirm the effectiveness of our method.

1. Introduction

Large-scale datasets play a crucial role in deep repre-
sentation learning, as well as in many other deep learning
based visual tasks. In the real-world, large-scale datasets
often exhibit extreme long-tailed distribution [8, 10]. Con-
cretely, some identities have sufficient samples, while for
other massive identities, only very few samples are avail-
able. They are defined as the head classes and tail classes,
respectively. Long-tailed distribution poses great challenge
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to deep representation learning [!].

We investigate the impact of long-tailed distribution with
focus on the deeply learned feature space. In a specified
deep representation task, i.e., person re-identification (re-
ID), We visualize several neighboring head classes in Fig. 1
and find that the sample number is an important factor for
intra-class diversity. Firstly we observe the original distri-
bution of the head classes in Fig. 1 (a). The head classes
can be well distinguished with a distinct margin. With rich
intra-class diversity, each head class occupies a wide span in
the feature space. Further, we reduce the samples of some
head classes so they change to tail classes. As is shown
in Fig. 1 (b), we discover that samples from tail class dis-
tribute narrowly in the learned feature space, due to the lack
of intra-class diversity. This uneven distribution distorts the
overall feature space and consequentially compromises the
discriminative ability of the learned features.

To be more concrete, we further quantitatively investi-
gate the intra-class diversity w.zt. the long-tailed distribu-
tion. Given a specified class, we calculate the geometric an-
gles between the features and the corresponding class center
in the deep feature space. We transform a re-ID dataset (i.e.,
DukeMTMC-relD) into a long-tailed one by setting some
classes to have only 4 samples. Under a popular baseline
for deep representation learning [35], the variations of head
classes are distributed within 0.463 £ 0.030 (95% Confi-
dence Interval (CI)). In contrast, the variations of tail classes
are significantly small, with 0.288 + 0.023 as the 95% CI.
Such observations further confirms that 1) tail classes have
smaller variance and 2) the sample number per class is the
dominating factor on the variance.

With this insight, we propose to transfer the intra-class
distribution of head classes to tail classes in the feature
space. Our target is to encourage the tail classes to achieve
similar intra-class angular variability with the head classes
in training. Specifically, we first calculate the distribution
of angles between the features of head class and their corre-
sponding class center. By averaging the angular variances
of all the head classes, we obtain the overall variance of
head classes. Next, we consider transferring the variance
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Figure 1. We select several classes from DukeMTMC-relD dataset [
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, 24] then visualize features in the embedding layer with t-SNE [32].

(a) The visualization of features from head classes (dot). With the wide region in the feature space, each class can be well distinguished.
(b) We reduce the samples of some head classes so that they become tail classes (triangle). With these tail classes, the spanned feature
space is narrowed, which leads to the distortion of the original feature space. So it is hard for the tail classes to be separated from other
classes. (c) In training, the space is expanded for the tail class so that it is pushed away from others.

of head class to each tail class. To this end, we propose to
augment each tail class instance with certain disturbances in
the deep feature space. With the augmentation, a specified
feature vector becomes a set of probable features scattered
around itself, which is termed “feature cloud”. Each in-
stance with the corresponding feature cloud will have a rel-
atively large distribution range, making the tail classes have
a similar angular distribution with head class. Our method
enforces stricter supervision on the tail classes, and thus
leads to higher within-class compactness. As Fig. 1 (c)
shows, with the compensation of intra-class diversity dur-
ing training, the tail classes are separated from other classes
by a clear margin. Under the setting of re-ID mentioned be-
fore, the intra-class angular variance of tail classes turns out
over even lower (than the tail classes in baseline), which is
cenntered at 0.201.

Moreover, to improve the flexibility of the method, we
abandon the explicit definition of head class and tail class.
Compared with some methods that divide the two classes,
our approach makes the calculation entirely related to the
distribution of dataset, and there is no human interference.

We summarize the contributions of our work as follows:

e We propose a learnable embedding augmentation per-
spective to alleviate the problem of discriminative
feature learning on long-tailed data, which transfers
the intra-class angular distribution learned from head
classes to tail classes.

e Extensive ablation experiments on re-ID and face
recognition demonstrate the effectiveness of the pro-
posed method.

2. Related Work

Feature learning on imbalanced datasets. Re-
cent works for feature learning on imbalanced data are

mainly divided into three manners: re-sampling [1], re-
weighting [21], and data augmentation[3]. The re-sampling
technique includes two types: over-sampling the tail classes
and under-sampling the head classes. Over-sampling man-
ner samples the tail data repeatedly, which enables the clas-
sifier to learn tail classes better. But it may lead to over-
fitting of tail classes. To reduce the risk of over-fitting,
SMOTE [2] is proposed to generate synthetic data of the
tail class. It randomly places the newly created instances
between each tail class data point and its nearest neighbor.
The under-sampling manner [6] reduces the amount of data
from head classes while keeping the tail classes. But it may
lose valuable information on head classes when data imbal-
ance is extreme. The re-weighting approach assigns differ-
ent weights for different classes or different samples. The
traditional method re-weights classes proportionally to the
inverse of their frequency of samples. Cui et al. [4] improve
the re-weighting by the inverse effective number of sam-
ples. Li et al. [18] propose a method which down-weights
examples with either very small gradients or large gradients
because examples with small gradients are well-classified
and those with large gradients tend to be outliers. Recently,
data augmentation methods based on Generative Adversar-
ial Network (GAN) [3] are popular. [41] and [9] transfer the
semantic knowledge learned from the head classes to com-
pensate tail classes, which encourage the tail classes to have
similar data distribution to the head classes. All the meth-
ods divide the classes into the head or tail class, while our
method abandons the constraint.

Loss function. Loss function plays an important role
in deep feature learning, and the most popular one is the
Softmax loss [28]. However, it mainly considers whether
the samples can be correctly classified and lacks the con-
straint of inter-class distance and intra-class distance. In or-
der to improve the feature discrimination, many loss func-
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Figure 2. Overview of our proposed framework. The head data and tail data are fed into the deep network to obtain the features. We
calculate the distribution of angles between the features and the class center for head class and tail class, respectively. Subsequently, we

transfer the angular variance of head class (red curve) to tail class (
). Then we get a new distribution of tail class (blue curve). Finally, we use the head

class, we add an additional distribution (
data and the new tail data to calculate the loss.

tions are proposed to enhance the cosine and angular mar-
gins between different classes. Wen et al. [39] design a
center loss to reduce the distance between the sample and
the corresponding class center. The L2-Softmax [23] and
NormFace [34] add normalization to produce represented
features and achieve better performance. Besides normal-
ization, adding a margin can enhance the discrimination
of features by inserting distance among samples of differ-
ent classes. A-Softmax Loss [20] normalizes the weights
and adds multiplicative angular margins to learn more di-
visible angular characteristics. CosFace [35] adds an ad-
ditive cosine margin to compress the features of the same
class in a compact space, while enlarging the gap of fea-
tures of different classes. ArcFace [5] puts an additive mar-
gin into angular space so that the loss relies on both sine
and cosine dynamically to learn more angular characteris-
tics. CosFace [35] and ArcFace [5] are chosen as baseline.
Althoughwe model the intra-class angle, which is similar
to them, our goal is to solve the problem of discriminative
feature learning on long-tailed data.

3. The Proposed Approach

In this section, A brief description of our method is given
in Section 3.1. We review the baseline in Section 3.2. We
describe the updating process of the class center and the
calculation of angular distribution in Section 3.3. The con-
struction of the feature cloud is detailed in Section 3.4.

3.1. Overview of Framework

The framework of our method is shown in Fig. 2. First,
the head data and tail data are fed into the deep model to
extract features. And we consider to model the distribution
of intra-class features by the distribution of angles between
features and their corresponding class center. Then the cen-

). In other words, based on the original distribution of tail

ter of each class is calculated, as to be detailed in Sec-
tion 3.3. We build an angle memory for each class, which is
used to store the angles between the features and their class
center. Assuming the angles obey the Gaussian distribution,
the angular distributions of head class and tail class can be
denoted as 0, ~ N(up,07) and 6; ~ N(u,0?), respec-
tively. Next, we transfer the angular variance learned from
the head class to every tail class. Consequently, the intra-
class angular diversity of tail class is similar to the head
class. Specifically, we build a feature cloud around each
tail instance. An instance sampled from the feature cloud
has the same identity with the tail instance. The angle be-
tween them is 0 and 0o ~ N(0, 07 — 07). We assume the
two distribution: 0; ~ N(uy, 07) and 0o ~ N(0,07 — 07)
are independent of each other. By transformation, the
new intra-class angular distribution of tail class is built as
0; + O ~ N(u¢,07) in training process. Finally, we use
the original features of head classes and the reconstructed
features of tail classes to calculate the loss.

3.2. Baseline Methods

The traditional softmax loss optimizes the decision
boundary between two categories, but it lacks the con-
straint of inter-class distance and intra-class distance. Cos-
Face [35] effectively minimizes intra-class distance and
maximums inter-class distance by the introducing a co-
sine margin to maximize the decision margin in the angular
space. The loss function can be formulated as:

1 N es(cos(Gyn)frnC)

N log
N n=1 es(cos(8y,, ) —me) | Esj;gy

n

L=

es cos(8;)’

where N and C are the mini-batch size and the number of
total classes, respectively. y, is the label of n-th image.
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We define the feature vector of n-th image and the weight
vector of class y,, as f, and W, respectively. f, and W,
are normalized by /5 normalisation and the norm of feature
vector is rescaled to s. 0, is the angle between the weight
W, and the feature f,,. m. is a hyper-parameter controlling
the magnitude of the cosine margin.

Different from CosFace [35], ArcFace [5] employs an
additive angular margin loss, which is formulated as:

N
1 s(cos(0y,, +ma))
L= ‘

N 2 log es(cos(0y, +ma)) Z]C;éyn escos(6;)’

. . . 2)
where m, is an additive angular margin penalty between
feature vector f, and its corresponding W,,. It aims to en-
hance the intra-class compactness and inter-class distance
simultaneously.

In this paper, we choose CosFace [35] and ArcFace [5]
as baseline. The reasons are as follows:

e They have achieved the state-of-the-art performance in
the face recognition task, which can be seen as strong
baselines in the community of deep feature learning.

e They optimize the intra-class similarity by achieving
much lower intra-class angular variability. Since our
method employs intra-class angles to model the intra-
class feature distribution, the two loss functions can be
naturally combined with our method.

3.3. Learning the intra-class angular distribution

The intra-class angular diversity can intuitively show the
diversity of intra-class features. In this section, we study the
distribution of angles between the features and their corre-
sponding class center. c¢; denotes the i-th class center of
features. fF is the k-th instance feature of class i. c; has
the same dimension as fﬁ So, we can calculate the angle
between fF and c; as follow:

1 el

where the c; should be updated in the training process-
ing. Ideally, we need to take the entire training samples
into account and average the features of every class in each
epoch. Obviously, this approach is impractical and ineffi-
cient. Inspired by [39], we also perform the update based
on a mini-batch. In each mini-batch, the class center is com-
puted by averaging the feature vectors of the corresponding
class. To avoid the misleading by some mislabelled sam-
ples, we set a center learning rate 7y to update the class cen-
ter. The updating method of ¢; is formulated as:

b =(1=7)d +~d™, (4)

where ¢l is the center of class 7 in [-th mini-batch. Each
class center is updated by the center of current and previous
mini-batch.
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Figure 3. We transfer the intra-class angular distribution learned
from the head class to the tail class.

For the class ¢, we maintain an angle memory [; to
store the angles between the features and their correspond-
ing class center c;. The size of angle memory is formulated
as:

K; is the sample number of the i-th class. P is a hyper-
parameter determining the angle memory per class. Then
we calculate the mean y; and variance o2 of 3;. The angular
distribution of the class i is formulated as N(p;, 02).

3.4. Constructing the feature cloud for tail data

In this section, we elaborate the process of constructing
the feature cloud for a tail instance. First, like the previous
works [41, 46], we assign a label to mark the head and tail
class, yielding the vanilla version. On the other hand, we
introduce a full version which abandons the explicit division
of head and tail class. This manner is more flexible since it
is only related to the distribution of the dataset.

Vanilla version. We strictly divide the head class and the
tail class through a threshold 7. If the number of samples
belonging to class ¢ is larger than 7', the -th class is defined
as a head class. Otherwise, it is defined as a tail class.

In the Section 3.3, we have calculated the angular dis-
tribution of each class, which is assumed to lie in Gaussian
distribution. By averaging the variance of all head classes,
we obtain the overall variance of the head class. The mean
is computed in the similar way. So the overall angular dis-
tribution of the head class is as follow:

Ch Cp
Zl Hz . 0’5
z= 2 z=
Hh = ) Op = ’ (6)
Ch h C’h,

where C}, is the number of head classes. p, and o2 is the
angular mean and variance of the z-th head class, respec-
tively. up, and o describe the overall angular distribution
of the head class. We can also obtain the class center for ev-
ery tail class. The angular distribution of the x-th tail class
is denoted as N(u?, o¥?).

For the head classes, they include sufficient samples
which show the intra-class angular diversity. In general, o,
is greater than o, so our target is to transfer 0}% to each tail
class. As is shown in Fig. 3, we construct a feature cloud
around each feature of z-th tail class. By this way, the space
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spanned by tail class is enlarged, in training, and the real
tail instances are pushed away from other classes. The an-
gle between the feature belonging to the x-th tail class and
a feature sampled from its corresponding feature cloud is
., where o, ~ N(0,0% — 07?) and o, € R*C" In train-
ing, the feature sampled from the feature cloud shares the
same identity with the real tail feature. We have assumed
the two distributions: N(uf,0¢?) and N(0,02 — o7?) are
independent of each other in Section 3.1. So the original
angular distribution of the z-th tail class is transferred from
N(pg, 0—202) to N(py, Jh2)'

The new loss functions based on CosFace [35] and Arc-
Face [5] are defined as:

es(cos(Gyn +ay)—me)

1 N
Ly = —— 1
3 N Z og es(cos(8y,, +ay)—mc) +ZC

scos(0+ay)’
n=1 j#yn © !

(N

es(cos(Gyn +ay+mg))

1 N
L, = i ; log 5(c0s(8y,, tay tma)) + Efyﬁyn o5 cos(6; +ay) ’
3
in Eq.7 and 8, 8 + « and 0 + o + m, are all clipped in
the range [0, 77]. N and C' are the mini-batch size and class
number, respectively. 0,, is the angle between the feature
fn and the weight W, . s is the scale, and m,, m, are the
cosine margin and the angular margin in CosFace [35] and
ArcFace [5], respectively. If y,, is a head class, a,; = 0. As
the training progresses, the tail class has the rich angular
diversity as head class.

Actually, we approximate the angle (f') between the fea-
ture sampled from feature cloud and the weight. If a > 0,
we approximate 6’ by the upper bound of it, and the lower
bound when o« < 0. The proof is given below.

Proposition. We denote a feature in the tail class as f, and
W is the corresponding weight vector in the full connection
layer. f’ is a feature randomly sampled from the feature
cloud around f.

<va>:97 <faf/>:a+7

LAl = Tl = 11T =1,
where (a, b) represents the angle between vector a and b,

and ||a|| represent the norm of vector a. We want to prove:
0 —ay| <0< 0+ay.

W, f) =49,

0<O0+ay <m,

Proof. Simply, we suppose that f = [1,0,---,0], then
W = J[cosf,ws,--+ ,w,]. We use the Householder
transformation [13] to transform W to V, where V =
[cosf,sin6,0,---,0]. Let P =1 —2U -U”, where U =
W —V/|W = V|, then f = Pf,V = PW, f' = Pf. P
is an orthogonal transformation which preserves the inner
product and norm. Therefore, we have

<f7V>:97 <f=f/>:a+7

<V7 [y = 0'.

Denote f/ = [fﬁfé, » f4], then

R N A2 A2 )
cosay = f-f'=fl, f5 4+ f1 =sinlay.

We get fé sinf € [—sinay sind, sinay sinf], where 6 €
[0, . Further, we have

cos® = f'-V = cosay cosf + f}sin6,

cos®' € [cos(0 + ay),cos(0 — ay)).

We get the conclusion: |0 — ai| <60 <6+ ay.
Although o ~ N (0, o2), we only need to focus on @ €
[—m, 7], since @ + « is clipped in the range [0, 7].

e when 0 < a < T, substituting « for o, we have
|0 —a| < 60 < 6+ «a,in which 8 + « is the upper
bound.

e when —7 < a < 0, substituting —« for a4, we have
0 — (—a)| < ¢ < 0+ «, which is equivalent to
0+a <0 <0 —qa,so 4+ ais the lower bound.

Full version. The distorted feature space is well repaired
by constructing a feature cloud around a tail instance. But
the process in the vanilla version is inflexible. We set a
threshold 7 to divide the head and tail classes, artificially.
The overall angular distribution in Eq.6 only depends on
the head classes. In the full version, the explicit definition
is discarded. We have observed that the intra-class diversity
is positively correlated with the sample number, in general.
Therefore, we calculate the overall variance by weighting
the angular variance of each class. The weight is the sample
number per class. The final variance is formulated as:

C
2 (K; — 1)o7
7=l T ®
where C' is the number of classes, and K; is the number of
samples belong to class 4. o is the angular variance of the
i-th class. A smaller K; means that the variance of the i-th
class almost has no contribution to the final variance, so the
final variance mainly depends on the classes with sufficient
samples. For ¢-th class, if 0’? < o2, it means the class 7 has
poor intra-class diversity. Therefore v, is available in Eq.7
and 8, and we construct the feature cloud for each instance
sampled from class 1.
The advantage of the full version is that the calculation
of feature cloud entirely depends on the distribution of the
dataset. There is no human interference in the process.

4. Experiments

In this section, we conduct extensive experiments to con-
firm the effectiveness of our method. First we describe the
experimental settings. Then we show the performance on
person re-identification and face recognition with different
long-tailed settings.
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4.1. Settings

Person re-identification. Evaluations are conducted on
three datasets: Market-1501 [42], DukeMTMC-relD [24,

] and MSMT17 [37]. To study the impact of the ratio
between head classes and tail classes on training a re-ID
system, we construct several long-tailed datasets based on
the original dataset. We rank the classes by their number of
samples. The top 150, 100, 50 and 20 identities are marked
as the head class, respectively. The rest is treated as the
tail classes, and the number of samples is reduced to 5 each
class. In this way, we form the training sets of (H150, S5),
(H100, S5), (H50, S5), and (H20, S5). For training, we
choose the widely used ResNet-50 [11] as the backbone.
The last layer of the network is followed by a Batch Nor-
malization layer (BN). The optimizer is Adam. The scale
s and m, of CosFace [35] are set to be 24 and 0.2, respec-
tively. The scale s and m, of ArcFace [35] are set to be 16
and 0.2, respectively. The learning rate of class center vy is
set to be 0.1. For testing, the 2048-d global features after
BN are used for evaluation. The cosine distance of features
is computed as the similarity score. We use two evaluation
metrics: Cumulative Matching Characteristic (CMC) and
mean average precision(mAP) to evaluate our method.

Face recognition. We adopt the widely used dataset
MS-Celeb-1M for training. The original MS-Celeb-1M
data is known to be very noisy, so we clean the dirty face
images and exclude the 79K identities and 1M images. We
rank the classes through the number of samples they have.
The top 5K and 3K are selected as head classes. Among
the rest classes, we select the first 10K and 20K as tail
classes and randomly pick 5 images per class. In this way,
we form the training set of (H5K, T20K), (H5K,T10K),
(H3K,T20K) and (H3K,T10K). The face images are
resized to 112 x 112. For training, we choose the ResNet-
18 [1 1] as our backbone. We train the model for 30 epoch
by adopting the triangular learning rate policy[26], and con-
struct feature cloud at the start of the third cycle. The scale
s and m, of CosFace [35] are set to be 64 and 0.35. The
scale s and m, of ArcFace [35] are set to be 64 and 0.5.
We extract 512-D features for model inference. For test-
ing, we evaluate our method on LFW [14], MegaFace chal-
lengel (MF1) [17] and IJB-C [22]. We report our results
on the Rank-1 accuracy of LFW and MF1, and different
TPR@FPR of IJB-C TPR@FPR.

4.2. Experiments on person re-identification

Performance of baseline. Table 1 reports the results of
the baseline. We compare our baseline with the advanced
methods. Our baseline achieves very competitive perfor-
mance, which is reliable.

Comparison with state-of-the-art approaches. We
compare our full version with the state-of-the-art methods
on Market-1501 and DukeMTMC-reID. The comparisons

Market-1501 | DukeMTMC MSMT17
mAP Rank-1 | mAP Rank-1 | mAP Rank-1
HA-CNN [19]| 757 912 | 63.8 80.5 - -
PCB [30] 774 923 | 66.1 81.8 | 404 682

Methods

Mancs [33] 823 931 |71.8 849 - -
CosFace 79.5 924 730 856 |492 753
ArcFace 81.1 925 | 732 8.8 |505 755

Table 1. Comparison with the advanced methods on the Market-
1501, DukeMTMC-relD and MSMT17 datasets

Market-1501 DukeMTMC

Methods mAP Rank-1 | mAP Rank-1

SVDNet [29] 62.1 82.3 56.8 76.7
BraidNet [36] 69.5 83.7 69.5 76.4
CamStyle [47] 71.6 89.5 57.6 78.3
GF Advesarial [15] | 70.4 86.4 62.1 79.1
Dual [7] 76.6 91.4 64.6 81.8
Mancs [33] 82.3 93.1 84.9 71.8
TANet [12] 83.1 94.4 73.4 87.1
DG-Net [43] 86.0 94.8 74.8 86.6
AACN [40] 66.9 85.9 59.2 76.8
PE PSE [25] 69.0 87.7 62.0 79.8
PCB [30] 77.4 92.3 66.1 81.8
SPRelD [16] 81.3 92.5 70.9 84.4
Ours LEAP-CF 84.2 94.4 74.2 87.8
LEAF-AF 83.2 93.5 74.2 86.9

Table 2. Comparison with state-of-the-art methods on Market-
1501 and DukeMTMC-relID. Three groups: global features(GF),
part features(PF) and ours. LEAP-CF and LEAP-AF are our full
version combined with CosFace and ArcFace, respectively.

are reported in Table 2. It shows that our baseline has sur-
passed many advanced methods. And our method further
improve the performance compared with baseline. Specif-
ically, LEPA-CF achieves 94.4% on rank-1 for Market-
1501, and 87.8% on rank-1 for DukeMTMC-reID. We
also evaluate our method on a recently released dataset
MSMT17 [37]. The result is shown in Table 3. Compared
with DG-Net [43], our performance is very close to it. How-
ever, our method is a simple but efficient method, which
does not use GAN to generate many image-level samples.

Methods [ mAP  Rank-1 Rank-5 Rank-10
GoogleNet [31] 23.0 47.6 65.0 71.8
Pose-driven [27] 29.7 58.0 73.6 79.4
Verif-Identif [45] 31.6 60.5 76.2 81.6
GLAD [38] 34.0 614 76.8 81.6
PCB [30] 40.4 68.2 81.2 85.5
TIANet [12] 46.8 75.5 85.5 88.7
DG-Net [43] 523 77.2 87.4 90.5
LEAP-CF 50.8 76.7 86.9 90.0
LEAP-AF 51.3 76.3 86.5 89.8

Table 3. Comparison with advanced methods on the MSMT17.

Evaluation with the vanilla version. We evaluate the
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Figure 4. Comparison of vanilla version and full version on Market-1501 and DukeMTMC-relD. LEAP-CV and LEAP-AV are our vanilla
version combined with CosFace and ArcFace, respectively. LEAP-CF and LEAP-AF are our full version combined with CosFace and

ArcFace, respectively.

Dataset — Market-1501 DukeMTMC

Train | \Meth0d¢ mAP Rank-1 | mAP Rank-1
CosFace 67.3 86.3 57.3 75.6

LEAP-CV | 70.6 86.9 59.4 771

(H150, 55) ArcFace 70.6 87.3 60.2 77.6
LEAP-AV | 71.3 87.9 60.6 78.7

CosFace 62.8 83.3 52.6 70.3

LEAP-CV | 68.7 86.5 55.6 74.8

(#1100, 55) ArcFace 68.0 86.6 56.7 74.8
LEAP-AV | 69.8 87.3 57.9 76.5

CosFace 60.5 80.7 48.0 67.7

LEAP-CV | 67.3 84.9 53.1 73.0

(H50, 55) ArcFace 64.2 83.8 51.1 71.1
LEAP-AV | 67.1 84.6 54.4 73.5

CosFace 55.6 78.6 47.0 66.0

LEAP-CV | 64.1 83.2 524 72.7

(H20, 55) ArcFace 60.1 81.1 50.5 69.3
LEAP-AV | 64.3 82.2 54.2 73.7

Table 4. Controlled experiments by varying the ratio between head
and tail data. H is the number of head class. S denotes that the
sample number per tail class. CosFace and ArcFace are baselines.
LEAP-CV and LEAP-AV are vanilla versions combined with Cos-
Face and ArcFace.

effectiveness of the vanilla version. For comparison, we
train the baseline model on the long-tailed re-ID datasets
under the supervision of CosFace [35] and ArcFace [5]. We
compare our method with baseline methods. The results
are shown in Table 4. We have the following observations.
First, compared with CosFace, ArcFace has higher Rank-1
and mAP accuracy on the same long-tailed setting. For ex-
ample, on Market-1501 with (H20, S5), ArcFace achieves
the Rank-1 accuracy of 81.1%, while the Rank-1 accuracy
of CosFace is 78.6%. This indicates that Arcface has a
stronger robustness for the long-tailed re-ID. Second, in
different long-tailed settings, the proposed LEAP method
combined with CosFace and ArcFace achieves consistently
better results than the baseline with significant margins.
This indicates that the LEAP is a robust method for long-
tailed data distribution. Third, as the long-tailed distribu-

tion is more serious, the improvement of our method be-
comes even more obvious. For example, in the (H20, S5)
setting on DukeMTMC-relD, the improvement of LEAP-
CV reaches +6.7% (from 66.0% to 72.7%) in the Rank-1
accuracy.

Comparison between vanilla version and full version.
We show the results comparison of vanilla version and full
version under different long-tailed settings in Fig. 4. We
observe that the full version obtains the results very close to
vanilla version, and even better results in some settings. By
this experiment, we justify that compared with those meth-
ods which need a label to distinguish between head class
and tail class, the full version is more flexible.

Dataset — Market-1501 DukeMTMC
Train | \ Method || | mAP Rank-1 | mAP Rank-1

CosFace 55.6 78.6 47.0 66.0

LEAP-CF | 65.2 834 52.7 72.8

(H20, 5) ArcFace 60.1 81.1 50.5 69.3
LEAP-AF | 63.9 83.2 54.2 73.6

CosFace 43.1 67.7 36.0 53.7

LEAP-CF | 54.7 76.8 42.6 63.0

(H20, 54) ArcFace 494 73.8 39.7 58.8
LEAP-AF | 56.5 77.9 44.2 64.4

CosFace 31.9 55.5 25.6 40.8

LEAP-CF | 43.5 67.2 33.2 51.1

(H20, 53) ArcFace 36.2 60.1 28.9 46.7
LEAP-AF | 44.1 66.1 34.3 53.3

Table 5. Impact analysis of different tail data for feature learning.

The impact of tail data. When the head class is re-
duced gradually and the tail data is increasing, the results
are shown in Table 5, we observe the effect of tail data on
performance. We gradually reduce the samples of each tail
class, which results in insufficient training data, and the per-
formance of the model drops dramatically. However, our
method still makes a large margin improvement over the
baseline. For example, in the (20, S3) setting on Market-
1501, even the number of samples for each tail class is only
3, the improvement of LEAP-CF reaches +11.7% (from
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Test — LFW MegaFace 1JB-C(TPR@FPR)
Train | [ Method | Rank-1 Rank-1 le-3 le-4 le-5
CosFace 98.73 81.41 83.35 73.32 63.42
LEAP-CV 98.88 81.78 83.83 73.96 64.64
(H5K, T10K) ArcFace 98.60 81.08 82.30 72.45 62.46
LEAP-AV 98.67 81.69 83.16 72.97 63.22
CosFace 98.87 82.72 84.77 76.71 68.19
LEAP-CV 98.98 83.16 84.82 77.21 68.88
(H5K, T20K) ArcFace 98.73 82.76 84.45 76.22 66.93
LEAP-AV 99.10 83.36 85.70 717.77 68.05
CosFace 97.65 72.27 79.08 68.06 56.52
LEAP-CV 97.97 73.19 79.60 69.18 58.89
(H3K, T10K) ArcFace 97.82 72.45 78.24 66.99 55.31
LEAP-AV 98.07 73.43 78.84 67.82 55.75
CosFace 98.02 74.06 81.21 71.68 61.03
LEAP-CV 98.23 75.18 81.87 72.16 62.62
(H3K, T20K) ArcFace 98.28 75.24 81.09 71.36 61.60
LEAP-AV 98.73 76.28 82.61 73.21 62.72

Table 6. Face recognition results on LFW, MF1 and IJB-C are reported by varying the ratio between head and tail classes in training sets.

H and T is the number of head class and tail class, respectively.
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Figure 5. Different timings of constructing the feature cloud for tail
data. (a) Combined our method with CosFace [35]. (b) Combined

our method with ArcFace [5]

55.5% to 67.2%) in the Rank-1 accuracy.

Timing of feature cloud for tail data. We investigate
the effect of timing of constructing a feature cloud for tail
data on Market-1501 and DukeMTMC-reID dataset. We
take a long-tailed version: (H20,54) as an example. The
varying curve of the results is shown in Fig. 5. (a) Com-
bined with CosFace [35]. When epoch is in the range of 10
to 30, our results are just marginally impacted and the best
results are achieved. (b) Combined with ArcFace [5]. Our
results are impacted just marginally and the best results are
achieved from 20-th to 30-th epoch.

4.3. Experiments on face recognition

To further verify the observations in the re-ID task, we
perform a similar set of experiments on the face recognition
task. Different from re-ID, the dataset of face recognition
has a relatively large scale. In order to improve the training
efficiency, we update the class center every 5 iteration. The
result is shown in Table 6. On LFW, our performance is
improved slightly since LFW has been well solved. MF1
and IJB-C are the most challenging testing benchmark for
face recognition. We report the Rank-1 accuracy of MF1
and TPR@FPR of IJB-C. Compared with the baseline, our
method obtains consistency improvement. For example, in
the (H3K, T10K) setting, we evaluate our method on IJB-
C, the LEAP-CV improves TPR@FPR(le-5) from 56.52%
to 58.89%. in the (H3K,T20K) setting, we evaluate our
method on MF1, the LEAP-CV improves Rank-1 accuracy
from 74.06% to 75.18%.

5. Conclusions

This paper proposes a novel approach for deep represen-
tation learning on long-tailed data. We observe that in the
deeply-learned feature space, the tail classes are prone to
lack of intra-class diversity, which consequentially distorts
the overall distribution of feature space. In response, we en-
hance the diversity of tail class with augmentation embed-
ded in deep feature space. The pattern of the augmentation
is learned from the head classes (with abundant intra-class
diversity) and transferred to tail classes in the manner of fea-
ture cloud. Experiments on person re-identification and face
recognition demonstrate the effectiveness of our method on
deep feature learning with long-tailed distribution.

2977



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A
systematic study of the class imbalance problem in convo-
lutional neural networks. Neural Networks, 106:249-259,
2018. 1,2

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence re-
search, 16:321-357, 2002. 2

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8789-8797,
2018. 2

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9268-9277,
2019. 2

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4690—
4699, 2019. 3,4,5,7,8

Chris Drummond, Robert C Holte, et al. C4. 5, class im-
balance, and cost sensitivity: why under-sampling beats
over-sampling. In Workshop on learning from imbalanced
datasets 11, volume 11, pages 1-8. Citeseer, 2003. 2

Yang Du, Chunfeng Yuan, Bing Li, Lili Zhao, Yangxi Li, and
Weiming Hu. Interaction-aware spatio-temporal pyramid at-
tention networks for action classification. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 373-389, 2018. 6

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303-338, 2010. 1

Hang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang,
and Shih-Fu Chang. Low-shot learning via covariance-
preserving adversarial augmentation networks. In Advances
in Neural Information Processing Systems, pages 975-985,
2018. 2

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and
Jianfeng Gao. Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition. In European Conference on
Computer Vision, pages 87—-102. Springer, 2016. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 6

Ruibing Hou, Bingpeng Ma, Hong Chang, Xingian Gu,
Shiguang Shan, and Xilin Chen. Interaction-and-aggregation
network for person re-identification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 9317-9326, 2019. 6

[13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

2978

Alston S Householder. Unitary triangularization of a non-
symmetric matrix. Journal of the ACM (JACM), 5(4):339—
342,1958. 5

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric
Learned-Miller. Labeled faces in the wild: A database
forstudying face recognition in unconstrained environments.
2008. 6

Houjing Huang, Dangwei Li, Zhang Zhang, Xiaotang Chen,
and Kaiqi Huang. Adversarially occluded samples for per-
son re-identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5098—
5107, 2018. 6

Mahdi M Kalayeh, Emrah Basaran, Mubhittin Gokmen,
Mustafa E Kamasak, and Mubarak Shah. Human seman-
tic parsing for person re-identification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1062-1071, 2018. 6

Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel
Miller, and Evan Brossard. The megaface benchmark: 1
million faces for recognition at scale. In Proceedings of the
IEEFE Conference on Computer Vision and Pattern Recogni-
tion, pages 4873-4882, 2016. 6

Buyu Li, Yu Liu, and Xiaogang Wang. Gradient harmonized
single-stage detector. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 8577-8584,
2019. 2

Wei Li, Xiatian Zhu, and Shaogang Gong. Harmonious at-
tention network for person re-identification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2285-2294, 2018. 6

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 212-220,
2017. 3

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 181-196, 2018.
2

Brianna Maze, Jocelyn Adams, James A Duncan, Nathan
Kalka, Tim Miller, Charles Otto, Anil K Jain, W Tyler
Niggel, Janet Anderson, Jordan Cheney, et al. Iarpa janus
benchmark-c: Face dataset and protocol. In 2018 Inter-
national Conference on Biometrics (ICB), pages 158-165.
IEEE, 2018. 6

Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. L2-
constrained softmax loss for discriminative face verification.
arXiv preprint arXiv:1703.09507, 2017. 3

Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In European Conference
on Computer Vision, pages 17-35. Springer, 2016. 2, 6

M Saquib Sarfraz, Arne Schumann, Andreas Eberle, and
Rainer Stiefelhagen. A pose-sensitive embedding for per-
son re-identification with expanded cross neighborhood re-



[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

ranking. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 420-429, 2018.
6

Leslie N Smith. Cyclical learning rates for training neural
networks. In 2017 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 464-472. IEEE, 2017. 6
Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao,
and Qi Tian. Pose-driven deep convolutional model for per-
son re-identification. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3960-3969,
2017. 6

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning
face representation from predicting 10,000 classes. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1891-1898, 2014. 2

Yifan Sun, Liang Zheng, Weijian Deng, and Shengjin Wang.
Svdnet for pedestrian retrieval. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3800—
3808, 2017. 6

Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined
part pooling (and a strong convolutional baseline). In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 480496, 2018. 6

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1-9, 2015.
6

Laurens Van Der Maaten. Accelerating t-sne using tree-
based algorithms. The Journal of Machine Learning Re-
search, 15(1):3221-3245, 2014. 2

Cheng Wang, Qian Zhang, Chang Huang, Wenyu Liu, and
Xinggang Wang. Mancs: A multi-task attentional network
with curriculum sampling for person re-identification. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 365-381, 2018. 6

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon
Yuille. Normface: 12 hypersphere embedding for face veri-
fication. In Proceedings of the 25th ACM international con-
ference on Multimedia, pages 1041-1049. ACM, 2017. 3
Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5265-5274, 2018. 1, 3,4, 5, 6,
7,8

Yicheng Wang, Zhenzhong Chen, Feng Wu, and Gang Wang.
Person re-identification with cascaded pairwise convolu-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1470-1478, 2018. 6
Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 79-88,
2018. 6

(38]

(39]

(40]

[41]

(42]

[43]

(44]

[45]

[40]

(47]

2979

Longhui Wei, Shiliang Zhang, Hantao Yao, Wen Gao, and
Qi Tian. Glad: Global-local-alignment descriptor for pedes-
trian retrieval. In Proceedings of the 25th ACM international
conference on Multimedia, pages 420-428. ACM, 2017. 6
Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A
discriminative feature learning approach for deep face recog-
nition. In European conference on computer vision, pages
499-515. Springer, 2016. 3, 4

Jing Xu, Rui Zhao, Feng Zhu, Huaming Wang, and Wanli
Ouyang. Attention-aware compositional network for person
re-identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2119—
2128, 2018. 6

Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-
mohan Chandraker. Feature transfer learning for face recog-
nition with under-represented data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5704-5713, 2019. 2, 4

Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In Proceedings of the IEEE international con-
ference on computer vision, pages 1116-1124, 2015. 6
Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,
Yi Yang, and Jan Kautz. Joint discriminative and generative
learning for person re-identification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2138-2147, 2019. 6

Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled sam-
ples generated by gan improve the person re-identification
baseline in vitro. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3754-3762, 2017. 2,
6

Zhedong Zheng, Liang Zheng, and Yi Yang. A discrimi-
natively learned cnn embedding for person reidentification.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), 14(1):13, 2018. 6

Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu,
Jianteng Peng, Xungiang Tao, and Yaohai Huang. Unequal-
training for deep face recognition with long-tailed noisy data.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7812-7821, 2019. 4

Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li,
and Yi Yang. Camera style adaptation for person re-
identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5157—
5166, 2018. 6



