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Abstract

We present a novel network for rolling shutter effect cor-

rection. Our network takes two consecutive rolling shutter

images and estimates the corresponding global shutter im-

age of the latest frame. The dense displacement field from

a rolling shutter image to its corresponding global shutter

image is estimated via a motion estimation network. The

learned feature representation of a rolling shutter image is

then warped, via the displacement field, to its global shutter

representation by a differentiable forward warping block.

An image decoder recovers the global shutter image based

on the warped feature representation. Our network can

be trained end-to-end and only requires the global shut-

ter image for supervision. Since there is no public dataset

available, we also propose two large datasets: the Carla-

RS dataset and the Fastec-RS dataset. Experimental results

demonstrate that our network outperforms the state-of-the-

art methods. We make both our code and datasets available

at https://github.com/ethliup/DeepUnrollNet.

1. Introduction

CMOS imaging sensors are widely used in many con-

sumer products. Most CMOS sensors capture images with

a rolling shutter mechanism. In contrast to a global shutter

camera, which captures all pixels at the same time, a rolling

shutter camera sequentially captures the image pixels row

by row. Therefore, different types of distortions, e.g. skew,

smear or wobble, will appear if the camera is moving dur-

ing the image capture. It is well known that many vision

tasks (e.g. structure from motion, visual odometry, pose

estimation or depth prediction) suffer from rolling shutter

distortions [1, 11, 15, 16, 26, 27]. The rolling shutter effect

correction problem has thus received considerable attention

in the past [24, 30, 32].

Existing works on rolling shutter effect correction can

be categorized into classical approaches and single image

based deep learning approaches. The classical approaches

Figure 1: Deep shutter unrolling network. Top left:

Ground truth global shutter image. Top right: Input rolling

shutter image. Bottom left: Predicted global shutter im-

age by our network. Bottom right: Absolute difference

between our predicted image and the ground truth global

shutter image.

can be further categorized into single image based meth-

ods and methods which use multiple images. Single image

based rolling shutter effect correction is an ill-posed prob-

lem and relies heavily on prior assumptions (e.g. straight

lines must remain straight), either formulated explicitly or

learned implicitly by a deep network, which limit their ap-

plicability to real scenarios. Classical multi-image based

approaches are more general and instead rely on geometric

constraints from multiple views to perform the rectification.

However, they usually formulate it as a computationally ex-

pensive optimization problem for 6 DoF camera motions,

which prevents the algorithm from being used in time con-

strained applications.

Inspired by the recent success of deep neural networks

on image-to-image translation problems, such as optical

flow estimation [29], dense depth prediction [6], motion de-

blurring [21] and image super-resolution [19], we propose
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an efficient end-to-end deep neural network for rolling shut-

ter effect correction. Our method solves a generic rectifica-

tion problem from two consecutive frames. It is able to take

advantage of the parallel computational power of a graphic

card and runs in near real time. Furthermore, benefiting

from the representational power of a deep network, our net-

work is also able to learn good image priors to further boost

the quality of the rectified image. Different from the above

image-to-image translation problems, in which the estima-

tions usually rely on its local neighborhood pixels of the

input image, the rolling shutter effect correction problem is

more challenging. A pixel of the rectified image might lie

far away from its corresponding pixel of the input rolling

shutter image, depending on the types of motion, 3D scene

structure as well as its capturing time. To resolve these chal-

lenges, we propose a novel network architecture for rolling

shutter image correction.

Our network takes two consecutive rolling shutter im-

ages as input and predicts the corresponding global shutter

image of the latest frame. It consists of four main parts:

an image encoder, a motion estimator, a differentiable for-

ward warping block and an image decoder. The motion esti-

mator estimates the dense per-pixel displacement field from

a rolling shutter image to its corresponding global shutter

image, given the learned feature representation from the

image encoder. The differentiable forward warping block

warps the learned feature representation to its correspond-

ing global shutter representation, given the estimated dis-

placement field. The global shutter image is then recov-

ered by the image decoder from the warped feature repre-

sentation. Our network can be trained end-to-end and only

requires the ground truth global shutter image for supervi-

sion, which is easy to obtain by using a high-speed cam-

era to synthesize the training data. Experimental results

demonstrate that our method outperforms the state-of-the-

art methods [31,32]. Fig. 1 presents qualitative results from

our network.

Since there is no public dataset available, we also pro-

pose two novel datasets: the Fastec-RS dataset and the

Carla-RS dataset, as our second contribution. The Fastec-

RS dataset has 2584 image pairs. It is generated via a pro-

fessional high-speed camera (with a framerate of 2400 FPS)

and captured in real environments. Since the camera is

mounted on a ground vehicle which undergoes limited mo-

tion, we also create the Carla-RS dataset with general six

degree of freedom (DoF) motions. This dataset is generated

from a virtual 3D environment and has 2500 image pairs.

To further research in this area we make both our code and

the datasets public.

2. Related Work

We categorize the related work into classical approaches

and deep learning based approaches. The classical ap-

proaches can be further classified into single image based

and multiple image based approaches.

Classical single image based approaches: Rengarajan

et al. [25] proposes to take advantage of the “straight lines

must remain straight” assumption to rectify a single rolling

shutter image. The camera motion is assumed to be purely

rotational. Curves are extracted and the motion is itera-

tively estimated by enforcing the transformed curves to be

straight. Purkait et al. [23] assumes the 3D scene captured

by the camera obeys Manhattan world assumption [4]. The

distortion is corrected by jointly aligning the vanishing di-

rections. Lao and Ait-Aider [17] propose a minimal solver

to estimate the camera motion based on four straight lines

from a single image. The motion is parameterized by pure

rotations. The RANSAC algorithm [7] is used to remove

outliers such that the camera motion can be estimated ro-

bustly. The rolling shutter effects can then be removed given

the estimated motion.

Classical multiple image based approaches: Liang et

al. [18] estimates per-pixel motion vector to rectify a rolling

shutter image. Block matching is used to find correspon-

dences between two consecutive frames, such that the mo-

tion can be estimated. Forssén and Ringaby [8] assumes

the camera has either pure rotation or in-plane translational

motion. The camera motion is estimated by minimizing the

re-projection errors between sparse corresponding points.

A KLT tracker [20] is used to establish the sparse corre-

spondences. Karpenko et al. [14] extends the work of [8]

by using inertial measurements. They model the camera

motion by pure rotations. The rolling shutter effect is re-

moved by solving an optimization problem, which jointly

stabilizes the video and calibrates the gyroscope. Baker et

al. [2] estimates the per-pixel motion vector from a video se-

quence to correct the rolling shutter distortion. The motion

is estimated via a constant affine or translational distortion

model, and is estimated in up to 30 row blocks. Grundmann

et al. [10] relaxes the constraints that a calibrated camera

is required for rolling shutter effect removal. They model

the motion between two neighbouring frames as a mixture

of homography matrices. The mixture of homographies is

estimated by minimizing the re-projection errors of corre-

sponding points. Zhuang et al. [31] proposes to solve a

dense SfM problem given two consecutive rolling shutter

images. They estimate both the camera motion and dense

depth map from dense correspondences. A minimal solver

is proposed to estimate the camera motion. Both the depth

map and motion are further estimated/refined by minimiz-

ing the re-projection errors. Vasu et al. [30] propose to solve

occlusion aware rolling shutter correction problem using

multiple consecutive frames. They model the 3D geome-

try as a layer of planar scenes. The depth, camera motion,

latent layer mask and latent layer intensities are jointly es-

timated. The global shutter image is recovered by the pro-
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Figure 2: Image formation models. The difference be-

tween a rolling shutter camera and a global shutter cam-

era is that the rows of a rolling shutter image are captured

at different timestamps with a constant time offset td. For

simplicity, we assume the exposure time te is infinitesimal

throughout the paper.

posed image formation model given all above estimations.

Deep learning based approaches: Rengarajan et al. [24]

propose to estimate the camera motion from a single rolling

shutter image by using a deep network. They assume a sim-

ple affine motion model. The global shutter image is then

recovered given the estimated motion. They train the net-

work with synthetic data, which is generated by using the

proposed motion model. Zhuang et al. [32] extends [24]

for depth aware rolling shutter effect correction from a sin-

gle image. Two independent networks are used to predict

the dense depth map and camera motion respectively. The

global shutter image is then recovered as a post-processing

step, given the estimated dense depth map and camera mo-

tion.

3. Method

The main concept of our method is to learn a dense per-

pixel displacement field, which is used to warp the learned

features from the rolling shutter image to its global shutter

counterpart. The global shutter image is then recovered by

an image decoder which decodes the warped features to an

image. Our network can be trained end-to-end and only

requires the global shutter image for supervision. Fig. 3

presents the details of our network architecture.

Rolling shutter image formation model: The difference

between a rolling shutter camera and a global shutter cam-

era is that every scanline of the rolling shutter camera is

exposed at different timestamps, as shown in Fig. 2. With-

out loss of generality, we assume the read-out direction is

from top to bottom. We further assume all pixels from the

same row are captured at the same timestamp. We can thus

obtain the image formation model of a rolling shutter image

as follows:

[Ir(x)]i = [Igi (x)]i, (1)

where I
g
i (x) is the virtual global shutter image captured at

timestamp i · td, td is the time to read out a single row,

[Igi (x)]i is an operator to extract the ith row from an image

I
g
i (x).

As the whole image readout time (i.e., Ntd where N is

the height of the image) is typically small (<50 ms), we

can assume that during the time of capture the image con-

tent is primarily affected by image motion and not by other

changes like object appearance or illumination. We can thus

model the virtual global shutter image I
g
i (x) as the result of

the first virtual global shutter image I
g
0(x) warped by a dis-

placement vector ui→0:

I
g
i (x) = I

g
0(x+ ui→0), (2)

where ui→0 ∈ R
2 denotes the displacement vector of pixel

x from the ith virtual global shutter image I
g
i to the ref-

erence image I
g
0, which corresponds to the virtual global

shutter image captured at timestamp 0. Thus, we can refor-

mulate Eq. (1) to

[Ir(x)]i = [Ig0(x+ ui→0)]i. (3)

We can further have

I
r(x) = I

g
0(x+ ur→g), (4)

where ur→g ∈ R
2 denotes the displacement vector of pixel

x from the rolling shutter image to the first virtual global

shutter image. If we stack ur→g for all pixels, it has follow-

ing form

[Ur→g]i = [Ui→0]i, (5)

where both Ur→g and Ui→0 are the dense displacement

field for all pixels, in matrix form.

As a special case, if the rolling shutter camera is sta-

tionary during image capture, the displacement field Ur→g

is zero. The captured rolling shutter image equals to the

global shutter image.

Rolling shutter effect removal: Rolling shutter effect re-

moval is an operation to reverse the above image forma-

tion model, i.e., Eq. (4). In particular, it is to estimate the

global shutter image I
g
0(x) given the captured rolling shut-

ter image I
r(x). It is an ill-posed problem for single image

rolling shutter effect removal, since the displacement field

Ur→g is difficult to recover from a single image. Existing

works typically take advantage of prior assumptions (e.g.

straight lines should remain straight) to estimate the dis-

placement field [25,32]. The prior assumption can be either

explicitly formulated [25] or implicitly learned by a deep

network [32]. Thus, single image rolling shutter correction

methods cannot generalize to scenarios where the prior as-

sumption is not satisfied. Therefore, we propose to use two

frames to solve a more general rectification problem.

To recover I
g
0 from I

r, it is more convenient to have dis-

placement field Ug→r instead of Ur→g . The global shutter

image can then be simply recovered by

I
g
0(x) = I

r(x+ ug→r), (6)
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Figure 3: Deep shutter unrolling network. Our network takes two consecutive rolling shutter images as input and predicts a

global shutter image. It consists of four main parts: an image encoder network, a motion estimation network, a differentiable

forward warping block and an image decoder network. The motion estimation network estimates the dense pixel-wise

velocity field from the rolling shutter image to the global shutter image. The displacement field is recovered by multiplying

the velocity field with the respective time offset of each pixel to that of the estimated global shutter image (i.e., T0, T1

and T2). The forward warping block warps the learned feature representation of the current rolling shutter image to its

global shutter representation, given the estimated displacement field. The image decoder network then transforms the warped

feature representation to a global shutter image. The dashed arrow represents the corresponding feature representation from

the current input image I
r
cur.

where bilinear interpolation can be used for pixels which

have non-integer positions. However, we are only given

rolling shutter images as input. It is more difficult for us to

estimate Ug→r compared to Ur→g . Thus, we design a mo-

tion estimation network to estimate Ur→g for rolling shut-

ter image rectification. It is not trivial to recover the global

shutter image given the displacement field Ur→g and the

rolling shutter image, since we cannot find the pixel cor-

respondences from the global shutter image to the rolling

shutter image. Thus, we propose to employ a forward warp-

ing block [8] to resolve this challenge. We derive and imple-

ment the derivatives of the forward warping block, to make

it differentiable such that we can incorporate it into our deep

network for end-to-end training. For compactness, we de-

note I
g
0 as Ig for future sections.

Differentiable forward warping block: As shown in

Fig. 4, we can approximate the intensity of a particular pixel

from the global shutter image, as a weighted average of its

neighboring pixel intensities from the rolling shutter image,

which was previously used in [8]. Formally, this can be de-

fined as

I
g(x) =

∑

x̂∈Ω(x) ωx̂I
r(x̂)

∑

x̂∈Ω(x) ωx̂

, (7)

where Ω(x) is the set of all pixels x̂ from the rolling shutter

image, which satisfy

‖x̂+ ur→g − x‖2 < r, (8)

Figure 4: Differentiable forward warping. The rolling

shutter image (i.e., green pixels) is warped to the image

grid of the global shutter image (i.e., black pixels and the

red pixel) by the estimated displacement field Ur→g . To re-

cover the intensities of the red pixel, we can compute the

weighted average of its four neighboring pixels (i.e., the

green pixels covered by the red circle with a radius r) from

the rolling shutter image.

where r is a pre-defined threshold with unit in pixels. We

can further define

ωx̂ = e
−

d(x,x̂)2

2σ2 , (9)

where

d(x, x̂) = ‖x̂+ ur→g − x‖2 , (10)

and σ is a pre-defined width of the kernel function. We

derive all the derivatives (i.e.,
∂Ig(x)
∂Ir(x) and

∂Ig(x)
∂ur→g

) that are

required for gradient back-propagation, which is necessary

for network training. Both the forward and backward pass

can be implemented efficiently by parallelizing the compu-
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tations on a graphic card. The derivations and implementa-

tion details can be found in our supplementary material.

Network architecture: In this section, we explain how to

design a deep network to estimate Ur→g and recover the

global shutter image. Everything presented in the previous

sections can be directly generalized from pixels to learned

feature representations. Fig. 3 presents the architecture of

our network.

Our network accepts two consecutive rolling shutter im-

ages and outputs a global shutter image corresponding to the

latest frame. It consists of four main parts, i.e., an encoder

network, a motion estimation network, a differentiable for-

ward warping block and an image decoder network. The en-

coder network consists of three pyramid levels. Each level

has a convolutional layer followed by three residual blocks.

To recover the latent global shutter image, it would be eas-

ier for the image decoder network to operate on the feature

representation which corresponds to the global shutter im-

age. We therefore use the differentiable forward warping

block to transform the learned feature representation of the

latest rolling shutter image to its global shutter counterpart.

The displacement field Ur→g used by the forward warping

block is estimated by the motion estimation network.

Besides the camera motion and 3D scene geometry,

Ur→g also depends on the time when a particular pixel

is being captured, i.e., the displacement vector of a pixel

nearer to the first row is usually smaller than those are fur-

ther away. During our ablation study, we find that the mo-

tion estimation network has difficulty to learn/model this

implicitly. We thus model this dependency explicitly and

design the network to learn the dense velocity field instead,

as shown in Fig. 3. Our motion estimation network com-

putes the cost volumes between both frames by a correlation

layer [12], based on the learned feature representation. The

velocity field is then estimated by a dense network block,

given the computed cost volumes as input. To recover the

displacement field Ur→g , we multiply the estimated veloc-

ity field with the time offset (i.e., T0, T1 and T2 as shown

in Fig. 3) between the captured pixel and that of the first

row. T0, T1 and T2 represent the time-offset for different

pyramid levels and they have the same resolutions as the

feature representations of the corresponding pyramid lev-

els. Without calibrating the camera, we simply set the row

read-out time (i.e., td as shown in Fig. 2) as 1 for simplic-

ity. The image decoder then predicts the global shutter im-

age given the warped feature representation. The decoder

network also consists of three pyramid levels. Each level

has three residual blocks followed by a deconvolution layer.

The details of the network architecture can be found in our

supplementary material.

Loss functions: To train our network, only the corre-

sponding ground truth global shutter image I
g
gt is required.

Empirically, we find a linear combination of the pixel-wise

L1 loss, the perceptual loss Lp [13] and a total variation

loss Ltv to encourage piecewise smoothness in the esti-

mated displacement field Ur→g , can give satisfactory per-

formance. If the perceptual loss is omitted, the estimated

image tends to be blurry. In summary, our loss function can

be formulated as

L = Lp(I
g, I

g
gt) + λ1L1(I

g, I
g
gt) + λ2Ltv(Ur→g), (11)

where both λ1 and λ2 are hyper-parameters and determined

empirically, Ig is the estimated global shutter image and I
g
gt

is the ground truth global shutter image.

4. Datasets

Both Rengarajan et al. [24] and Zhuang et al. [32] pro-

pose individual datasets to train their networks respectively.

However, their datasets are not released to the community.

Furthermore, both datasets simplify the real formation pro-

cess of a rolling shutter image. For example, Rengarajan

et al. [24] generate the synthetic image by applying simple

affine image warping and does not consider the 3D geom-

etry. Zhuang et al. [32] do consider the effect of the 3D

geometry. They warp a single global shutter image from

the KITTI dataset [9] to generate a synthetic rolling shut-

ter image, given the corresponding dense depth map and

camera motion. The dense depth map is estimated from a

stereo camera by a depth prediction network [3]. The 6 DoF

camera motion is randomly sampled from a pre-defined in-

terval. However, it still simplifies the real image formation

process, e.g. their dataset does not model occlusions, which

are common in real-world scenarios. Furthermore, the esti-

mated dense depth map is not the true 3D scene geometry

either.

Thus, we propose two datasets: the Carla-RS dataset

and the Fastec-RS dataset. Our datasets are synthesized via

high speed cameras and simulate the real image formation

process. The Carla-RS dataset is generated from a virtual

3D environment provided by the Carla simulator [5]. Carla

simulator is an open-source platform for autonomous driv-

ing research and it provides seven photorealistic 3D virtual

towns. We implement a rolling shutter camera model since

the original simulator does not support it. We also relax the

constraint that the camera is mounted on a ground vehicle,

such that we can freely move our rolling shutter camera in

six DoF. 250 sequences are randomly sampled and each se-

quence has 10 consecutive frames. Both a constant transla-

tional velocity model and a constant angular rate model are

used for the sequence generation, which is typically hold

in real scenarios due to the short time interval (i.e., <50ms)

between two consecutive frames. In total, we generate 2500

rolling shutter images at a resolution of 640× 448 pixels.

Since the Carla-RS dataset is generated from a virtual en-

vironment, we also propose another dataset, the Fastec-RS

5945



dataset which is created using real images in the wild. The

Fastec-RS dataset is synthesized using a professional Fastec

TS51 high speed global shutter camera with a framerate of

2400 FPS. We mount the camera on a ground vehicle and

collect 76 image sequences at a resolution of 640 × 480
pixels in mainly urban environment. Each sequence syn-

thesizes 34 rolling shutter images. In total, we have 2584

image pairs. The rolling shutter image is synthesized by se-

quentially copying a row of pixels from the captured global

shutter images.

5. Experimental Evaluation

Datasets: We evaluate our algorithm with both the Carla-

RS dataset and Fastec-RS dataset. We split the Carla-RS

dataset into training data and test data. The training data has

210 sequences and the test data has 40 sequences. Similarly,

we split the Fastec-RS dataset into 56 sequences for train-

ing and 20 sequences for test. Both the training data and test

data have no overlapping scenes. Since the ground truth oc-

clusion masks can be obtained and are also provided by the

Carla-RS dataset, we thus compute two quantitative metrics

for better evaluation, i.e., one without using the occlusion

mask and the other one using the occlusion mask. For com-

pactness, we denote the Carla-RS dataset with masks, the

Carla-RS dataset without masks and the Fastec-RS dataset

as CRM, CR and FR respectively for quantitative evalua-

tions.

Implementation details: We implemented our network

in PyTorch [22]. The differentiable forward warping is

imeplemted in CUDA with PyTorch wrappers. The hyper-

parameters are set empirically to r = 2, σ = 0.5, λ1 = 10
and λ2 = 0.1 unless stated otherwise. For better conver-

gence, we train our network in three pyramid levels. The

network is trained in 200 epochs with a learning rate 10−4.

We use a batch size of 3 and use uniform random crop at a

resolution of 320× 256 pixels for data augmentation.

State-of-the-art methods: We compare our network

against two state-of-the-art methods from [31] and [32],

which are the two most related works to our approach. The

method from [31] is a classical two image based approach

and we use the implementation provided by the authors.

The method from [32] is a single image based deep learning

approach. Since the authors did not release their implemen-

tations, we reimplemented their network and trained it on

our datasets for fair comparisons. To ensure our implemen-

tation is correct, we generated the same dataset as described

by [32] and trained our implemented network with it. In our

experiments, the test performance is similar to what was re-

ported in [32], in terms of both quantitative and qualitative

metrics on their dataset. Since the dataset from [32] is for

1https://www.fastecimaging.com/fastec-high-speed-cameras-ts-series/

PSNR↑ (dB) SSIM↑

Networks CRM CR FR CR FR

Net-autoenc-1 19.04 18.96 23.41 0.60 0.70

Net-autoenc-2 21.39 21.33 26.07 0.67 0.75

Net-disp 21.24 21.10 25.74 0.67 0.73

Net-vel-self 27.31 26.87 26.77 0.82 0.76

Ours 27.78 27.30 27.04 0.84 0.77

Table 1: Ablation study on the network architectures

and loss function.

single image based method, we cannot evaluate our algo-

rithm with that dataset.

Evaluation metrics: We use the peak signal-to-noise ra-

tio (PSNR) and the structural similarity index (SSIM) for

quantitative comparisons. Both PSNR and SSIM metrics

are commonly used to measure the similarity between im-

ages (see e.g. [19, 21]). Larger PSNR/SSIM values indicate

better image quality.

Ablation study on the network architectures: We im-

plemented several baseline networks to justify the design of

our network architecture. We remove the motion estimation

network and differentiable forward warping block to have

a vanilla auto-encoder network. We also modify the image

encoder such that it can accept a single rolling shutter im-

age as input. In total, we have two auto-encoder networks

for comparison. We denote them with Net-autoenc-1 and

Net-autoenc-2 respectively. We also study the performance

if we learn the displacement field directly, instead of the ve-

locity field as described in Section 3. It is achieved by set-

ting T0, T1 and T2 all equal to 1, such that the estimated

velocity field equals to the displacement field. We denote

the network as Net-disp.

Table 1 presents the quantitative performances of the net-

works. It demonstrates that a vanilla auto-encoder network

has difficulties to learn a good representation for rolling

shutter effect removal. A possible reason is that the recti-

fication problem involves non-local operations, which chal-

lenge the representation power of a vanilla auto-encoder

network. Besides the dependencies of Ur→g on the camera

motion and 3D scene geometry, it also depends on the cap-

ture time of a particular pixel. We find it challenges the mo-

tion estimation network to estimate the displacement field

directly. It is well explained by our experimental results,

i.e., our network outperforms Net-disp. Furthermore, the

experimental results also demonstrate that Net-autoenc-2

network performs better than Net-autoenc-1 network with

around 2.37 dB improvement on the Carla-RS dataset and

2.66 dB improvement on the Fastec-RS dataset. It demon-

strates that it is more difficult to learn a good representation

with a single rolling shutter image compared to multiple

images, due to the ill-posed nature of single image based

method.
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Input RS image Ours Zhuang et al. [31] Zhuang et al. [32]

Figure 5: Qualitative comparisons against state-of-the-art methods on the Carla-RS dataset. Second row: Residual

image, which is defined as the absolute difference between the corresponding image and the ground truth global shutter

image I
g
gt.

Figure 6: Generalization performance on real data. Left: Reconstructed 3D model with input rolling shutter images. Middle:

Reconstructed 3D model with predicted global shutter images. Right: Reconstructed 3D model with real global shutter images.

Ablation study on the loss function: We did an ablation

study to justify the loss functions that we used for network

training, i.e., Eq. (11). We focus our attention on the explic-

itly supervision of the dense displacement field estimation.

To achieve this, we introduce an additional loss function Ld

Ld =
∥

∥I
r −Wg→r ◦ I

g
gt

∥

∥

1
, (12)

where I
r is the latest input rolling shutter image, I

g
gt is the

corresponding ground truth global shutter image, Wg→r is

an operator which warpes the global shutter image to its

corresponding rolling shutter image and it depends on the

estimated dense displacement field Ur→g . The warping is

achieved by bilinear interpolations. The final loss function

used to train the network can be formualted as

Lf = L+ λ1Ld, (13)

where L represents the original loss function as shown in

Eq. (11), λ1 is a hyper-parameter and is empiracally se-

lected as 10. We represent the network trained with the loss

function Lf as Net-vel-self.

We train Net-vel-self with the same parameter configu-

rations as other networks. Experimental results presented in

Table 1 demonstrate that our network which is trained with

only L performs better than Net-vel-self. The introduc-

tion of the self-supervision loss Ld for the dense displace-

ment field Ur→g does not help improve the performance of

global shutter image estimation. A possible explanation is

that the occlusions between I
r and I

g
gt, which are used to

supervise the learning of Ur→g , degrades the prediction of

Ur→g since we cannot do bi-directional occlusion detec-

tion. The forward feature warping for global shutter image

recovery would thus be affected by the degraded Ur→g and

it further affects the final global shutter image prediction. It

demonstrates that the loss function L presented in Eq. (11)

is sufficient to implicitly supervise the learning of Ur→g .

Quantitative and qualitative evaluations against base-

line methods: We compare our network with two state-

of-the-art baseline methods. Both the quantitative and qual-

itative comparisons are presented in Table 2 and Fig. 5 re-

spectively. The experimental results demonstrate that our

method performs better than the other two state-of-the-art

approaches. The work from Zhuang et al. [32] is a single

image learning based approach. We find that it has limited

generalization performance on our test data. The reason is

that the scene content of our test data is quite different from
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Figure 7: Qualitative comparisons against conventional methods with dataset of [31]. It demonstrates that our network

predicts a plausible rectification and also inpaints the occluded regions with the learned image priors.

that of our training data. The learned geometric priors from

training data do not hold to the test data. In contrast, our

network can be generalized well as we solve a generic rec-

tification problem with two input frames. Zhuang et al. [31]

is a classical approach with two input frames. We find it

can work well if the input images have good textures. How-

ever, as shown in Fig. 5, it does not perform well for in-

put frames with poorly textured regions, which results in

visually unpleasing global shutter images. In contrast, our

network predicts a plausible rectification with better image

quality. Furthermore, our network can also take advantage

of the learned image priors to fill in the occluded regions,

from which the classical approach (i.e., Zhuang et al. [31])

is unable to reconstruct. This is also visible in the quan-

titative results, shown in Table 2, i.e., the PSNR metrics

for Zhuang et al. [31] on Carla-RS dataset are 25.93 dB and

22.88 dB for the evaluations with occlusion masks and with-

out masks respectively; The difference is 3.05 dB, however,

ours is only 0.48 dB. It demonstrates our method handles

occlusion better, since our network is able to inpaint the oc-

cluded regions from the learned image priors. Furthermore,

our network is also orders of magnitude faster than Zhuang

et al. [31]. It takes around 0.43 second to process a VGA

resolution image (i.e., 640 × 480 pixels) with an Nvidia

GTX 1080Ti graphic card, while Zhuang et al. [31] takes

around 467.26 seconds on an Intel Core i7-7700K CPU.

More qualitative results can be found from our supplemen-

tary material.

Generalization performance to real data: To evaluate

the generalization performance of our network, we also col-

lect a sequence of real rolling shutter images with a Log-

itech C210 webcam. The camera is mounted on the side

of a ground vehicle which moves forward. For compari-

son, we also collect global shutter images with the same

PSNR↑ (dB) SSIM↑

Methods CRM CR FR CR FR

Zhuang et al. [31] 25.93 22.88 21.44 0.77 0.71

Zhuang et al. [32] 18.70 18.47 N.A. 0.58 N.A.

Ours 27.78 27.30 27.04 0.84 0.77

Table 2: Quantitative comparisons against the state-of-

the-art methods. Since the Fastec-RS dataset does not have

ground truth depth and motion, we cannot evaluate Zhuang

et al. [32] with it.

camera (i.e., the camera is stationary while capture). The

rolling shutter images are then rectified with our pretrained

network. We run a SfM pipeline (i.e., COLMAP [28])

to process the rolling shutter images, the rectified rolling

shutter images, and the global shutter images respectively.

Fig. 6 demonstrates that our pretrained network corrects the

distortion and results in a more accurate 3D model as the

ground truth model. We also evaluate the generalization

performance of our network against conventional methods

with the dataset from Zhuang et al. [31]. The results pre-

sented in Fig. 7 demonstrate that our network predicts a

plausible rectification and also inpaints the occluded regions

with the learned image priors.

6. Conclusion

We propose an efficient end-to-end deep neural network

for generic rolling shutter image correction. Our network

takes two consecutive frames and estimates the global shut-

ter image corresponding to the latest frame. It is able to take

advantage of the representational power of a deep network

and outperforms existing state-of-the-art methods. We also

present two large datasets, which simulate the real image

formation process of a rolling shutter image.

5948



References

[1] Cenek Albl, Zuzana Kukelova, Viktor Larsson, and Tomas

Pajdla. Rolling shutter camera absolute pose. In IEEE Trans.

on Pattern Analysis and Machine Intelligence (PAMI), 2019.

1

[2] Simon Baker, Eric Bennett, Sing Bing Kang, and Richard

Szeliski. Removing rolling shutter wobble. In CVPR, 2010.

2

[3] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In CVPR, 2018. 5

[4] James M. Coughlan and Alan L Yuille. The manhattan world

assumption: Regularities in scene statistics which enable

bayesian inference. In Advances in Neural Information Pro-

cessing Systems (NIPS), 2000. 2

[5] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. CARLA: An open urban driving

simulator. In Proc. Conf. on Robot Learning (CoRL), 2017.

5

[6] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in Neural Information Processing Sys-

tems (NIPS), 2014. 1

[7] Martin A. Fischler and Robert C. Bolles. Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Communications

of the ACM, 24:381–395, 1981. 2

[8] Per Erik Forssen and Erik Ringaby. Rectifying rolling shutter

video from hand-held devices. In CVPR, 2010. 2, 4

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2012. 5

[10] Matthias Grundmann, Vivek Kwatra, Daniel Castro, and Ir-

fan Essa. Calibration free rolling shutter removal. In Proc.

of the IEEE International Conf. on Computational Photog-

raphy (ICCP), 2012. 2

[11] Johan Hedborg, Per-Erik Forssén, Michael Felsberg, and

Erik Ringaby. Rolling shutter bundle adjustment. In CVPR,

2012. 1

[12] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. Proc.

IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2017. 5

[13] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

Proc. of the European Conf. on Computer Vision (ECCV),

2016. 5

[14] Alexandre Karpenko, David Jacobs, Jongmin Baek, and

Marc Levoy. Digital video stabilization and rolling shutter

correction using gyroscopes. In Technical report, Stanford,

2011. 2

[15] Jae-Hak Kim, Yasir Latif, and Ian Reid. Rrd-slam: Radial-

distorted rolling-shutter direct slam. In Proc. IEEE Interna-

tional Conf. on Robotics and Automation (ICRA), 2017. 1

[16] Bryan Klingner, David Martin, and James Roseborough.

Street view motion-from-structure-from-motion. In Proc. of

the IEEE International Conf. on Computer Vision (ICCV),

2013. 1

[17] Yizhen Lao and Omar Ait-Aider. A robust method for strong

rolling shutter effects correction using lines with automatic

feature selection. In CVPR, 2018. 2

[18] Chia-Kai Liang, Li-Wen Chang, and Homer H. Chen. Anal-

ysis and compensation of rolling shutter effect. In Proc. of

the IEEE Transactions on Image Processing (ITIP), 2008. 2

[19] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPR Workshops, 2017. 1, 6

[20] Bruce D. Lucas and Takeo Kanade. An iterative image reg-

istration technique with an application to stereo vision. In

Proc. of the International Joint Conf. on Artificial Intelli-

gence (IJCAI), 1981. 2

[21] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 6

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-

ferentiation in PyTorch. In Advances in Neural Information

Processing Systems (NIPS), 2017. 6

[23] Pulak Purkait, Christopher Zach, and Ales Leonardis.

Rolling shutter correction in manhattan world. In ICCV,

2017. 2

[24] Vijay Rengarajan, Yogesh Balaji, and A.N. Rajagopalan.

Unrolling the shutter: Cnn to correct motion distortions. In

CVPR, 2017. 1, 3, 5

[25] Vijay Rengarajan, A.N. Rajagopalan, and R. Aravind. From

bows to arrows: rolling shutter rectification of urban scenes.

In CVPR, 2016. 2, 3
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