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Abstract

Contrast maximisation estimates the motion captured in

an event stream by maximising the sharpness of the motion-

compensated event image. To carry out contrast max-

imisation, many previous works employ iterative optimisa-

tion algorithms, such as conjugate gradient, which require

good initialisation to avoid converging to bad local min-

ima. To alleviate this weakness, we propose a new globally

optimal event-based motion estimation algorithm. Based

on branch-and-bound (BnB), our method solves rotational

(3DoF) motion estimation on event streams, which sup-

ports practical applications such as video stabilisation and

attitude estimation. Underpinning our method are novel

bounding functions for contrast maximisation, whose the-

oretical validity is rigorously established. We show con-

crete examples from public datasets where globally optimal

solutions are vital to the success of contrast maximisation.

Despite its exact nature, our algorithm is currently able to

process a 50, 000-event input in ≈ 300 seconds (a locally

optimal solver takes ≈ 30 seconds on the same input). The

potential for GPU acceleration will also be discussed.

1. Introduction

By asynchronously detecting brightness changes, event

cameras offer a fundamentally different way to detect and

characterise physical motion. Currently, active research is

being conducted to employ event cameras in many areas,

such as robotics/UAVs [9, 21], autonomous driving[22, 31,

32], and spacecraft navigation [7, 8]. While the utility of

event cameras extends beyond motion perception, e.g., ob-

ject recognition and tracking [26, 28], the focus of our work

is on estimating visual motion using event cameras.

Due to the different nature of the data, new approaches

are required to extract motion from event streams. A recent

successful framework is contrast maximisation (CM) [13].

Given an event stream, CM aims to find the motion param-

eters that yield the sharpest motion-compensated event im-

age; see Fig. 1. Intuitively, the correct motion parameters

will align corresponding events, thereby producing an im-

(a) Event stream (w/o polarity). (b) Contrast = 0.9993 (identity).

(c) Contrast = 1.0103 (local). (d) Contrast = 1.9748 (global).

Figure 1. (a) 10 ms event stream under rotational motion [14].

Since event polarity is not used in our work, the events are plotted

in the same colour. (b) Event image without motion compensa-

tion (identity transformation). (c)(d) Event images produced with

locally and globally optimal contrast maximisation.

age with high contrast. We formally define CM below.

Event image Let E = {ei}
N
i be an event stream recorded

over time duration T = [0, tmax]. Each event ei =
(ui, ti, pi) contains an image position ui, time stamp ti ∈
T , and polarity pi ∈ {−1,+1}. We assume E was pro-

duced under camera motionM over a 3D scene, thus each

ei is associated with a scene point that triggered the event.

We parameterise M by a vector ω ∈ Ω, and let X =
{xj}

P
j=1 be the centre coordinates of the pixels in the image

plane of the event sensor. Under CM, the event image Hc is

defined as a function of ω, and the intensity at pixel xj is

Hc(xj ;ω) =

N
∑

i=1

δ(xj − f(ui, ti; ω)), (1)

where δ is a kernel function (e.g., Gaussian). Follow-

ing [13, Sec. 2.1], we do not use event polarities in (1). Hc
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is regarded to be captured at time 0, and the function

u′
i = f(ui, ti; ω) (2)

warps ui to u′
i in Hc by “undoing” the motionM between

time 0 and ti. Intuitively, u′
i is the image position of the 3D

scene point that triggered ei, if it was observed at time 0.

In practice, the region of support of the kernel δ in (1) is

small w.r.t. image dimensions, e.g., Gaussian kernels with

bandwidth σ = 1 pixel were used in [13, Sec. 2]. This

motivates the usage of “discrete” event images

Hd(xj ;ω) =

N
∑

i=1

I(f(ui, ti; ω) lies in pixel xj), (3)

where I returns 1 if the input predicate is true, and 0 other-

wise. As we will show later, conducting CM using Hc (with

small bandwidth) and Hd yields almost identical results.

Contrast maximisation The contrast of an event image

H (continuous or discrete) is the variance of its pixel values.

Since H depends on ω, the contrast is also a function of ω

C(ω) =
1

P

P
∑

j=1

(H(xj ;ω)− µ(ω))2, (4)

where µ(ω) is the mean intensity

µ(ω) =
1

P

P
∑

j=1

H(xj ;ω). (5)

CM [13] estimatesM by maximising the contrast of H , i.e.,

max
ω∈Ω

C(ω). (6)

The intuition is that the correct ω will allow M to align

events that correspond to the same scene points in H , thus

leading to a sharp or high-contrast event image; see Fig. 1.

Global versus local solutions By globally optimal (or

“global”) solution to CM (6), we mean ω∗ ∈ Ω such that

C(ω∗) ≥ C(ω) ∀ω ∈ Ω. (7)

A solution ω̂ is approximate if C(ω̂) < C(ω∗). Also, a

solution is locally optimal (or “local”) if it is the maximiser

of its neighbourhood [24, Chap. 2]. All global solutions are

locally optimal, but the converse is not true.

1.1. Previous works

Previous works on CM (e.g., [11, 13, 28, 29]) apply non-

linear optimisation (e.g., conjugate gradient) to solve (6).

Given an initial solution ω(0), the solution is successively

updated until convergence to a locally optimal solution. In

practice, if the local solution is a bad approximate solution,

there can be significant differences in its quality compared

to the global solution; see Fig. 1. This can occur when ω(0)

is too distant from good solutions, or C(ω) is too noncon-

cave (e.g., when δ has a very small bandwidth). Thus, algo-

rithms that can find ω∗ are desirable.

Recent improvements to CM include modifying the ob-

jective function to better suit the targeted settings [11, 29].

However, the optimisation work horse remains locally op-

timal methods. Other frameworks for event processing [6,

7, 12, 18, 19, 20] conduct filtering, Hough transform, or

specialised optimisation schemes; these are generally less

flexible than CM [13]. There is also active research in ap-

plying deep learning to event data [27, 33, 35, 36], which

require a separate training phase on large datasets.

Contributions We focus on estimating rotational motion

from events, which is useful for several applications, e.g.,

video stabilisation [14] and attitude estimation [8].

Specifically, we propose a BnB method for globally opti-

mal CM for rotation estimation. Unlike previous CM tech-

niques, our algorithm does not require external initialisa-

tions ω(0), and can guarantee finding the global solution ω∗

to (6). Our core contributions are novel bounding functions

for CM, whose theoretical validity are established. As we

will show in Sec. 4, while local methods generally produce

acceptable results [13, 14], they often fail during periods

with fast rotational motions. On the other hand, our global

method always returns accurate results.

2. Rotation estimation from events

If duration T is small (e.g., tmax = 10ms), a fixed axis

of rotation and constant angular velocity can be assumed for

M [13]. Following [13, Sec. 3],M can be parametrised as

a 3-vector ω, where the direction of ω is the axis of rota-

tion, and the length ‖ω‖2 of ω is the angular rate of change.

Between time 0 and t, the rotation undergone is

R(t;ω) = exp([ω t]×), (8)

where ωt is the axis-angle representation of the rotation,

[ωt]× is the skew symmetric form of ωt, and exp is the

exponential map (see [1] for details).

Let K be the 3 × 3 intrinsic matrix of the event camera

(K is known after calibration [2, 34]). The warp (2) is thus

f(ui, ti; ω) =
K(1:2)R(ti;ω)ũi

K(3)R(ti;ω)ũi

, (9)

where ũi = [uT
i 1]T is the homogeneous version of ui, and

K(1:2) and K(3) are respectively the first-two rows and third

row of K. Intuitively, (9) rotates the ray that passes through

ui using R(ti;ω), then projects the rotated ray onto H .

Following [13, Sec. 3], we also assume a known maxi-

mum angular rate rmax. The domain is thus an rmax-ball

Ω = {ω ∈ R
3 | ‖ω‖2 ≤ rmax}, (10)
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and our problem reduces to maximising C(ω) over this ball,

based on the rotational motion model (9).

2.1. Main algorithm

Algorithm 1 summarises our BnB algorithm to achieve

globally optimal CM for rotation estimation. Starting from

the tightest bounding cube B on the rmax-ball Ω (the initial

B is thus of size (2rmax)
3), the algorithm recursively sub-

divides B and prunes the subcubes until the global solution

is found. A lower bound C and upper bound C(B) are used

to prune each B. When the difference between the bounds

is smaller than τ , the algorithm terminates with ω̂ being the

global solution ω∗ (up to error τ , which can be chosen to be

arbitrarily small). See [15, 16] for details of BnB.

As alluded to above, our core contributions are novel

and effective bounding functions for CM using BnB. We

describe our bounding functions in the next section.

Algorithm 1 BnB for rotation estimation from events.

Require: Event stream E = {ei}
N
i=1, maximum angular

rate of change rmax, convergence threshold τ .

1: q ← Initialise priority queue.

2: B← Cube in R
3 of size (2rmax)

3 centred at origin.

3: ωc ← Centre of B.

4: ω̂ ← ωc.

5: Insert B into q with priority C(B).
6: while q is not empty do

7: B← Dequeue top item from q.

8: If C(B)− C(ω̂) ≤ τ , then terminate.

9: ωc ← Centre of B.

10: If C(ωc) ≥ C(ω̂), then ω̂ ← ωc.

11: Uniformly subdivide B into 8 subcubes B1, . . . ,B8.

12: for i = 1, · · · , 8 do

13: if C(Bi) ≥ C(ω̂) then

14: Insert Bi into q with priority C(Bi).
15: end if

16: end for

17: end while

18: return ω̂ as ω∗.

3. Bounds for contrast maximisation

To search for the maximum of C(ω) using BnB, a lower

and upper bound on the objective are required.

The lower bound C must satisfy the condition

C ≤ max
ω∈Ω

C(ω), (11)

which is trivially achieved by any (suboptimal) solution. In

Algorithm 1, the current best solution ω̂ is used to provide

C, which is iteratively raised as the search progresses.

The upper bound C(B) is defined over a region (a sub-

cube) B of Ω, and must satisfy the condition

C(B) ≥ max
ω∈B

C(ω). (A1)

Also, as B collapses to a single point ω, C(B) should equate

to C(ω); more formally,

C(B)→ C(ω) when B→ ω. (A2)

See [16] for the rationale of the above conditions for BnB.

Deriving the upper bound is a more involved process.

Our starting point is to rewrite (4) as

C(ω) =
1

P

P
∑

j=1

H(xj ;ω)2 − µ(ω)2, (12)

which motivates a bound based on two components

C(B) :=
1

P
S(B)− µ(B)2, (13)

where S(B) is an upper bound

S(B) ≥ max
ω∈B

P
∑

j=1

H(xj ;ω)2 (14)

on the “sum of squares (SoS)” component, and

µ(B) ≤ min
ω∈B

µ(ω) (15)

is a lower bound of the mean pixel value. Given (14)

and (15), then (13) satisfies A1. If equality holds in (14)

and (15) when B is singleton, then (13) also satisfies A2.

In Secs. 3.1 and 3.2, we develop S(B) for continuous and

discrete event images, before deriving µ(B) in Sec. 3.3.

3.1. SoS bound for continuous event image

For the continuous event image Hc (1), our SoS upper

bound (denoted Sc) is defined as

Sc(B) :=

P
∑

j=1

Hc(xj ;B)
2, (16)

where Hc(xj ;B) is an upper bound on the value of Hc at

xj . To obtain Hc(xj ;B), we bound the position

{u′
i = f(ui, ti; ω) | ω ∈ B} (17)

of each warped event, under all possible ω ∈ B for the

warping function (9). To this end, let ωc be the centre of a

cube B, and ωp and ωq be opposite corners of B. Define

αi(B) := 0.5‖ωpti − ωqti‖2. (18)
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Figure 2. (a) The vector R(ti,ω)ũi for all ω ∈ B lies in the cone Vi(B), and the projection of Vi(B) onto the image plane is an elliptical

region Li(B). (b) Example with 5 × 5 pixel image and N = 5 events; there are thus N = 5 discs {Di(B)}
5

i=1 on the image. The value

in a pixel is the number of discs that intersect the pixel. Pixels with the same color are from the same connected component (CC); there

are 9 CCs in this example. (c)(d) Incidence matrix M corresponding to the example in (b). The solution of IQP and R-IQP are indicated

respectively in (c) and (d), where entries (i, k) of Z that are set to 1 are marked in red. The dominant columns of M are outlined in green,

and their corresponding CCs are also outlined in green in (b).

Then, the following inequality can be established

∠(R(ti;ωc)ũi,R(ti;ω)ũi) ≤ αi(B), (19)

which is an extension of [15, Lemma 3.2]. Intuitively, (19)

states that the rotated vector R(ti;ω)ũi under all ω ∈ B

must lie within the cone

Vi(B) :=
{

ũ ∈ R
3 | ∠(R(ti;ωc)ũi, ũ) ≤ αi(B)

}

. (20)

Fig. 2a illustrates the cone Vi(B). Now, the pinhole projec-

tion of all the rays in Vi(B) yields the 2D region

Li(B) =

{

x =
K(1:2)ũ

K(3)ũ

∣

∣

∣

∣

ũ ∈ Vi(B)

}

, (21)

which is an elliptical region [23, Chap. 2]; see Fig. 2a. Fur-

ther, the centre ci(B), semi-major axis yi(B) and semi-

minor axis zi(B) of Li(B) can be analytically determined

(see the supplementary material). We further define

Di(B) =
{

x ∈ R
2
∣

∣ ‖x− ci(B)‖ ≤ ‖yi(B)‖
}

, (22)

i.e., the smallest disc that contains Li(B).
By construction,Di(B) fully contains the set of positions

that u′
i can take for all ω ∈ B, i.e., the set (17). We thus

define the upper bound on the pixel values of Hc as

Hc(xj ;B) =

N
∑

i=1

δ (max (‖xj − ci(B)‖ − ‖yi(B)‖, 0)) .

(23)

Intuitively, we take the distance of xj to the boundary of

Di(B) to calculate the intensity, and if xj is within the disc

then the distance is zero.

Lemma 1.

Hc(xj ;B) ≥ max
ω∈B

Hc(xj ;ω) (24)

with equality achieved if B is singleton, i.e., B = {ω}.

Proof. See supplementary material.

Given Lemma 1, it is clear that Sc(B) satisfies the con-

ditions (see Sec. 3) to be a valid component in the upper

bound (13) for the continuous event image Hc.

3.2. SoS bound for discrete event image

Given the N discs {Di(B)}
N
i=1 associated with the N

events, define the intersection matrix T ∈ {0, 1}N×P :

Ti,j =

{

1 Di(B) intersects pixel xj ;

0 otherwise.
(25)

The disc-pixel intersections can be computed efficiently

using established techniques [10, 30]. We assume
∑P

j=1 Ti,j > 0 for all i, i.e., each disc intersects at least

one pixel. If there are discs that lie beyond the image plane,

we ignore these discs without loss of generality.

A direct extension of Hc (23) to the discrete case would

be to calculate the pixel upper bound value as

Hd(xj ;B) =

N
∑

i=1

Ti,j , (26)

i.e., number of discs that intersect the pixel; see Fig. 2b.

This can however be overly pessimistic, since the pixel

value for the discrete event image (3) satisfies

P
∑

j=1

Hd(xj ;ω) ≤ N =⇒
P
∑

j=1

Hd(xj ;ω)2 ≤ N2, (27)

whereas by using (26),

P
∑

j=1

Hd(xj ;B) ≤ PN =⇒
P
∑

j=1

Hd(xj ;ω)2 ≤ (PN)2.

(28)
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Note that P is the number of pixels (e.g., P = 240×320 =
76k for IniVation Davis 240C [3]), thus (PN)2 ≫ N2.

To get a tighter bound, we note that the discs {Di(B)}
N
i=1

partition X into a set of connected components (CC)

{Gk}
K
k=1, (29)

where each Gk is a connected set of pixels that are inter-

sected by the same discs; see Fig. 2b. Then, define the inci-

dence matrix M ∈ {0, 1}N×K , where

Mi,k =

{

1 ∃xj ∈ Gk such that Ti,j = 1;

0 otherwise.
(30)

In words, Mi,k = 1 if Di(B) is a disc that intersect to form

Gk. We then formulate the integer quadratic program

S
∗

d(B) = max
Z∈{0,1}N×K

K
∑

k=1

(

N
∑

i=1

Zi,kMi,k

)2

s.t. Zi,k ≤Mi,k, ∀i, k,

K
∑

k=1

Zi,k = 1, ∀i.

(IQP)

In words, choose a set of CCs that are intersected by as

many discs as possible, while ensuring that each disc is se-

lected exactly once. Intuitively, IQP warps the events (under

uncertainty ω ∈ B) into “clusters” that are populated by as

many events as possible, to encourage fewer clusters and

higher contrast. See Fig. 2c for a sample solution of IQP.

Lemma 2.

S
∗

d(B) ≥ max
ω∈B

P
∑

j=1

Hd(xj ;ω)2, (31)

with equality achieved if B is singleton, i.e., B = {ω}.

Proof. See supplementary material.

Solving IQP is challenging, not least because {Gk}
K
k=1

and M are costly to compute and store (the number of CCs

is exponential in N ). To simplify the problem, first define

the density of a CC Gk (corresponding to column M:,k) as

∆k =

N
∑

i=1

Mi,k. (32)

We say that a column M:,η of M is dominant if there exists

a subset Λ ⊂ {1, . . . ,K} (including Λ = ∅) such that

Mi,k ≤Mi,η ∀i ∈ {1, . . . , N}, ∀k ∈ Λ, (33)

whereas for all k /∈ Λ, the above does not hold. In words,

the 1 elements of columns in Λ is a subset of the 1 elements

Algorithm 2 Computing dominant columns M′.

Require: Pixels {xj}
P
j=1, set of discs {Di(B)}

N
i=1 (22).

1: T← N × P intersection matrix (25) from discs.

2:
{

Hd(xj ;B)
}P

j=1
← Pixel upper bound image (26).

3: {aj}
P
j=1 ← Array of P elements initialised to 0.

4: M′ ← [ ] (empty matrix).

5: for i = 1, . . . , N do

6: cmax ← maxxj∈Di(B) Hd(xj ;B).

7: R ←
{

xj ∈ Di(B) | Hd(xj ;B) = cmax, aj = 0
}

.

8: whileR is not empty do

9: Pick a pixel xj ∈ R and aj ← 1.

10: M′ ←
[

M′ T:,j

]

andR ← R \ {xj}.
11: for xℓ ∈ R do

12: if T:,ℓ = T:,j then

13: aℓ ← 1 andR ← R \ {xℓ}.
14: end if

15: end for

16: end while

17: end for

18: return M′.

of M:,η . Geometrically, a dominant column M:,η corre-

sponds to a CC Gη such that for all discs that intersect to

form the CC, Gη is the densest CC that they intersect with;

mathematically, there exists Di(B) ⊇ Gη such that

max
xj∈Di(B)

N
∑

i=1

Ti,j =

N
∑

i=1

Mi,η. (34)

Figs. 2b and 2c illustrate dominant columns.

Let M′ ∈ {0, 1}N×K′

contain only the dominant

columsn of M. Typically, K ′ ≪ K, and M′ can be com-

puted directly without first building M, as shown in Algo-

rithm 2. Intuitively, the method loops through the discs and

incrementally keeps track of the densest CCs to form M′.

Lemma 3. Problem IQP has the same solution if M is re-

placed with M′.

Proof. See supplementary material.

It is thus sufficient to formulate IQP based on the domi-

nant columns M′. Further, we relax IQP into

Sd(B) = max
Z∈{0,1}N×K′

K′

∑

k=1

(

N
∑

i=1

Zi,kM
′
i,k

)2

s.t. Zi,k ≤M′
i,k, ∀i, k,

K′

∑

k=1

N
∑

i=1

Zi,k = N.

(R-IQP)

where we now allow discs to be selected more than

once. Since enforcing
∑K′

k=1 Zi,k = 1 for all i implies
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∑K′

k=1

∑N
i=1 Zi,k = N , R-IQP is a valid relaxation. See

Fig. 2d for a sample result of R-IQP, and cf. Fig. 2c.

Lemma 4.

Sd(B) ≥ S
∗

d(B) (35)

with equality achieved if B is singleton, i.e., B = {ω}.

Proof. See supplementary material.

Bound computation and tightness R-IQP admits a sim-

ple solution. First, compute the densities {∆k}
K′

k=1 of the

columns of M′. Let ∆(k) be the k-th highest density, i.e.,

∆(k1) ≥ ∆(k2) if k1 < k2. (36)

Obtain γ as the largest integer such that

γ
∑

k=1

∆(k) < N. (37)

Then, the SoS upper bound for the discrete event image is

Sd(B) =

γ
∑

k=1

∆2
(k) +

(

N −

γ
∑

k=1

∆(k)

)2

. (38)

Intuitively, the procedure greedily takes the densest CCs

while ensuring that the quota of N discs is not exceeded.

Then, any shortfall in the number of discs is met using the

next largest CC partially. Given M′, the costliest routine is

just the sorting of the column sums of M′.

Given the final constraint in R-IQP, it is clear that

Sd(B) ≤ N2. This represents a much tighter SoS upper

bound than
∑P

j=1 Hd(xj ;ω)2; see (28).

3.3. Lower bound of mean pixel value

For the continuous event image (1), the lower bound of

the pixel value is the “reverse” of the upper bound (23), i.e.,

Hc(xj ;B) =

N
∑

i=1

δ (‖xj − ci(B)‖+ ‖yi(B)‖) , (39)

whereby for each Di(B), we take the maximum distance

between xj and a point on the disc. Then, the lower bound

of the mean pixel value is simply

µ
c
(B) =

1

P

P
∑

j=1

Hc(xj ;B). (40)

In the discrete event image (3), if all the N discs lie fully in

the image plane, the lower bound can be simply calculated

as N/P . However, this ideal case rarely happens, hence the

the lower bound on the mean pixel vale is

µ
d
(B) =

1

P

N
∑

i=1

I(Di fully lie in the image plane). (41)

See the supplementary material for proofs of the correctness

of the above lower bounds.

3.4. Computational cost and further acceleration

Our BnB method is able to process N ≈ 50, 000 events

in ≈ 300 seconds. While this does not allow online low

latency event processing, it is nonetheless useful for event

sensing applications that permit offline computations, e.g.,

video stabilisation with post-hoc correction. Note that a lo-

cal method can take up to 30 seconds to perform CM on the

same input, which also does not enable online processing1

(Sec. 4 will present more runtime results).

There is potential to speed-up our algorithm using GPUs.

For example, in the bound computations for the discrete

event image case, the disc-pixel intersection matrix T (25)

could be computed using GPU-accelerated ray tracing [5,

25], essentially by backprojecting each pixel and intersect-

ing the ray with the cones (20) in parallel. We leave GPU

acceleration as future work.

4. Results

We first examine the runtime and solution quality of our

algorithms, before comparing against state-of-the-art meth-

ods in the literature. The results were obtained on a standard

desktop with a 3.0GHz Intel i5 CPU and 16GB RAM.

4.1. Comparison of bounding functions

The aim here is to empirically compare the performance

of BnB (Algorithm 1) with continuous and discrete event

images. We call these variants CMBnB1 and CMBnB2.

For this experiment, a 10 ms subsequence (which con-

tains about N = 50, 000 events) of the boxes data [14] was

used. The underlying camera motion was a pure rotation.

For CMBnB1, a Gaussian kernel with bandwidth 1 pixel

was used (following [13, Sec. 2]). Fig. 3 plots the upper

and lower bound values over time in a typical run of Algo-

rithm 1. It is clear that the discrete case converged much

faster than the continuous case; while CMBnB2 terminated

at about 12k iterations, CMBnB1 requried no fewer than

30k iterations. It is evident from Fig. 3 that this difference

in performance is due to the much tighter bounding in the

discrete case. The next experiment will include a compari-

son of the solution quality of CMBnB1 and CMBnB2.

4.2. Qualitative comparisons

To highlight the importance of globally optimal CM, we

tested on select 10 ms subsequences (about N = 50k events

each) from the boxes data [14]—in the next experiment,

a more comprehensive experiment and quantitative bench-

marking will be described. Here, on the subsequences cho-

sen, we compared BnB against the following methods:

1Since the implementation of [13] was not available, we used the conju-

gate gradient solver in fmincon (Matlab) to solve CM locally optimally.

Conjugate gradient solvers specialised for CM could be faster, though the

previous works [11, 13, 17, 28] did not report online performance.

6354



0 0.5 1 1.5 2 2.5 3

Number of iteration 10
4

10
5

10
6

0

0

0

0

0

1
Upper Bound for CMBnB1

Lower Bound for CMBnB1

Upper Bound for CMBnB2

Lower Bound for CMBnB2

Figure 3. Upper and lower bound evolution in branch-and-bound.

• CMGD1: locally optimal solver (fmincon from Mat-

lab) was used to perform CM with initialisation ω = 0
(equivalent to identity rotation).

• CMGD2: same as above, but initialised with the opti-

mised ω from the previous 10 ms time window.

Both local methods were executed on the continuous event

image with Gaussian kernel of bandwidth 1 pixel.

Fig. 4 depicts motion compensated event images from

two subsequences (Subseq 1 and Subseq 2); see supplemen-

tary material for more results. The examined cases show

that the local methods (both CMGD1 and CMGD2) can in-

deed often converge to bad local solutions. Contrast this to

BnB which always produced sharp event images.

These results also show that CM based on continuous

and discrete event images yield practically identical solu-

tions. Since CMBnB2 usually converges much faster than

CMBnB1, we use CMBnB2 in the remaining experiments.

4.3. Quantitative benchmarking

We performed benchmarking using publicly available

datasets [8, 22]. We introduced two additional variants to

CMGD1 and CMGD2:

• CMRW1: A variant of CM [29] that uses a different ob-

jective function (called reward):

Rw(ω) = C(ω) +
1

P

P
∑

j=1

(e(−H(xj ;ω)) + e(H(xj ;ω))).

The initial solution is taken as ω = 0.

• CMRW2: Same as CMRW1 but initialised with the op-

timised ω from the previous subsequence.

We also compared against EventNet [27], which is based

on deep learning. However, similar to the error reported

in [27], we found that the error for EventNet was much

higher than the error of the CM methods (e.g., the trans-

lated angular velocity error of the maximum of EventNet is

17.1%, while it is around 5% for CM). The lack of publicly

available implementation also hampered objective testing of

EventNet. We thus leave comparisons against deep learning

methods as future work.

4.3.1 Rotational motion in indoor scene

We used event sequences poster, boxes and dynamic

from [14, 22], which were recorded using a Davis 240C [4]

under rotational motion over a static indoor scene. The

ground truth motion was captured using a motion capture

system. Each sequence has a duration of 1 minute and

around 100 million events. For these sequences, the rota-

tional motion was minor in a large part of the sequences

(thereby producing trivial instances to CM), thus in our

experiment we used only the final 15 seconds of each se-

quence, which tended to have more significant motions.

We split each sequence into contiguous 10 ms subse-

quences which were then subject to CM. For boxes and

poster, each CM instance was of size N ≈ 50k, while for

dynamic, each instance was of size N ≈ 25k. For each

CM instance, let ω̄ and ω̂ be the ground truth and estimated

parameters. An error metric we used is

ǫ = ‖ω̄ − ω̂‖2. (42)

Our second error metric, which considers only differences

in angular rate, is

φ = |‖ω̄‖2 − ‖ω̂‖2|. (43)

Fig. 5a plots ǫ over all the CM instances for the boxes se-

quence, while Table 1 shows the average (µ) and standard

deviation (σ) of ǫ and φ over all CM instances.

Amongst the local methods, the different objec-

tive functions did not yield significant differences in

quality. The more important observation was that

CMGD2/CMRW2 gave solutions of much higher quality

than CMGD1/CMRW1, which confirms that good initial-

isation is essential for the local methods. Due to its exact

nature, CMBnB provided the best quality in rotation esti-

mation; its standard deviation of ǫ is also lower, indicating

a higher stability over the sequences. Moreover, CMBnB

does not require any initialisation, unlike the local methods.

For the three sequences used (dynamic, boxes, poster),

the maximum absolute angular velocities are 500, 670 and

1000 deg/s respectively [14, 22]. The average φ error of

CMBnB of 10.09, 17.97 and 46.34 deg/s thus translate into

2.2%, 2.7% and 4.6% of the maximum, respectively.

Runtime The average runtimes of CMBnB over all in-

stances in the three sequences (dynamic, boxes, poster)

were 163.2, 278.3 and 320.6 seconds. CMGD optimised

with the conjugate gradient solver in fmincon has aver-

age runtimes of 20.2, 31.1 and 35.3 seconds.

4.3.2 Attitude estimation

We repeated the above experiment on the event-based star

tracking (attitude estimation) dataset of [7, 8], which con-

tains 11 event sequences of rotational motion over a star

field. Each sequence has a constant angular velocity of 4
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Figure 4. Qualitative results (motion compensated event images) from Subseq 1 and Subseq 2 of boxes.

Method
dynamic boxes poster

µ(ǫ) µ(φ) σ(ǫ) σ(φ) µ(ǫ) µ(φ) σ(ǫ) σ(φ) µ(ǫ) µ(φ) σ(ǫ) σ(φ)

CMGD1 21.52 20.07 24.38 31.13 31.29 31.47 34.30 45.94 56.58 54.92 47.03 58.95

CMGD2 15.09 13.31 10.39 12.08 22.01 21.70 12.79 18.83 49.64 50.12 35.93 42.77

CMRW1 21.03 18.59 25.41 28.83 32.28 32.23 36.11 46.01 59.03 58.71 49.49 60.87

CMRW2 14.55 12.29 9.85 11.21 21.95 21.41 13.71 18.42 49.49 50.04 37.51 43.35

CMBnB 11.93 10.09 7.82 8.74 18.76 17.97 10.06 14.66 44.34 46.34 24.79 36.79

Table 1. Average and standard deviation of ǫ and φ over all CM instances in boxes, dynamic, and poster (best result bolded).
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Figure 5. Error φ of all CM methods (plotted against time) for (a)

boxes sequence [14] and (b) Sequence 1 of [8]. In each subplot,

the error of CMBNB is superimposed for reference.

deg/s over a duration of 45 seconds and around 1.5 million

events. We split each sequence into 400 ms subsequences,

which yielded N ≈ 15, 000 events per subsequence. Fig. 5b

Method µ(ǫ) µ(φ) σ(ǫ) σ(φ)

CMGD1 0.448 0.652 0.314 0.486

CMGD2 0.294 0.423 0.232 0.323

CMRW1 0.429 0.601 0.346 0.468

CMRW2 0.318 0.461 0.234 0.341

CMBnB 0.174 0.234 0.168 0.217

Table 2. Average and standard deviation of ǫ and φ over all CM

instances in the star tracking dataset (best result bolded).

plots the φ errors for Sequence 1 in the dataset. The aver-

age errors and standard deviation over all CM instances are

shown in Table 2. Again, CMBnB gave the highest quality

solutions; its average φ error of 0.234 deg/s translate into

5.8% of the maximum. The average runtime of CMBnB

and CMGD over all instances were 80.7 and 11.1 seconds.

5. Conclusions

We proposed a novel globally optimal algorithm for CM

based on BnB. The theoretical validity of our algorithm has

been established, and the experiments showed that it greatly

outperformed local methods in terms of solution quality.
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