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Abstract

Usually located at the very early stages of the compu-

tational photography pipeline, demosaicing and denoising

play important parts in the modern camera image process-

ing. Recently, some neural networks have shown the effec-

tiveness in joint demosaicing and denoising (JDD). Most

of them first decompose a Bayer raw image into a four-

channel RGGB image and then feed it into a neural net-

work. This practice ignores the fact that the green chan-

nels are sampled at a double rate compared to the red and

the blue channels. In this paper, we propose a self-guidance

network (SGNet), where the green channels are initially es-

timated and then works as a guidance to recover all miss-

ing values in the input image. In addition, as regions of dif-

ferent frequencies suffer different levels of degradation in

image restoration. We propose a density-map guidance to

help the model deal with a wide range of frequencies. Our

model outperforms state-of-the-art joint demosaicing and

denoising methods on four public datasets, including two

real and two synthetic data sets. Finally, we also verify that

our method obtains best results in joint demosaicing , de-

noising and super-resolution.

1. Introduction

Image demosaicing is one of the beginning modules in

Image Signal Processing (ISP) pipeline and is a fundamen-

tal problem in computer vision. It aims at reconstructing a

full-resolution color image from an incomplete observation

after a color filter array (CFA) such as the Bayer pattern of

RGGB where two-thirds of the image information is miss-

ing. Recovering those missing information is an ill-posed

problem. In addition, the available one-third RGGB obser-

vation is often polluted by different kinds of noise, which

further increases the difficulty of the task. These two tasks

are important because they appear at the very beginning of

the camera imaging pipeline and their performance has cru-

cial influence on the final results. The two tasks of demo-
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Figure 1: Comparison among six state-of-the-art JDD meth-

ods and ours on the MIT moire data set [5]. With the spa-

tially adaptive green-channel guidance, ours removes the

color artifacts and recovers the textures significantly.

saicing and denoising are traditionally processed in a se-

quential way. However, recent studies show the advantages

of the joint approaches [13, 1] .

There has been several approaches proposed for image

demosaicing. Demosaicing with simple bilinear interpola-

tion between values on neighboring positions and even deep

learning based methods [24, 46, 40, 33, 34] are prone to

producing zippering artifacts in regions with edges. To ad-

dress this issue, a traditional way to alleviate this issue is

by applying edge-adaptive interpolation. To further explore
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useful information in an image to complete the missing pix-

els, similar to the works on image super-resolution [41, 31],

self-similarity within in natural images is explored and ex-

ploited to enhance the performance of image demosaicing.

However, there are still some visually disturbing artifacts

such as moiré patterns appearing on some challenging high

frequency regions.

Recently, deep learning methods, which have been

shown to be very successful on image recognition tasks

[20, 30, 10], also gain popularity on low level vision tasks

such as image demosaicing [33, 34, 2, 26]. These methods

are able to effectively exploit intra- and inter-channel de-

pendencies in a RAW image to complete missing informa-

tion. Most of these methods [33, 34, 2] decompose a Bayer

raw image into a four-channel RGGB image and feed it into

a neural network. They resort to a convolutional neural net-

work itself to discover the relation among the RGGB chan-

nels such that they can complement each other to recover

the missing pixel values. However, the prior with a Bayer

raw image where the red, green and blue chanels are sam-

pled at different rates is not fully exploited. The green chan-

nels are sampled at a double rate compared to the red and

blue channels. Therefore, making full use of the information

from the green channels can be beneficial to the recovery

of missing pixel values. There have been several methods

[12, 47, 25] proposed before the popularity of deep learn-

ing, which first recover the green channels and then recover

the RGB channels by exploiting the inter-channel correla-

tion between the green and the red channels as well as that

between the green and the blue channels.

In this work, inspired by these methods, we propose a

convolutional neural network (CNN) to explicitly explore

the guidance within an input Bayer raw image itself for

joint demosaicing and denoising. A typical CNN applies

the same set of parameters to all positions and all images

regardless of specific content within an image. Frequencies

and noise vary across images and positions, and therefore,

such content-agnostic operation would limit the capacity of

a neural network and its capability in addressing demosaic-

ing and denoising tasks. In this work, similar to the tradi-

tional methods, we first make an initial estimation based on

only the green channels. The initially recovered green chan-

nels work as the guidance to conduct spatially adaptive con-

volution across an image. In this way, the rich information

with the green channels is integrated and employed differ-

ently at different positions.

In addition, we find that the regions of different frequen-

cies suffer different levels of difficulty in image reconstruc-

tion. Knowing which region is more difficult to handle by a

model is helpful in the demosaicing and denoising process.

This shares some similarity with the noise map in image de-

noising because challenges vary over different regions and

different images. A model without considering frequency

difference treats regions of complex patterns and smooth

regions equally. The burden of the model is thus severely

increased to handle all possible cases, which makes it sub-

optimal. Estimating a density map for an image and feeding

it into a model allow the model to handle a wide range of

frequencies. Extensive experiments on both synthetic and

real settings demonstrate the effectiveness of the proposed

method in addressing the task of joint demosaicing and de-

noising. Fig. 1 shows a comparison among seven methods.

In summary, our main contributions are:

1. We propose a novel self-guidance network (SGNet)

with density-map guidance and green-channel guid-

ance for joint demosaicing and denoising.

2. We propose two losses, adaptive-threshold edge loss

and edge-aware smoothness loss, to recover the texture

and remove the noise simultaneously.

3. Quantitative and qualitative experimental results on

both synthetic and real data sets show that our model

outperforms the state-of-the-art methods.

2. Related Work

2.1. Joint Demosaicing and Denoising

Image demosaicing is used to reconstruct a full color

image from a sub-sampled output from a color filter array.

Demosaicing methods can be divided into traditional meth-

ods [40, 17, 25, 26] and deep-learning methods [33, 34, 36].

However, in practical applications, demosaicing is usually

not handled independently due to the fact that the Bayer

pattern is often corrupted by noise. Some studies try to find

a hybrid solution to the problems in camera image process-

ing [51, 4, 48, 22, 28] and obtain good results. Therefore,

considering practical situation and benefiting from mixture

problem processing, more and more studies begin to handle

demosaicing and denoising simultaneously [13, 1]. Joint de-

mosaicing and denoising can get rid of the accumulation of

errors after one’s processing.

Existing joint demosaicing and denoising methods can

also be divided into traditional and deep-learning methods.

The former are based on some heuristics, such as total vari-

ation minimization [1], sequential energy minimization [18]

and learned non-parametric random field [16]. Recently,

deep-learning methods have outperformed traditional ones

in joint demosaicing and denoising. Gharbi et al. [5] trained

a deep convolutional neural network on millions of im-

ages and achieved state-of-the-art performance. Kokkinos

et al. [19] proposed an iterative network which combines

the majorization-minimization algorithm with a residual de-

noising network. Ehret et al. [3] presented a self-supervised

method to demosaicing without the ground-truth. Wronski

et al. [43] acquired a burst of raw frames and recover a com-

plete RGB image directly from these frames.
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2.2. Guided Image Restoration

In many image restoration tasks, a lot of previous works

use external information to restore the image. Bilateral filter

[39] and some other filters [9, 8] use an external image as

guidance to adjust filter parameters, which can reserve sharp

edges. They achieve good results in many low-level vision

tasks. In recent years, some deep learning methods use guid-

ance information to recover images, especially in the field

of super-resolution. In the super-resolution of a depth map,

many methods use an RGB image to guide and up-sample

the depth map [15, 21, 7]. In order to generate realistic tex-

tures of up-sampling images, Wang et al. [41] propose to

use semantic information to guide the super-resolution of

images. Given an image, Zhang et al. [49] and Zheng et

al. [50] introduce style transfer technique and cross-scale

warping to super-resolution respectively.

The above methods verify that external guidance infor-

mation is important for image restoration. However, few

studies explore the self-guidance strategy for image restora-

tion. Self-guidance information is often difficult to mine

and sometimes requires some prior knowledge. Gu et al. [6]

propose a self-guidance network for fast image denoising,

where the features in the low resolution branch can guide

the features in the high resolution branches. In this paper,

we propose two self-guidance methods, green channel guid-

ance and density map guidance, specifically for the demo-

saicing task.

3. The Proposed Method

In this section, we present our SGNet in detail. The ar-

chitecture of SGNet is shown in Fig. 2.

3.1. Overview

In order to obtain good performance on the task of joint

demosaicing and denoising, making full use of the infor-

mation within an input RGGB raw image is crucial. Here

we propose to explore both the green-channel and density

information within an input image and use them as guid-

ance for better performance. An input RGGB raw image

IBayer
RGGB of size 2H×2W can be decomposed into four chan-

nels, IBayer
G1 , IBayer

G2 , IBayer
R and IBayer

B , corresponding to

the four elements of a Bayer pattern, with each one of size

H×W ×1. We first make an initial estimate of the missing

elements for the green channels because there is richer in-

formation within the two green channels in the input IBayer
G1

and IBayer
G2 . The initial estimate of the green channel ÎG

works as a guidance and is applied to the main branch to

help recover missing elements for all channels. In addition,

we compute a density map MD (discussed in Sec. 3.2) to

represent the difficulty levels of different regions and feed

that map as additional input to the main branch network.

Finally we present the losses used to train the whole model.

3.2. Density­map guidance

Generally, there are both complex regions with high fre-

quencies and smooth regions with low frequencies in an

image. Those regions pose different challenges to the task

of joint demosaicing and denoising. Therefore, it is sub-

optimal to blindly deal with the whole image in the same

way. Inspired by the success of a noise map in image denois-

ing [45], we design a density map to let the network know

the difficulty level at each position of the input image. In the

density map, regions with dense texture correspond to high

frequency patterns and regions with less texture correspond

to low frequency patterns. It is computed as:

MD = h (g2 (Igray − g1 (Igray;K1) ;K2)) , (1)

where both g1 and g2 are Gaussian blur operations with

kernel sizes K1 and K2 respectively, h(·) is a normaliza-

tion function and Igray is the average of the four decoupled

channels, IBayer
G1 , IBayer

G2 , IBayer
R and IBayer

B . h(X) and

Igray are defined as follows:

h(X) =
X −min(X)

max(X)−min(X) + ǫ
(2)

Igray =
((

IBayer
G1 + IBayer

G1

)

/2 + IBayer
R + IBayer

B

)

/3.

(3)

After applying a Gaussian blur operation g1 to an im-

age, regions with dense texture become blurry and differ-

ence between the input and output can be very different.

Then we apply another Gaussian blur operation g2 to the

difference in order to get a smooth density map. It is fur-

ther normalized to the range between 0 and 1 with Eq. 2.

Fig. 3 shows an example of computing MD. Once a density

map is estimated, we take a simple way to incorporate it by

concatenating it to other channels, that is, the four decou-

pled channels, IBayer
G1 , IBayer

G2 , IBayer
R , IBayer

B and a noise

map Inoise. They are combined as the input to the main

reconstruction branch. Similar to [5], the noise map Inoise

denotes the level of the added Gaussian noise during train-

ing.

3.3. Green­channel guidance

In a raw image with the Bayer pattern, the number of

green pixels is twice that of the red or blue pixels. Thus,

it is an easier task to recover the missing elements for the

green channel. In addition, usually in an RGB image, the

green channel shares similar edges with the red and blue

channels; having an initial estimation of the green channel

can also benefit the reconstruction of the red and blue chan-

nels. As shown in Fig. 2, we first extract the green pixels

at the two positions in every 2 × 2 block in a Bayer image

and obtain the two green channels, which together with the
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Figure 3: Illustration of computing the density map MD.

noise map, Inoise, are fed to a green-channel reconstruc-

tion branch to produce an initial result of the green chan-

nel of the output RGB image. The green-channel recon-

struction branch is composed of one Residual-in-Residual

Dense Block (RRDB) [42]. An RRDB contains multi-level

residual connections and dense connections, which allows

local information to be sufficiently explored and extracted.

The demosaicing task shares some similarity with super-

resolution in that both tasks require recovering missing ele-

ments and essentially do 2× upsampling. Therefore, similar

to the work on image super-resolution [29], we also use a

depth-to-space layer at the end of this branch to get a recon-

structed green channel ÎG of size 2H × 2W × 1.

There are several works [12, 46, 36] that employ the ini-

tially estimated green channel to reconstruct the rest chan-

nels. Most of them simply take ÎG as an additional input

together with the original raw input IBayer
RGGB . By this way,

ÎG is processed with the same set of convolution opera-

tions at each position, which may not be optimal. In this

work, as shown in Fig. 2, we propose to guide the main

reconstruction branch with ÎG in a novel way. A spatially

adaptive convolution operation [32] is applied to the inter-

mediate feature maps in the main reconstruction branch to

make the integration process adaptive to the content of the

green channel ÎG. Spatially adaptive convolution is content-

aware, where the convolution is conducted differently at dif-

ferent positions. It is able to increase the capacity of the net-

work and is helpful in dealing with different frequencies and

noise across an image. For the feature of a position j at the

intermediate feature maps of the main reconstruction branch

vj ∈ R
c′ , j = 1, 2, ..., H ×W , the output of such spatially

adaptive convolution oi ∈ R
c, i = 1, 2, ..., 2H × 2W , is

computed as follows:

oi =
∑

j∈Ω(i)

G (fi, fj)Wpi,j
vj + b, (4)

where Ω(·) defines an s × s convolution window, W ∈
R

c′×c×s×s is the convolution weights, pi,j is the index of

W related to i and j1, b ∈ R
c′ denotes the biases and

fi is a vector at position i of the feature maps f . f of size

2H×2W×8 is computed from the initially estimated green

channel ÎG with two convolutional layers. G(·, ·) is a Gaus-

sian function that depends on the distance between two po-

sitions, which is the core to make the convolution operation

1The detailed definition of pi,j can be found in [32].
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spatially adaptive, and defined as:

G (fi, fj) = exp

(

−
1

2
(fi − fj)

⊤
(fi − fj)

)

. (5)

3.4. Training losses

The whole network model can be trained with a loss for

the initial green-channel estimation and a loss for the final

RGB image reconstruction. Besides, we introduce two ad-

ditional losses to further supervise the model training for

better demosaicing and denoising performance.

3.4.1 Adaptive-threshold edge loss

Although the network is informed of the per-pixel diffi-

culty level with the additional density map MD as explained

above, each pixel in an input image is supervised with the

same strength. However, regions with many high frequency

details are more important and should draw more attention

than easy-to-recover regions during training. We propose an

adaptive-threshold edge loss to address this issue.

We could apply the Canny edge detector to both the out-

put of the network IO and the target RGB image IT to ex-

tract their edges and obtain two binary edge maps E(IO)
and E(IT ). But the Canny edge detector with a fixed low

threshold cannot satisfy every local region in an image. We

divide an image into several patches Pi, i = 1, 2, ..., n and

find an adaptive threshold for each one. We raise the low

threshold for patches with many edges, while reduce the

threshold for patches with fewer edges. The low threshold

θi, i = 1, 2, ..., n, is computed as below:

θi = θ0 + k
sPi

max(sP1
, sP2

, ..., sPn
)
, θ0, k > 0, (6)

where sPi
is the sum of all pixel values in Pi.

Once the two binary edge maps E(IO) and E(IT ) are

obtained, we can approximate the probability of being edges

for a certain patch p(E(Pi; θi)) ∈ (0, 1), by calculating the

proportion of the pixels detected as edge pixels. We then

can compute the cross-entropy loss based on the probabil-

ity p(E(Pi; θi)). However, in a natural image, most pixels

belong to non-edge regions and only a small portion of the

pixels correspond to edges. Similar to [44], we introduce a

balancing weight β when calculating the cross-entropy loss,

which is shown in Eq. 7.

Ledge =
n
∑

i=1

−β ∗ p(E(PT
i ; θi)) ∗ log(p(E(PO

i ; θi)))

− (1− β) ∗ (1− p(E(PT
i ; θi)))∗

log(1− p(E(PO
i ; θi))),

(7)

where β is defined as:

β = |E(IT )|/|IT |, (8)
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Figure 4: Illustration of computing the adaptive-threshold

edge loss.

where |E(IT )| is the number of edge pixels. With the com-

puted edge loss Ledge, regions with strong edges are strictly

supervised such that small errors incur larger punishment.

The procedure to compute Ledge is illustrated in Fig. 4.

3.4.2 Edge-aware smoothness loss

In order to achieve good performance in denoising, the to-

tal variation (TV) regularization is used to smooth out noise

and unexpected artifacts. However, the TV loss fails at re-

gions full of textual patterns. Thus, we propose an edge-

aware smoothness loss Lsmooth, which is formulated as:

Lsmooth = ‖∇O ◦ exp (−λ∇O)‖ , (9)

where ∇O = ‖∇Oh‖+ ‖∇Ov‖ is the sum of the gradients

in the horizontal and vertical directions, and λ is a param-

eter balancing the strength of edge-awareness. This loss is

the TV loss multiplied by an exponential smoothing term.

In smooth regions, it is relatively larger than in regions with

rich texture and edges. With such an edge-aware smooth-

ness loss, the model learns to simultaneously get rid of noise

in smooth regions while keeping edges in textured regions.

Finally, the overall loss to train the whole network is de-

fined as follows:

L = Ledge + λ1Lsmooth + λ2Ll1 + λ3Lg, (10)

where Ll1 is the l1 loss between the output image and its

ground-truth, and Lg is the l1 loss between ÎG and the green

channel of the ground-truth.

4. Experiments

Extensive experiments on both real and synthetic

datasets show that our method outperforms state-of-the-arts

with large margins. Ablation study is also conducted to an-

alyze the importance of the density-map guidance and the

green-channel guidance.
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Method σ
Dense texture Sparse texture MIT moire Urban100

PSNR LPIPS PSNR LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

FlexISP [11]

5

36.64 – 38.82 – 29.06 0.8206 – 30.37 0.8832 –

SEM [18] 38.55 – 38.40 – 27.46 0.8292 – 27.19 0.7813 –

ADMM [35] 39.97 – 43.78 – 28.58 0.7923 – 28.57 0.8578 –

Deepjoint [5] 45.90 0.01782 47.48 0.02218 31.82 0.9015 0.0692 34.04 0.9510 0.0304

Kokkinos [19] 44.77 0.02308 47.40 0.02158 31.94 0.8882 0.0711 34.07 0.9358 0.0437

CDM∗ [36] 45.49 0.02050 47.24 0.02281 30.36 0.8807 0.0757 32.09 0.9311 0.0484

SGNet 46.75 0.01433 47.88 0.01917 32.15 0.9043 0.0691 34.54 0.9533 0.0299

FlexISP [11]

10

32.66 – 33.62 – 26.61 0.7491 – 27.51 0.8196 –

SEM [18] 31.26 – 31.17 – 25.45 0.7531 – 25.36 0.7094 –

ADMM [35] 37.64 – 40.25 – 28.26 0.7720 – 27.48 0.8388 –

Deepjoint [5] 43.26 0.04017 45.17 0.04139 29.75 0.8561 0.1066 31.60 0.9152 0.0610

Kokkinos [19] 41.95 0.05499 44.86 0.04328 30.01 0.8123 0.1132 31.73 0.8912 0.0710

CDM∗ [36] 42.46 0.05393 44.70 0.04535 28.63 0.8286 0.1304 30.03 0.8934 0.0832

SGNet 44.23 0.03280 45.56 0.03764 30.09 0.8619 0.1034 32.14 0.9229 0.0546

FlexISP [11]

15

29.67 – 30.48 – 24.91 0.6851 – 25.55 0.7642 –

SEM [18] 25.98 – 27.01 – 23.23 0.6527 – 23.25 0.6156 –

ADMM [35] 34.87 – 36.78 – 27.58 0.7497 – 28.37 0.8440 –

Deepjoint [5] 41.42 0.06447 43.54 0.05783 28.22 0.8088 0.1506 29.73 0.8802 0.0929

Kokkinos [19] 40.16 0.08046 43.11 0.06103 28.28 0.7693 0.1764 29.87 0.8451 0.1054

CDM∗ [36] 40.51 0.08306 42.98 0.06549 27.23 0.7775 0.1875 28.34 0.8543 0.1262

SGNet 42.32 0.05491 43.94 0.05456 28.60 0.8188 0.1412 30.37 0.8923 0.0793

Table 1: Quantitative comparison for joint demosaicing and denoising on real test sets (Dense texture and Sparse texture) and

synthetic test sets (MIT moire and Urban100). PSNR, SSIM: higher is better; LPIPS: lower is better.

Dense texture Sparse texture

σ 5 10 15 5 10 15

Metrics PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS

w/o green branch 45.43/0.02373 42.90/0.04381 41.21/0.06654 47.15/0.01995 44.30/0.03935 42.44/0.05953

Concatenation guidance 45.93/0.02240 43.31/0.04182 42.05/0.06006 47.46/0.01885 45.16/0.03846 43.75/0.05782

Adaptive guidance 46.75/0.01433 44.23/0.03280 42.32/0.05491 47.88/0.01917 45.56/ 0.03764 43.94/0.05456

Table 2: Ablation study of the green-channel guidance method on Pixelshift200.

4.1. Datasets and Implementation Detail

Datasets. For the synthetic datasets, we combine

DIV2K [38] (containing 800 2K-resolution images) and

Flickr2K [37] (containing 2650 2K-resolution images) as

the training set. We choose the MIT moire [5] and Ur-

ban100 [14] as the test sets. MIT moire has 1000 128×128-

resolution hard-case images. Urban100 contains 100 high-

resolution images. For the real datasets, we choose Pix-

elshift200 [27] for training, and conduct test experiments on

Dense texture [27] and Sparse texture [27]. The images in

Dense texture are selected by us using the metrics proposed

in [5]. Sparse texture is the original test set in Pixelshift200.

All the images are randomly cropped into patches of size

128×128 and perturbed by Gaussian noise with σ ∈ [0, 16].

Implementation detail. For all experiments, our model

is implemented in Pytorch and runs on a NVIDIA Tesla

V100 GPU. The batch size is set to 8 during training. We

use Adam with β1 = 0.9 and β2 = 0.999 for optimization.

The learning rate is 0.0001 and reduced to one-tenth for ev-

ery 200,000 epochs. In Eq. 10, the parameters λ1 and λ2 are

set to 5 and 50 respectively. λ3 = 30− niter ∗ 27/700000,

where niter is the number of training iterations. λ3 is de-

fined like this because the green channel reconstruction is

given more emphasis at the early stage of training and less

emphasis at later. θ0 and k in Eq. 6 are 1 and 4 respectively.

We assume JDD is done before white balance. We follow

most related works [27, 19, 5] and do not use inverse ISP to

pre-process sRGB images.
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Ground truthSGNetDeepjointADMM FlexISP CDM* Kokkinos

Figure 5: Visual comparison between state-of-the-arts and our method for joint demosaicing and denoising.

Method σ
Dense texture Sparse texture

PSNR/LPIPS PSNR/LPIPS

w/o Lsmooth 44.01/0.03574 45.40/0.03933

w/o Ledge 10 43.92/0.03752 45.42/0.03905

w/o MD 43.86/0.04073 45.37/0.03982

Full model 44.23/0.03280 45.56/0.03764

Table 3: Ablation study on Pixelshift200.

Algorithm Deepjoint CDM Kokkinos Ours

Time (ms/frame) 86 64 290 56

Parameter (MB) 0.50 0.64 – 0.71

Table 4: Efficiency comparison on Dense texture.

4.2. Ablation study

4.2.1 Green-Channel Guidance

To verify the contributions of the green-channel guidance

with spatially adaptive convolution, we conduct an ablation

study on Dense texture and Sparse texture of Pixelshift200.

In the first column of Table 2, “adaptive guidance” means

our full model; “Concatenation guidance” means we con-

catenate ÎG with the output feature maps of the RRDB in

the main reconstruction branch. As shown in Table 2, we

can see that “Concatenation guidance” and “Adaptive guid-

ance” improve the PSNR on both test sets. The latter ob-

tains better results than the former. “Adaptive guidance” is

content-aware and has the advantage of handling different

frequencies and noise across an image.

4.2.2 Component Analysis

To verify the contributions of Lsmooth, Ledge and MD of

SGNet, we conduct an ablation study on Dense texture and

Sparse texture with the noise level of 10. As shown in Ta-

ble 3, without Lsmooth, Ledge or MD, the PSNR decreases

by 0.22dB, 0.31dB or 0.37dB in Dense texture, respectively.

MD informs the network the difficulty level at each position

and is more important than Lsmooth and Ledge. Lsmooth

and Ledge help to remove noise and recover textures, re-

spectively.
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SGNet Ground Truth

Deepjoint+EDSR TENet

SGNet Ground Truth

Figure 6: Visual comparison in the task of joint demosaic-

ing, denoising and super-resolution on Pixelshift200.

4.3. Comparison with State­of­the­Art

We compare our method with state-of-the-art methods,

including 3 traditional methods (FlexISP [11], SEM [18],

ADMM [35]) and 3 deep learning methods (Deepjoint [5],

CDM [36], Kokkinos [19]). We use their source code for

comparison. For all methods, the Gaussian noise level is

known. The noise level map is used as an additional input

along with the original input in CDM. Thus, we denote the

altered model as CDM*. ADMM and FlexISP iterate 40 and

30 times respectively for each input image.

4.4. Quantitative Evaluation

For quantitative evaluation, we choose 3 evaluation met-

rics, the standard Peak Signal To Noise Ratio (PSNR),

Structural Similarity (SSIM), and Learned Perceptual Im-

age Patch Similarity (LPIPS) [48] which measures percep-

tual image similarity using a pre-trained deep network. Be-

cause the pre-trained model of LPIPS is based on Python

and the code for the traditional methods are based on MAT-

LAB, LPIPS is not used to evaluate their performance. In

Table 1, we conduct 4 experiments on 3 different noise lev-

els (σ = 5, 10, 15). As shown in Table 1, our method out-

performs the state-of-the-art methods on joint demosaicing

and denoising.

Because traditional methods run much longer than deep-

learning methods, we only evaluate the efficiency of all the

deep-learning JDD methods on one NVIDIA Tesla V100

GPU. As shown in Table 4, although the number of param-

eters in our model is slightly more than other methods, ours

is the fastest among all the 4 deep learning methods.

Method σ
Dense texture Sparse texture

PSNR/LPIPS PSNR/LPIPS

Deepjoint [5]+EDSR [23]

5

44.26/0.03197 46.18/0.03667

TENet [27] 44.78/0.03011 46.25/0.03530

SGNet 45.93/0.02578 46.16/0.03578

Deepjoint [5]+EDSR [23]

10

41.84/0.05988 43.67/0.06232

TENet [27] 42.70/0.04886 43.86/0.05830

SGNet 43.81/0.04023 43.91/0.05551

Deepjoint [5]+EDSR [23]

15

40.17/0.08588 42.06/0.08003

TENet [27] 41.06/0.07032 42.25/0.07592

SGNet 42.23/0.06029 42.33/0.07190

Table 5: Quantitative comparison for JDDS on Pix-

elshift200.

4.5. Qualitative Results

As shown in Fig. 5, the results of ADMM, CDM*,

Kokkinos and Deepjoint have moiré artifacts. Though Flex-

ISP produced better results there is still noise left. In addi-

tion, ADMM and Deepjoint tend to blur the high-frequency

regions (see the 2nd image in Fig. 5). In contrast, our SGNet

eliminates the color moiré artifacts more effectively, ben-

efiting from the green-channel guidance. In addition, our

model restores some aliasing textures and remove the noise

in high-frequency regions, mainly thanks to MD, Ledge and

Lsmooth. Due to the space limitation, we show some results

on Dense texture in the supplementary material.

5. Joint Demosaicing, Denoising and Super-

resolution

To further verify the effectiveness of our method, we

conduct an experiment on the mixture problem of joint de-

mosaicing, denoising and super-resolution (JDDS). Qian

et.al. [27] shows that handling these three tasks together can

achieve better results for camera signal processing. We train

SGNet and test it on the corresponding test set. The results

are shown in Table 5 and Fig. 6. Our model outperforms the

hybrid solution model TENet and the sequential solution

method Deepjoint+EDSR.

6. Conclusion

We have proposed a novel self-guidance network

(SGNet) for joint demosaicing and denoising. Our spa-

tially adaptive guidance with green-channel is content-

aware. SGNet removes color artifacts and retains image de-

tails simultaneously. Our method outperforms other state-

of-the-art JDD models significantly. Besides, SGNet ob-

tains the best result in joint demosaicing, denoising and

super-resolution. In future, we will explore more prior in-

formation with the task to improve the performance of joint

demosaicing and denoising.
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Durand. Deep joint demosaicking and denoising. TOG,

2016. 1, 2, 3, 6, 8

[6] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.

Self-guided network for fast image denoising. In ICCV,

2019. 3

[7] Shuhang Gu, Wangmeng Zuo, Shi Guo, Yunjin Chen,

Chongyu Chen, and Lei Zhang. Learning dynamic guidance

for depth image enhancement. In CVPR, 2017. 3

[8] Bumsub Ham, Minsu Cho, and Jean Ponce. Robust image

filtering using joint static and dynamic guidance. In CVPR,

2015. 3

[9] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. TPAMI, 2012. 3

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2

[11] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur

Rouf, Dawid Pajak, Dikpal Reddy, Orazio Gallo, Jing Liu,

Wolfgang Heidrich, Karen Egiazarian, et al. Flexisp: A flex-

ible camera image processing framework. In TOG, 2014. 6,

8

[12] Keigo Hirakawa and Thomas W Parks. Adaptive

homogeneity-directed demosaicing algorithm. TIP, 2005. 2,

4

[13] Keigo Hirakawa and Thomas W Parks. Joint demosaicing

and denoising. TIP, 2006. 1, 2

[14] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In

CVPRW, 2015. 6

[15] Tak-Wai Hui, Chen Change Loy, and Xiaoou Tang. Depth

map super-resolution by deep multi-scale guidance. In

ECCV, 2016. 3

[16] Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary, and

Andrew W Fitzgibbon. Joint demosaicing and denoising via

learned nonparametric random fields. TIP, 2014. 2

[17] Daisuke Kiku, Yusuke Monno, Masayuki Tanaka, and

Masatoshi Okutomi. Residual interpolation for color image

demosaicking. In ICIP, 2013. 2

[18] Teresa Klatzer, Kerstin Hammernik, Patrick Knobelreiter,

and Thomas Pock. Learning joint demosaicing and denois-

ing based on sequential energy minimization. In ICCP, 2016.

2, 6, 8

[19] Filippos Kokkinos and Stamatios Lefkimmiatis. Deep im-

age demosaicking using a cascade of convolutional residual

denoising networks. In ECCV, 2018. 2, 6, 8

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 2

[21] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan

Yang. Deep joint image filtering. In ECCV, 2016. 3

[22] Zhetong Liang, Jianrui Cai, Zisheng Cao, and Lei Zhang.

Cameranet: A two-stage framework for effective camera isp

learning. arXiv preprint arXiv:1908.01481, 2019. 2

[23] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPRW, 2017. 8

[24] Henrique S Malvar, Li-wei He, and Ross Cutler. High-

quality linear interpolation for demosaicing of bayer-

patterned color images. In ICASSP, 2004. 1

[25] Yusuke Monno, Daisuke Kiku, Masayuki Tanaka, and

Masatoshi Okutomi. Adaptive residual interpolation for

color image demosaicking. In ICIP, 2015. 2

[26] Yan Niu, Jihong Ouyang, Wanli Zuo, and Fuxin Wang. Low

cost edge sensing for high quality demosaicking. TIP, 2018.

2

[27] Guocheng Qian, Jinjin Gu, Jimmy S Ren, Chao Dong,

Furong Zhao, and Juan Lin. Trinity of pixel enhance-

ment: a joint solution for demosaicking, denoising and super-

resolution. arXiv preprint arXiv:1905.02538, 2019. 6, 8

[28] Sivalogeswaran Ratnasingam. Deep camera: A fully convo-

lutional neural network for image signal processing. arXiv

preprint arXiv:1908.09191, 2019. 2

[29] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 4

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 2

[31] Jae Woong Soh, Gu Yong Park, Junho Jo, and Nam Ik Cho.

Natural and realistic single image super-resolution with ex-

plicit natural manifold discrimination. In CVPR, 2019. 2

[32] Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik

Learned-Miller, and Jan Kautz. Pixel-adaptive convolutional

neural networks. In CVPR, 2019. 4

[33] Nai-Sheng Syu, Yu-Sheng Chen, and Yung-Yu Chuang.

Learning deep convolutional networks for demosaicing.

arXiv preprint arXiv:1802.03769, 2018. 1, 2

[34] Daniel Stanley Tan, Wei-Yang Chen, and Kai-Lung Hua.

Deepdemosaicking: Adaptive image demosaicking via mul-

tiple deep fully convolutional networks. TIP, 2018. 1, 2

[35] Hanlin Tan, Xiangrong Zeng, Shiming Lai, Yu Liu, and Mao-

jun Zhang. Joint demosaicing and denoising of noisy bayer

images with admm. In ICIP, 2017. 6, 8

[36] Runjie Tan, Kai Zhang, Wangmeng Zuo, and Lei Zhang.

Color image demosaicking via deep residual learning. In

ICME, 2017. 2, 4, 6, 8

2248



[37] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-

Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single

image super-resolution: Methods and results. In CVPRW,

2017. 6

[38] Radu Timofte, Shuhang Gu, Jiqing Wu, Luc Van Gool, Lei

Zhang, Ming-Hsuan Yang, Muhammad Haris, et al. Ntire

2018 challenge on single image super-resolution: Methods

and results. In CVPRW, 2018. 6

[39] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for

gray and color images. In ICCV, 1998. 3

[40] Chi-Yi Tsai and Kai-Tai Song. A new edge-adaptive demo-

saicing algorithm for color filter arrays. IVC, 2017. 1, 2

[41] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy.

Recovering realistic texture in image super-resolution by

deep spatial feature transform. In CVPR, 2018. 2, 3

[42] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

ECCV, 2018. 4

[43] Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst,

Damien Kelly, Michael Krainin, Chia-Kai Liang, Marc

Levoy, and Peyman Milanfar. Handheld multi-frame super-

resolution. arXiv preprint arXiv:1905.03277, 2019. 2

[44] Saining Xie and Zhuowen Tu. Holistically-nested edge de-

tection. In ICCV, 2015. 5

[45] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for CNN based image denoising.

TIP, 2018. 3

[46] Lei Zhang and Xiaolin Wu. Color demosaicking via direc-

tional linear minimum mean square-error estimation. TIP,

2005. 1, 4

[47] Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color

demosaicking by local directional interpolation and nonlocal

adaptive thresholding. JEI, 2011. 2

[48] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 2, 8

[49] Zhifei Zhang, Zhaowen Wang, Zhe Lin, and Hairong Qi. Im-

age super-resolution by neural texture transfer. In CVPR,

2019. 3

[50] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu

Fang. Crossnet: An end-to-end reference-based super reso-

lution network using cross-scale warping. In ECCV, 2018.

3

[51] Ruofan Zhou, Radhakrishna Achanta, and Sabine Süsstrunk.
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