
Learning by Analogy: Reliable Supervision from Transformations

for Unsupervised Optical Flow Estimation

Liang Liu1∗ Jiangning Zhang1 Ruifei He1 Yong Liu1† Yabiao Wang2

Ying Tai2 Donghao Luo2 Chengjie Wang2 Jilin Li2 Feiyue Huang2

1 Zhejiang University 2Youtu Lab, Tencent

{leonliuz, 186368, rfhe}@zju.edu.cn, yongliu@iipc.zju.edu.cn

{casewang, yingtai, michaelluo, jasoncjwang, jerolinli, garyhuang}@tencent.com

Abstract

Unsupervised learning of optical flow, which leverages

the supervision from view synthesis, has emerged as a

promising alternative to supervised methods. However, the

objective of unsupervised learning is likely to be unreliable

in challenging scenes. In this work, we present a framework

to use more reliable supervision from transformations. It

simply twists the general unsupervised learning pipeline by

running another forward pass with transformed data from

augmentation, along with using transformed predictions of

original data as the self-supervision signal. Besides, we fur-

ther introduce a lightweight network with multiple frames

by a highly-shared flow decoder. Our method consistently

gets a leap of performance on several benchmarks with the

best accuracy among deep unsupervised methods. Also, our

method achieves competitive results to recent fully super-

vised methods while with much fewer parameters.

1. Introduction

Optical flow, as a motion description of images, has been

widely used in high-level video tasks [47, 48, 52, 3, 2, 31].

Benefitting from the growth of deep learning, learning-

based optical flow methods [39, 30] with considerable ac-

curacy and efficient inference are gradually replacing the

classical variational-based approaches [36, 25, 44]. How-

ever, it is tough to collect the ground truth of dense optical

flow in reality, which makes most supervised methods heav-

ily dependent on the large-scale synthetic datasets [7, 26],

and the domain difference leads to an underlying degrada-

tion when the model is transferred to the real-world.

In another point of view, many works proposed to learn

optical flow in an unsupervised way [37, 27, 42, 24], in

which the ground truth is not necessary. These works aim to

train networks with objective from view synthesis [51, 49],
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Figure 1. Timeline of average end-point error (AEPE) advances in

deep optical flow. Marker size indicates network size, and over-

sized markers have been adjusted. Our method outperforms all of

the previous unsupervised methods, also yields comparable accu-

racy to supervised methods while with fewer parameters. † indi-

cates the model using more than two frames.

i.e. optimizing the difference between reference images and

the flow warped target images. This objective is based on

the assumption of brightness constancy, which will be vio-

lated for challenging scenes, e.g. with extreme brightness or

partial occlusion. Hence, proper regularization such as oc-

clusion handling [42, 17] or local smooth [27] is required.

Recent studies have focused on more complicate regular-

izations such as 3D geometry constraints [34, 41, 22] and

global epipolar constraints [50]. As shown in Fig. 1, there is

still a large gap between these works and supervised meth-

ods. In this paper, we do not rely on the geometrical regu-

larizations but rethink the task itself to improve accuracy.

Interestingly, we notice that almost all of the unsuper-

vised works, such as [42, 24, 41], avoid using a heavy com-

bination of augmentations, even if it has been proven effec-

tive in supervised flow works [15, 38, 14]. The reason we

conclude is two-fold: (i) Data augmentation is essentially a

trade-off between diversity and validity. It can improve the

model by increasing the diversity of data, while also leads

to a shift of data distribution which decreases the accuracy.
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In unsupervised learning, the benefit of diversity is limited

since the abundant training data is easy to access. (ii) Data

augmentation will generate challenging samples, for which

view synthesis is more likely to be unreliable, so the objec-

tive cannot guide networks for a correct solution.

More recently, there are some works based on knowledge

distillation that alleviate the problem of unreliable objective

in occluded regions [23, 24]. The training of these methods

is split into two stages. In the first stage, a teacher model

is trained to make predictions on original data, and offline

creating occluded samples with random crop or mask out.

In the second stage, these artificial samples from the teacher

model are used to update a student model. However, these

methods were designed for the case of partial occluded only.

Hence we ask: Can we generalize the distillation of occlu-

sion to other transformation cases? Moreover, the distil-

lation method has a bottleneck due to the frozen teacher

model. We thus ask: Can we jointly optimize teacher model

and student model, or just training a single network?

In this work, we address the above two questions with

a novel unsupervised learning framework of optical flow.

Specifically, for the first question, diverse transformations

are used to generate challenging scenes such as low-light,

overexposed, with large displacement or partial occlusion.

For the second question, instead of optimizing two models

with distillation, we simply twist the training step in the reg-

ular learning framework by running an additional forward

with the input of transformed images, and the transformed

flow from the first forward pass is treated as reliable su-

pervision. Since the self-supervision from transformations

avoids the unsupervised objective to be ambiguous in chal-

lenging scenes, our framework allows the network to learn

by analogy with the original samples, and gradually master-

ing the ability to handle challenging samples.

In summary, our contributions are: (i) We propose a

novel way to make use of the self-supervision signal from

abundant augmentations for unsupervised optical flow by

only training a single network; (ii) We demonstrate the ap-

plicability of our method for various augmentation meth-

ods. In addition to occlusion, we develop a general form for

more challenging transformations. (iii) Our method leads in

a leap of performance among deep unsupervised methods.

It also achieves a comparable performance w.r.t. previous

supervised methods, but with much fewer parameters and

excellent cross dataset generalization capability.

2. Related Work

Supervised Optical Flow. Starting from FlowNet [7],

various networks for optical flow with supervised learning

have been proposed, e.g. FlowNet2 [15], PWC-Net [38],

IRR-PWC [14]. These methods are comparable in accuracy

to well-designed variational methods [36, 25], and are more

effective during inference. However, the success of super-

vised methods heavily dependent on the large scale syn-

thetic datasets [26, 7], which leads to an underlying degra-

dation when transferring to real-world applications. As an

alternative, we dig into the unsupervised method to alleviate

the need for ground truth of dense optical flow.

Unsupervised Optical Flow. Yu et al. [18] first intro-

duced a method for learning optical flow with brightness

constancy and motion smoothness, which is similar to

the energy minimization in conventional methods. Fur-

ther researches improve accuracy through occlusion rea-

soning [42, 27], multi-frame extension [17, 11], epipolar

constraint [50], 3D geometrical constraints with monocular

depth [53, 49, 34] and stereo depth [41, 22]. Although these

methods have become complicated, there is still a large gap

with state-of-the-art supervised methods. Recent works im-

prove the performance by learning the flow of occluded pix-

els in a knowledge distillation manner [23, 24], while the

two-stage training in these works is trivial. Instead of study-

ing the complicated geometrical constraints, our approach

focuses on the basic training strategy. It generalizes the case

of occlusion distillation to more kinds of challenging scenes

with a straightforward single-stage learning framework.

Learning with Augmentation. Data augmentation is one

of the easiest ways to improve training. Recently, there

has been something new about integrating augmentation

into the learning frameworks. Mounsaveng et al. [29] and

Xiao et al. [45] suggested learning data augmentation with a

spatial transformer network [16] to generate more complex

samples. Xie et al. [46] proposed to use augmentation in

the semi-supervised tasks by consistency training. Peng et

al. [33] introduced to optimize data augmentation with the

training of task-specific networks jointly. As a new trend in

AutoML, several efforts to automatically search for the best

policy of augmentations [5, 12, 21] are proposed. All these

methods aimed at supervised or semi-supervised learning.

In this work, we present a simple yet effective approach to

integrate abundant augmentations with unsupervised opti-

cal flow. We propose to use reliable predictions of original

samples as a self-supervision signal to guide the predictions

of augmented samples.

3. Preliminaries

This work aims to learn optical flow from images without

the need for ground truth. For completeness, we first briefly

introduce the general framework for unsupervised optical

flow methods, which is shown in the left part of Fig. 2.

Given a dataset of image sequences I, our goal is to train

a network f(.) to predict dense optical flow U12 for two

consecutive RGB frames {I1, I2} ∈ I,

U12 = f(I1, I2; Θ), (1)

where Θ is the set of learnable parameters in the network.
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Despite the lack of direct supervision from ground truth,

the network can be trained implicitly with view synthesis.

Specifically, image I2 can be warped to synthesize the view

of I1 with the prediction of optical flow U12,

Î1(p) = I2 (p+U12(p)) , (2)

where p denotes pixel coordinates in the image, and bilinear

sampling is used for the continuous coordinates. Then, the

objective of view synthesis, also known as photometric loss

Lph, can be formulated as:

Lph ∼
∑

p

ρ(Î(Θ), I), (3)

where ρ(.) is a pixel-wise similarity measurement, e.g. ℓ1
distance or structural similarities (SSIM).

Nevertheless, the photometric loss is violated when pix-

els are occluded or moved out of view so that there are

no corresponding pixels in I2. As a common practice

in [27, 40], we denote these pixels by a binary occlusion

map O12. This map is obtained by the classical forward-

backward checking method, where the backward flow is es-

timated by swapping the order of input images. The photo-

metric loss in the occluded region will be discarded.

Furthermore, supervision solely based on the photomet-

ric loss is ambiguous for somewhere textureless or with

repetitive patterns. One of the most common ways to re-

duce ambiguity is named smooth regularization,

Lsm ∼
∑

d∈x,y

∑

p

‖∇dU12‖1 e
−|∇dI|, (4)

which constrains the prediction similar to the neighbors in x
and y directions when no significant image gradient exists.

4. Method

Since the general pipeline suffers from unreliable super-

vision for challenging cases, previous unsupervised works

avoid using heavy augmentations. In this section, we intro-

duce a novel framework to reuse existing heavy augmen-

tations that have been proven effective in the supervised

scenario, but with different forms. The pipeline is shown

in Fig. 2, and we will explain in detail next.

4.1. Augmentation as a Regularization

Formally, we define an augmentation parameterized by

a random vector θ as T img

θ : It 7→ It, from which one can

sample augmented images {I1, I2} based on original im-

ages {I1, I2} in the dataset. In the general pipeline, the net-

work is trained with the data sampled from the augmented

dataset. In contrast, we train the network on original data,

but leverage augmented samples as a regularization.

I1 I2

U12

U21

O21

Î1

Lsm

Lph

T img

θ

Eq. (6)

T flo
θ

Eq. (7)

T occ
θ

Eq. (8)

I1 I2

U
∗
12

Laug

U12

O12

Figure 2. The pipeline of our proposed method. A complete train-

ing step includes two forwards: (i) The left side shows the first

forward with original samples by the regular pipeline introduced

in Section 3. Then, we perform transformations on images, pre-

dicted flow, and occlusion map respectively to construct an aug-

mented sample. (ii) The right side shows an additional forward

with the input of transformed images, and the output flow is su-

pervised by the flow prediction of original samples.

More specifically, after a regular forward pass for origi-

nal images, we additionally run another forward for trans-

formed images to predict the optical flow U
∗

12. Meanwhile,

the prediction of optical flow in the first forward is trans-

formed consistently by T flo
θ : U12 7→ U12.

The basic assumption of our method is that augmenta-

tion brings challenging scenes in which the unsupervised

loss will be unreliable, while the transformed predictions of

original data can provide reliable self-supervision. There-

fore, we optimize the consistency for the transformed sam-

ples instead of the objective of view synthesis. We follow

the generalized Charbonnier function that commonly used

in the supervised learning of optical flow as:

Laug ∼
∑

p

(∣∣∣S
(
U12(p)

)
−U

∗

12(p)
∣∣∣+ ǫ

)q

, (5)

where S(.) stands for stop-gradient, and the same setting

as supervised work [38] with q = 0.4 and ǫ = 0.01 gives

less penalty to outliers. For stability, we stop the gradients

of Laug propagating to the transformed original flow U12.

Also, only the loss in the non-occluded region is considered.

After twice forwarding, the photometric loss Eq. (3), the

smooth regularization Eq. (4), and the augmentation regu-

larization Eq. (5) are backward at once to update the model.

Our learning framework can be integrated with almost

all types of augmentation methods. In the following, we

summarize three kinds of transformations, which compose

the common augmentations for the optical flow task. Some

examples are shown in Fig. 3.
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Target Image I2 Predicted Flow U12 Ground Truth (Unused)

Target Image I2 Predicted Flow U
∗

12 Transformed Flow U12

(a)

(b)

Figure 3. Some examples of the main idea. The same network is

used to predict the optical flow of original images and transformed

images, respectively. (a) Spatial transformation and appearance

transformation generate a scene with large displacement and low

brightness. (b) Occlusion transformation introduces additional oc-

clusions. The pseudo label U12 that transformed from the original

predictions U12 can provide reliable supervision.

Spatial Transformation. We assume the transformation

that results in a change in the location of pixels is called spa-

tial transformation, which includes random crop, flip, zoom,

affine transform, or more complicated transformations such

as thin-plate-spline or CPAB transformations [8].

Here we show a general form for these transformations.

Let τθ be a transformation of pixel coordinates. The trans-

formation of image T img

θ : It 7→ It can be formulated as:

It(p) = It (τθ(p)) , (6)

which can be implemented by a differentiable warping pro-

cess, same as the one used in Eq. (2).

Since changing pixel locations will lead to a change in

optical flow, we should warp on an intermediate flow field

Ũ12 instead of the original flow. The transformation of op-

tical flow is T flo
θ : U12 7→ U12 can be formulated as:

{
Ũ12(p) = τθ (p+U12(p))− τθ (p) ,

U12(p) = Ũ (τθ (p)) .
(7)

Additionally, the spatial transformation brings new oc-

clusions. As we mentioned above, we explicitly reasoning

occlusion from the predictions of bi-directional optical flow.

Since predictions of transformed samples are noisy, we in-

fer the transformed occlusion map from original predictions

instead. The transformation T occ
θ : O12 7→ O12 consists of

two parts: the old occlusion O
old

12 (p) in the new view and the

new occlusion O
new

12 (p) for pixels whose correspondences

are out of the boundary Ω. The former can be obtained by

the same warping process as T img

θ but with nearest-neighbor

interpolation, and the latter can be explicitly estimated from

the flow U12 by checking the boundary:

O
new

12 (p) =
(
p+U12(p)

)
/∈ Ω. (8)

The final transformed occlusion O12 is a union of these

two parts. Note that, the non-occluded pixels in O
old

12 might

be occluded in O
new

12 . It provides an effective way to learn

the optical flow in occluded regions. For stability, only the

non-occluded pixels in O
old

12 contribute to the loss Laug.

Besides, since we formulate the spatial transformation as

a warping process, there might be pixels out of boundary af-

ter transformation. The common solution, such as padding

with zero or the value of boundary pixels, will lead to se-

vere artifacts. Therefore, we repeat sampling the transfor-

mations until all transformed pixels are in the region of the

original view. On the other hand, this strategy increases the

displacement of the pixel in general.

Occlusion Transformation. The spatial transformation

provides reliable supervision for the flow with large dis-

placement or occlusion around the boundary. As a com-

plementary, recent work [23, 24] proposed to learn optical

flow in arbitrary occluded regions with knowledge distilla-

tion. The general learning process of these methods consists

of training a teacher model, offline creating occluded sam-

ples, and distilling to a student model. We argue that the

way of model distillation is too trivial, and there is a perfor-

mance bottleneck due to the frozen teacher model.

We integrate the occlusion hallucination into our one-

stage training framework and named as occlusion transfor-

mation. Specifically, there are two steps: (i) Random crop.

Actually, random crop is a kind of spatial transformation,

but it efficiently creates new occlusion in the boundary. We

crop the pair of images as a preprocess of occlusion trans-

formation. (ii) Random mask out. We randomly mask out

some superpixels in the target images with Gaussian noise,

which will introduce new occlusion for the source image.

Note that, we adopt a strategy consistent with the spa-

tial transformation that only the pixels not occluded in O
old

12

contribute to Laug. It is different from the previous dis-

tillation works, in which they reasoning a new occlusion

map from the noisy prediction of transform images. Be-

sides, in order to avoid creating transformed samples of-

fline, we adopt a fast method of superpixel segmentation

similar to [35]. The occlusion transformation in our frame-

work simplifies the way of model distillation by optimizing

a single model in one-stage with end-to-end learning.

Appearance Transformation. More transformations only

change the appearance of images, such as random color jit-

ter, random brightness, random blur, random noise. As a

relatively simple case, appearance transformation does not

change the location of pixels, nor introduce new occlusion.

Still, the transformations lead to a risk for general methods,

e.g. the photometric loss is meaningless when the image is

overexposed, blurred, or in extremely low light. Instead,

our method can exploit these transformations since the pre-
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Figure 4. Network architecture for our lightweight multi-frame extension of PWC-Net [38]. It shares a semi-dense flow decoder for all of

the levels across the pyramid with both forward flow and backward flow. For simplicity and completeness, the pipeline of two levels in the

feature pyramid is displayed. Different line colors represent different levels of the process.

diction of the original sample provides a way to learn the

optical flow in challenging transformed scenes.

4.2. Overall Objective and Convergence Analysis

Our framework assumes that transformed predictions are

generally more accurate than the predictions of transformed

samples, but what if samples are in the opposite case? In

fact, we ensure convergence with the scope of each loss,

i.e., which pixels affect each loss.

As shown in Fig. 2, the overall objective for a training

step consists of three loss terms in twice forwarding,

Lall = Lph (U12) + λ1Lsm (U12)︸ ︷︷ ︸
1st forward

+λ2Laug(S(U12),U
∗

12)︸ ︷︷ ︸
2nd forward

, (9)

in which the first two terms propagate gradients for the orig-

inal sample, and the last term is for the transformed sample.

The original data and the augmented data are treated differ-

ently. By setting a minor weight of λ2, we can ensure that

the original data is always dominant, so the effects of bad

cases are limited. Moreover, the scope of the photometric

loss Lph is the non-occluded pixels in O12. Thus the aug-

mentation consistency loss becomes dominant for the new

occluded pixels, which leads the network to learn the op-

tical flow with occlusion effectively. Besides, the scope of

augmentation loss Laug avoids the network to be misguided

from the original occluded predictions.

4.3. Lightweight Network Architecture

The learning framework we proposed can be applied to

any flow networks. However, optical flow often plays a role

as a sub-module in high-level video tasks [47, 48, 31] where

the model size should be concerned. Hence, we introduce a

lightweight architecture and extend it to multiple frames.

We start from a well-known network for the optical flow

task named PWC-Net [38]. The original network shares a

feature encoder with a siamese feature pyramid network for

the images. For the level l in the pyramid, the feature maps

of target image xl
2 are aligned by warping operation with the

flow prediction Ul+1
12 from the higher level. Then the cost

volume cvl
12 is constructed with correlation operation. The

input for flow decoder F l
12 is organized by concatenating the

feature maps of source image xl
1, the upsampled flow from

the higher level Ul+1
12 , and the cost volume cvl

12. Finally,

the specific flow decoder of level l predicts the optical flow

Ul
12. By iterating over the pyramid, the network predicts

optical flow at different scales.

Our method follows the main pipeline of the original

PWC-Net but with some modifications. The flowchart of

our multi-frame extension is shown in Fig. 4. We notice that

the majority of learnable parameters of PWC-Net is in the

flow decoder of each feature level, so we take several steps

to reduce the parameters: (i) The original implementation

adopts a fully dense connection in each decoder, while we

reduce the connections that only connections in the nearest

two layers are retained. (ii) We share the flow decoder for

all of the levels across the pyramid, with an additional con-

volution layer for each level to align the feature maps. (iii)

We extend the model to multiple frames by repeating the

warping and correlation to the backward features. The flow

decoder is shared for both forward flow and backward flow

in the multi-frame extension by changing the sign of optical

flow and the order in feature concatenation.
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5. Experimental Results

5.1. Implementation Details

We implement our end-to-end approach in PyTorch [32].

All models are trained by Adam optimizer [19] with β1 =
0.9, β2 = 0.99, batch size of 4. The learning rate is 10−4

without adjustment during training. The loss weights for

regularizations are set to λ1 = 60 and λ2 = 0.01 for all

datasets. In addition, an optional pre-training can be used

for better results, which is under almost the same setting

above, but with λ2 = 0, i.e. a regular training step without

the transformed pass in forward 1.

Only random flip and random time order switch are per-

formed as the regular data augmentation. The heavy com-

bination of augmentations in supervised works [15, 38, 13]

are used as the appearance transformation and spatial trans-

formation in our framework, including random rotate, trans-

late, zoom in, as well as additive Gaussian noise, Gaussian

blur and random jitter in brightness, color, and contrast.

5.2. Datasets

We first evaluate our method on three well-established

optical flow benchmarks, MPI Sintel [1], KITTI 2012 [10],

and KITTI 2015 [28]. Then, we conduct a cross dataset ex-

periment with another optical flow dataset FlyingChairs [7]

and a segmentation dataset CityScapes [4].

We follow a similar data setting in previous unsupervised

works [23, 24]. For the MPI Sintel benchmark, we extract

all frames from the raw movie and manually group frames

by shots for pre-training, which consists of 14,570 image

pairs. Then, the model is fine-tuned on the standard train-

ing set, which provides 1,041 image pairs with two differ-

ent rendering passes (“Clean” and “Final”). For the KITTI

2012 and KITTI 2015, we pre-train the model on the KITTI

raw dataset [9], but discard scenes that contain images ap-

peared in the optical flow benchmarks. The pre-training set

consists of 28,058 image pairs. Then the model is fine-tuned

on the multi-view extension data, but discards samples con-

taining frames related to validation, i.e. numbers 9-12. The

final training set consists of 6,000 samples for our basic

model and 3,600 samples for the multi-frame model.

5.3. Comparison with State­of­the­art

We compare our method with both supervised and un-

supervised methods on optical flow benchmarks. Standard

metrics for optical flow are used, including average end-

point error (AEPE), and percentage of erroneous pixels (Fl).

Table 1 reports the results on MPI Sintel benchmark.

Our basic two-frame model “ARFlow” outperforms all pre-

vious unsupervised works with the least parameters. Fur-

thermore, our multi-frame model “ARFlow-MV” reduces

1Code available at https://github.com/lliuz/ARFlow.

Method
Sintel Training Sintel Test

# Param.

Clean Final Clean Final

S
u
p
er

v
is

ed

FlowNetS-ft [7] (3.66) (4.44) 6.96 7.76 32.07 M

LiteFlowNet-ft[13] (1.64) (2.23) 4.86 6.09 5.37 M

PWC-Net-ft[38] (2.02) (2.08) 4.39 5.04 8.75 M

IRR-PWC-ft [14] (1.92) (2.51) 3.84 4.58 6.36 M

SelFlow-ft† [24] (1.68) (1.77) 3.74 4.26 4.79 M

U
n
su

p
er

v
is

ed

UnFlow-CSS [27] - (7.91) 9.38 10.22 116.58 M

OccAwareFlow [42] (4.03) (5.95) 7.95 9.15 5.12 M

MFOccFlow† [17] (3.89) (5.52) 7.23 8.81 12.21 M

EpiFlow train-ft [50] (3.54) (4.99) 7.00 8.51 8.75 M

DDFlow [23] (2.92) (3.98) 6.18 7.40 4.27 M

SelFlow† [24] (2.88) (3.87) 6.56 6.57 4.79 M

Ours (ARFlow) (2.79) (3.73) 4.78 5.89 2.24 M

Ours (ARFlow-MV†) (2.73) (3.69) 4.49 5.67 2.37 M

Table 1. MPI Sintel Flow: AEPE and the number of CNN pa-

rameters are reported. Missing entry (-) means that the results are

not reported for the respective method, and † indicates the model

using more than two frames.

Method

KITTI 2012 KITTI 2015

training test training test (F1)

S
u
p
er

v
is

ed FlowNet2-ft [15] (1.28) 1.8 (2.30) 11.48%

LiteFlowNet-ft [13] (1.26) 1.7 (2.16) 11.48%

PWC-Net-ft [38] (1.45) 1.7 (2.16) 9.60%

SelFlow-ft† [24] (0.76) 1.5 (1.18) 8.42%

U
n
su

p
er

v
is

ed

BridgeDepthFlow§ [20] 2.56 – 7.02 –

CCFlow§ [34] – – 5.66 25.27%

UnOS-stereo§ [41] 1.64 1.8 5.58 18.00%

EpiFlow-train-ft§ [50] (2.51) 3.4 (5.55) 16.95%

DDFlow [23] 2.35 3.0 5.72 14.29%

SelFlow† [24] 1.69 2.2 4.84 14.19%

Ours (ARFlow) 1.44 1.8 2.85 11.80%

Ours (ARFlow-MV†) 1.26 1.5 3.46 11.79%

Table 2. KITTI Optical Flow 2012 and 2015: AEPE and Fl are

reported. For unsupervised methods, only the works published in

2019 are shown. Missing entry (-) means that the results are not re-

ported for the respective method. † indicates the model using more

than two frames. § indicates training with geometrical constraints.

the previous best AEPE from 6.18 [23] to 4.49 on the clean

pass, with 27.3% improvement, and from 6.57 [24] to 5.67

on the final pass, with 13.7% improvement.

As for KITTI benchmarks, Table 2 shows a significant

improvement. On the training set, we achieve AEPE=1.26

with 25.4% relative improvement on KITTI 2012 and

AEPE=2.85 with 41.2% improvement on KITTI 2015 w.r.t.

the previous best unsupervised method [24]. On the test set,

our method reaches the best AEPE=1.5 and F1-all=11.79%

among unsupervised methods, respectively.

Several representative supervised methods are also re-

ported as a reference. As a result, our unsupervised models

firstly reach or approach some powerful fully supervised

methods such as LiteFlowNet [13], PWC-Net [38], even

with 27.1% parameters of PWC-Net.

Samples on MPI Sintel and KITTI are shown in Fig. 5.

Compared with the state-of-the-art competitor [24], for the

low light and large displacement scenes in MPI Sintel, our

method maintains better performance in general and is more
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(a) Reference Image (b) Our Predictions (c) SelFlow [24] Predictions (d) Our Error (e) SelFlow Error [24]

Figure 5. Qualitative visualization comparing with unsupervised SelFlow [24]. The first two rows are from the Sintel Final pass, where the

errors are visualized in gray. The last two rows are from KITTI 2015, in which the correct predictions are depicted in blue and the wrongs

in red for the error visualization. More samples will be available on the website of corresponding benchmarks.

Model Architecture AR

Sintel Clean Sintel Final

# Param.
ALL NOC OCC ALL NOC OCC

PWC-Net [38] 2.48 1.19 21.71 3.47 1.98 25.19 8.75 M

PWC-Net-small [38] 2.76 1.28 23.92 3.62 2.16 28.15 4.05 M

+ Reduce Dense
2.53 1.23 21.36 3.47 2.03 24.20

5.32 M
✓ 2.04 0.90 18.47 2.97 1.72 21.05

+ Share Decoder
2.30 1.08 20.00 3.19 1.84 22.77

2.24 M
✓ 1.95 0.85 17.85 2.86 1.66 20.25

+ Multipe Frames
2.24 1.04 19.60 3.18 1.86 22.36

2.37 M
✓ 1.89 0.86 16.79 2.85 1.66 20.02

Table 3. Ablation study of our learning framework with mul-

tiple model architectures. AEPE in specific regions of the scene

and the number of CNN parameters are reported. AR: Training

with augmentation as a regularization framework.

accurate around the boundaries. For KITTI results, the

shapes in our optical flow are more structured for objects

and more accurate in texture-less regions.

5.4. Ablation Study

To further analyze the capability of each component, we

conduct four groups of ablation studies. We randomly re-

split the Sintel training set into a new training set and a val-

idation set by the scene. We evaluate AEPE in different

regions over all pixels (ALL), non-occluded pixels (NOC),

occluded pixels (OCC), and according to speed (s0-10, s10-

40 and s40+ are pixels that move less than 10 pixels, be-

tween 10 and 40, and more than 40, respectively)

Main Ablation. Table 3 assesses the overall improvement

of our augmentation as a regularization learning framework

under multiple model architectures. Our framework consis-

tently improves the accuracy of optical flow over 10% for all

architectures, whether for occluded or non-occluded pixels.

For the consideration of the number of model param-

eters, we start from the original PWC-Net and a variant

named PWC-Net-small without dense connections in the

flow decoders [38]. Although removing dense connections

can reduce half parameters, it leads to severe performance

ST AT OT ALL NOC OCC s0-10 s10-40 s40+

S
in

te
l

C
le

an

2.53 1.23 21.36 0.61 2.74 24.30

✓ 2.39 1.20 19.61 0.61 2.56 23.14

✓ 2.40 1.13 20.67 0.61 2.81 21.95

✓ 2.14 1.00 18.63 0.62 2.83 17.56

✓ ✓ 2.09 0.95 18.90 0.59 2.65 18.03

✓ ✓ ✓ 2.04 0.90 18.47 0.61 2.55 17.05

S
in

te
l

F
in

al

3.47 2.03 24.20 0.82 3.77 33.48

✓ 3.23 1.93 21.98 0.82 3.48 30.78

✓ 3.36 1.94 23.95 0.81 3.70 32.17

✓ 3.04 1.78 21.25 0.78 3.55 27.80

✓ ✓ 3.01 1.76 21.40 0.75 3.48 28.48

✓ ✓ ✓ 2.97 1.72 21.05 0.77 3.40 27.25

Table 4. Comparison of combinations of transformations.

AEPE in specific regions are reported. ST: Spatial transformation,

AT: Appearance transformation, OT: Occlusion transformation.

degradation. In contrast, our reduced dense variant main-

tains the performance while reducing 39.2% parameters.

Sharing decoder across feature pyramid yields an improve-

ment on flow with only 25.6% parameters of the original

model. The multi-frame extension reaches the best perfor-

mance with the minimal extra overhead of parameters.

Combination of Transformations. Furthermore, we

delve into the type of transformations in our framework. Ta-

ble 4 shows the performance of the model trained with

several combinations of the three kinds of transformations.

There are some critical observations: (i) Each transforma-

tion can improve the performance individually. (ii) Spatial

transformation is the most helpful to all measurements, es-

pecially for large displacement estimation. (iii) The accu-

racy in the occluded region can be significantly improved

by occlusion transformation or spatial transformation. All

these observations are consistent with our assumption that

the transformation will introduce new challenging scenes,

and our approach can provide reliable supervision.

Usage of Augmentation. As we mentioned above, almost

all of the unsupervised learning approaches avoid using a

heavy combination of augmentations. As a reference, we
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Method

Sintel Clean Sintel Final

ALL s0-10 s10-40 s40+ ALL s0-10 s10-40 s40+

Without Aug. 2.53 0.61 2.74 24.30 3.47 0.82 3.77 33.48

Aug. Directly 2.71 0.69 3.11 27.13 3.80 0.95 4.03 35.90

Aug. Distillation 2.36 0.64 2.61 19.90 3.31 0.86 3.50 30.18

Ours(aug. as reg.) 2.04 0.61 2.55 17.05 2.97 0.77 3.40 27.25

Table 5. Comparison of our learning framework with direct data

augmentation and the data distillation framework used in [23, 24].

Method

Sintel Clean Sintel Final

ALL s0-10 s10-40 s40+ ALL s0-10 s10-40 s40+

Without Aug. 2.53 0.61 2.74 24.30 3.47 0.82 3.77 33.48

CPAB [8] + AT 2.38 0.61 2.78 21.60 3.32 0.81 3.59 31.09

AutoAugment [5] 2.30 0.62 2.59 21.18 3.29 0.81 3.53 30.11

Ours(ST + AT) 2.09 0.59 2.65 18.03 3.01 0.75 3.48 28.48

Table 6. Comparison of different augmentation transformations

integrated with our framework. AT: appearance transformation,

ST: spatial transformation.

evaluate the same transformations with different usages.

Table 5 reports the results of (i) training without heavy aug-

mentation, (ii) using transformation as a regular data aug-

mentation and training directly, (iii) training with data dis-

tillation that similar in [23, 24], (iv) training with the learn-

ing framework we proposed. The results show that directly

augmentation makes all metrics worse. Instead of apply-

ing transformations directly, distillation alleviates the prob-

lem of unreliable supervision. However, the frozen teacher

model is still a bottleneck for the student model. Also, the

tedious multi-stage training process of knowledge distilla-

tion is undesired. Our framework avoids the unreliable pho-

tometric loss for the transformed samples. It achieves the

best results with a single-stage optimization.

Integrate Complicated Augmentation. By implement-

ing the corresponding transformation of optical flow and

occlusion map, our framework can be integrated with al-

most all types of augmentation. We assess a complicated

spatial transformation called CPAB [8] and a recent work

in AutoML on searching for the best augmentation policy

called AutoAugment [5]. Note that random zoom in is ap-

plied first to avoid invalid coordinate values of transforma-

tions. Table 6 shows that both strategies integrated with our

framework can improve accuracy. Note that AutoAugment

is too time consuming for our task, therefore we adopt the

final policy searched from ImageNet [6] classification task.

It is promising that our framework with AutoAugment will

be further improved with policy fine-tuning.

5.5. Cross Dataset Generalization

Although deep optical flow methods have been far ahead

of the most popular classical variational method TV-L1 [43]

on optical flow benchmarks, the latter has not gone away.

One possible reason is that supervised learning methods are

prone to overfitting, which results in poor generalization

when transferring to high-level video tasks.

Method
Training Chairs Sintel Sintel KIITI KITTI

Set Full Clean Final 2012 2015

PWC-Net [38] Sintel 3.69 (1.86) (2.31) 3.68 10.52

Ours(ARFlow)
Sintel 3.50 (2.79) (3.73) 3.06 9.04

CityScapes 5.10 5.22 6.01 2.11 5.33

Table 7. Generalization performance of cross datasets evaluation.

The numbers indicate AEPE on each dataset. For KITTI and Sin-

tel, the results are evaluated on the training set. () indicates the

results of a dataset that the method has been trained on.

Hence, we report the cross dataset accuracy in Table 7, in

which our unsupervised method is compared with a fully su-

pervised method PWC-Net [38]. The supervised PWC-Net

consistently outperforms for the dataset that the model is

trained on, while our unsupervised method works much bet-

ter when transferring to other datasets. In addition, we train

a model on an urban street dataset named CityScapes [4],

in which 50,625 image pairs are used for training without

the ground truth. This model performs best on the KITTI

2012 and KITTI 2015 than any other model trained on the

synthetic dataset. Our method makes it possible to fit the

domain of high-level video tasks by training a model on the

unlabeled videos from that domain.

Remarkably, despite the lack of cross dataset results

from other unsupervised methods, the accuracy of our

model trained on CityScapes is even better than most of

the previous works trained on KITTI (c.f . Table 2), which

shows the superiority of our method. The results demon-

strate a significant improvement of our method for unsuper-

vised optical flow task with an excellent generalization.

6. Conclusion

We proposed a novel framework that learns optical flow

from unlabeled image sequences with the self-supervision

from augmentations. To avoid the objective of view syn-

thesis being unreliable on transformed data, we twist the

basic learning framework by adding another forward pass

for transformed images, where the supervision is from

the transformed prediction of original images. Besides, a

lightweight network and its multi-frame extension were pre-

sented. Extensive experiments have shown that our methods

significantly improve accuracy, with high compatibility and

generalization ability. We believe that our learning frame-

work can be further combined with other geometrical con-

straints or transferred to other visual geometry tasks, such

as depth or scene flow estimation.
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