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Abstract

In this paper, we tackle an important task in computer vi-

sion: any view object recognition. In both training and test-

ing, for each object instance, we are only given its 2D image

viewed from an unknown angle. We propose a computa-

tional framework by designing object and viewer-centered

neural networks (OVCNet) to recognize an object instance

viewed from an arbitrary unknown angle. OVCNet con-

sists of three branches that respectively implement object-

centered, 3D viewer-centered, and in-plane viewer-centered

recognition. We evaluate our proposed OVCNet using two

metrics with unseen views from both seen and novel ob-

ject instances. Experimental results demonstrate the advan-

tages of OVCNet over classic 2D-image-based CNN classi-

fiers, 3D-object (inferred from 2D image) classifiers, and

competing multi-view based approaches. It gives rise to a

viable and practical computing framework that combines

both viewpoint-dependent and viewpoint-independent fea-

tures for object recognition from any view.

1. Introduction
Objects are three-dimensional in the physical world, but

the recognition tasks in computer vision have been primar-

ily performed on 2D natural images [9]. Despite the great

success of the deep convolutional neural networks (CNNs)

[18, 43, 38, 14, 49], a standard CNN model that repre-

sents images in the 2D image space only tends to suffer

from a “mental rotation” [36] like effect [3], as shown in

Figure 3. Namely, when training a network with a lim-

ited number of views of an object instance, it may have a

hard time recognizing the same object instance from an un-

seen viewpoint. There are two schools of thought regard-

ing object representations. For biological vision systems,

there has been a long-time debate [26] in cognitive psychol-

ogy about whether objects are fundamentally encoded by

object-centered or viewer-centered representations [44, 13].

In David Marr’s pioneering vision paradigm [27], object

recognition is carried out primarily in an object-centered

manner in which objects are represented either by explicit

3D primitives (e.g. cylinders) [4] or by features that are

invariant to viewpoint changes [2]. However, the theory

of object-centered representation has been challenged in

the past. Psychophysical and computational neural studies

have shown evidence that viewer-centered representations

[35, 25, 10] play a significant role in object recognition.

Figure 1. Problem illustration. Our task is to recognize an object

from any view. In both training and testing, we only see 2D images

without knowing the viewing angles and depth.

Implementations of both viewpoint-independent [20, 22]

and viewpoint-dependent [3, 1] systems are present in com-

puter and machine vision literature. An object-centered

system typically encodes and stores a representation with

viewpoint-independent (object-centric) features [17] that

are invariant to viewpoint changes. During test time, rep-

resentations with viewpoint-independent features are com-

puted for a query object under a novel view to match with

the stored features. A viewer-centered system instead stores

a set of viewpoint-dependent features from typical viewing

angles. During testing, a given view of an object instance is

matched to the saved features to the specific viewpoints.

An object-centered representation has the advantage of

maintaining rotation-invariant features that are insensitive

to viewpoint changes; however, it relies on the presence

of faithful 3D reconstructions or effective invariant features

that are usually difficult to obtain from a single view image

[13]. Conversely, a viewer-centered representation typically
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stores features that are sensitive to the viewpoint changes;

viewpoint-dependent features are usually straightforward to

compute and learn.

Studies that combine both object-centered and viewer-

centered representations also exist [28, 5, 29]. However,

there has been limited success in the computer vision litera-

ture to build a hybrid system [19]. Additionally, systematic

novel-view evaluation metrics are rarely used to evaluate the

new state-of-the-art recognition systems.

Inspired by the theories of object-centered and viewer-

centered object recognition [27, 26] as well as recent deep

learning approaches for object recognition [40, 8], we pro-

pose a new algorithm: object and viewer-centered neural

networks (OVCNet) for object recognition from any view.

OVCNet has several attractive properties: 1) It adopts a pre-

trained Generalizable Reconstruction (GenRe) model [51]

to reconstruct 3D images from a single view image. We take

advantage of the property of GenRe generalizing well to un-

seen object classes beyond the three classes (“plane”, “car”,

and “chair”) that it was trained on. Hence, we are able to

infer the shape of a novel instance without additional object-

specific 3D shape information. 2) OVCNet consists of three

object recognition branches/modules by respectively im-

plementing object-centric, 3D viewer-centric, and in-plane

viewer-centric recognition to better perform the task. 3) We

show that by adding sparse viewer-centered representations,

we can further assist feature learning in the object-centered

sub-module through spherical CNNs [8]. The resulting

OVCNet is an integrated framework that learns viewpoint-

independent and viewpoint-dependent features from an ar-

bitrary view, and it can recognize novel views from both

seen (familiar) and novel object instances.

In cognitive psychology, Marr initially proposed the def-

inition [27] of object-centered and viewer-centered rep-

resentation for object recognition. Since then, further in-

terpretations are provided in [13, 26, 26, 44] emphasizing

that a viewer-centered representation captures shapes at a

particular view, whereas an object-centered representation

represents the intrinsic 3D shape. Inspired by these cog-

nitive psychology findings, we ask for the following prop-

erties for an object-centered module in our network de-

sign: 1) 3D model based (e.g. volumetric, mesh, point-

cloud or spherical maps); 2) rotation invariant; 3) absent

pose alignment. Here, we characterize some of the meth-

ods [46, 31, 41, 16, 8] referred in this paper in Table 1.

Although these individual approaches in comparison have

their own merits, our experiments show that each method

alone does not produce satisfactory recognition result on

3D-reconstruction derived from an arbitrary view image.

To evaluate OVCNet, we use a real object grayscale

multi-view dataset [16], a virtual object grayscale multi-

view dataset generated from ShapeNet [7], and a natural-

colored dataset (a subset of the Pascal VOC dataset [12]).

We split the views of different object instances into train-

ing and testing. In training, the dataset consists of one

2D image per object instance from an unspecified view-

ing angle; in testing, we perform classification on two sets

of images from novel viewpoints of both seen (familiar)

and novel object instances, respectively. Compared to a

2D image-based object recognition system such as AlexNet

[18] and ResNet [14] as well as several 3D object recog-

nition methods [8, 31, 46] following a single-view recon-

struction module, OVCNet shows its clear advantage in the

performance observed, especially on the relatively larger

dataset, gMIVO. Furthermore, we also show that our algo-

rithm outperforms standard ResNet18 by a large margin on

a subset of Pascal VOC natural images.

In comparison with standard image classification tasks
such as ImageNet [9], their metrics concern with general-
ization to novel instances, whereas our paradigm introduces
generalization to novel views as well. Our contributions are
listed as follows.

• We tackle the problem of object recognition from any view

(single-arbitrary-view training and novel-view-novel-object-

instance testing) by developing an algorithm that jointly en-

codes object-centered and viewer-centered representations.

• We create an object and viewer-centered network (OVCNet)

with three branches, each specializing in either object-centered,

viewer-centered (3D), or viewer-centered (2D) learning. The

proposed OVCNet consists of a combination of spherical

CNNs, ResNet, and attention structures.

• Between object-centered and viewer-centered 3D branches, we

develop a new network structure that enables integrated learn-

ing of both object-centered and viewer-centered representa-

tions with a communicating pathway between the two.

• We provide a new multi-view dataset generated from a subset

of models of ShapeNetCoreV2 3D models.

2. Related work

In this section, we briefly discuss the existing literature

and methods related to object-centered and viewer-centered

object recognition.

Method 3D model Rotation- No pose

based invariant alignment

3DShapeNet [46] ✓

PointNet [31] ✓ ✓

MVCNN [41] ✓ ✓

RotationNet [16] ✓

Spherical CNNs [8] ✓ ✓ ✓

Table 1. Properties as an object-centered representation for dif-

ferent methods.

3D object recognition. With various 3D object datasets

[7, 46, 47, 8] being created and becoming increasingly pop-

ular, 3D object recognition [48, 42, 41, 16, 32, 46, 31, 50,

33, 40, 8] has become a highly discussed topic in com-

puter vision. Existing systems rely on given ground-truth

3D data in the form of either volumetric shapes [46], point-

cloud sets [31], spherical maps [8], or multi-view images
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Figure 2. Network structure for our object and viewer-centered neural network, OVCNet. During training, each input is a 2D image of an

object instance. OVCNet consists of 3 branches. For the top two branches, single-view 3D reconstruction using GenRe [51] is performed

first. The first branch (Object-Centered) builds a representation using spherical maps [8]; the second branch (Viewer-Centered (3D)) builds

a 2D CNN classifier with data augmentation using novel-view image syntheses. The third branch (Viewer-Centered (2D)) executes 2D

based image classification with in-plane rotation for data augmentation. The final fusion layer provides a weighted sum of the outputs from

the three branches/modules. Please see Section 4 for details about the three branches/modules, as well as the fusion layer.

[42, 41, 32, 16]. In contrast, we utilize these network struc-

tures as our recognition module following a single-view 3D

reconstruction module.

2D Image-based object recognition. Viewer-centered fea-

ture learning has previously been addressed [3]. Broadly

speaking, the recent common practice of data-augmentation

can be considered viewer-centered feature learning where

no new views are generated since the augmentation is

mainly implemented in the 2D image plane.

Hybrid 2D and 3D object recognition. SPLATNet [40] is

a hybrid system that integrates both 2D and 3D features for

object classification and segmentation and is closely related

to ours. However, SplatNet takes two modalities of inputs:

a point-cloud based 3D shape and 2D multi-view images.

Hence the scope of SplatNet is very different from ours.

Data-augmentation for transfer learning. There have

been recent works in transfer learning [39, 34, 21, 11, 24]

where data-augmentation is performed subject to certain do-

main adaption and regularization. These approaches ad-

dress a fairly different problem compared to ours. We fo-

cus on the basic problem for 3D single image classification

instead of a multi-task prediction problem.

Single-view 3D reconstruction. In the field of single-

view 3D reconstruction, an object-centered network out-

puts 3D information in a canonical view of the object. In

contrast, a viewer-centered network’s 3D output is relative

to the input view [37, 45]. This definition is significantly

different from what we define previously for recognition

tasks. Nonetheless, for better reconstruction, Shin et al. and

Tatarchenko et al. have shown that using 3D-supervision

in a viewer-centered coordinate system tends to generalize

better against unseen classes. Better generalization for un-

seen categories allows us to acquire 3D shape priors for new

instances in an image without any 3D shape information

during training. We adopt the state-of-the-art method for

unseen class reconstruction, GenRe [51], to reconstruct 3D

shape from a 2D single image, but GenRe itself does not

perform image recognition.

Spherical CNNs. We build our chosen object-centered rep-

resentation based on spherical CNNs [8], which is an effec-

tive and efficient way to obtain 3D shape representation for

the 3D object classification tasks. Spherical CNNs them-

selves do not perform object recognition from any view,

and a 3D input is required to generate the spherical map

that spherical CNNs need.

To summarize, we focus on a challenging problem set-

ting for object recognition from any view using object and

viewer -centered representations.

3. Problem formulation

In this section, we focus on the any view object clas-

sification task. During training, the input is an arbitrary

single view per training object instance, and the output is

the ground truth class label. Every object instance is seen

only once. We evaluate the effectiveness of OVCNet in two

aspects: 1) SeenInstances: the ability to recognize novel

views of seen (familiar) object instances (instances that are

used in training) and 2) NovelInstances: the ability to rec-

ognize arbitrary views of novel/unseen object instances (in-

stances absent from the training set). We present results

from two experiments corresponding to these two aspects.
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(a) (b) trained on view 1 (c) trained on view 90
Figure 3. (a) is an example of viewpoints used for generating viewpoint dependent images for the Viewer-Centered (3D) module (Sec-

tion 4.3) similar to [16]. (b) and (c) show the classification accuracies across all viewpoints for a ResNet18 model trained only on view

1 (b) and view 90 (c) (highlighted) of the objects, respectively, on the MIRO dataset [16]. Without seeing other views, classic 2D CNNs

have unsatisfactory performances on novel views.

4. Network architecture

4.1. Singleview shape prior

Given a single view of an object instance, we first use a

state-of-the-art algorithm, GenRe [51], to generate 3D ob-

ject reconstruction from a 2D image. GenRe separates re-

construction into three sub-tasks: depth estimation, spher-

ical map inpainting, and voxel refinement. The separation

of these tasks enables reasonable reconstruction for unseen

objects/classes. Therefore, no additional object-specific in-

formation is needed. The pretrained GenRe model is only

trained on three object classes (“plane”, “car”, and “chair”)

for reconstruction, but GenRe has shown great potential

when it is evaluated on a wide variety of unseen object cate-

gories [51]. In our classification task on the gMIVO dataset,

we include plane, car, chair, as well as other object classes

such as lamp, pistol, motorbike, knife, laptop, guitar, and

table. We adopt the trained GenRe model [51] directly to

perform 3D reconstruction for a 2D image and add texture

information to the final 3D model. We sample the texture

information from the seen side with the nearest neighbor

search algorithm using a k-d tree. This approach may result

in different texture patterns due to different vertex ordering.

A better texture filling approach should be explored in fu-

ture studies.

4.2. Objectcentered representation (OC module)

We utilize existing 3D recognition network structures as

our classification module following GenRe’s 3D shape es-

timation. We evaluate all three 3D shape-based recognition

networks in Table 1: 3D CNNs, PointNet [31], and spheri-

cal CNNs [8], respectively. 3D CNNs is a 3D convolutional

network inspired by 3DShapeNet [46] and built on top of

[23]. Among them, spherical CNNs match the most with

our object-centered definition for the following reasons.

First, spherical CNNs model is a 3D shape-based

method. Object classification is carried out based on dis-

tance spherical maps along with cosine and sine of surface

signals from 3D objects and their convex hulls. With spheri-

cal information of 3D models as input, the results of spheri-

cal CNNs on ShapeNet SHREC17 [7] are close to the state-

of-the-art [8]. One can generate a spherical distance map

by shooting a ray from the surface of a sphere (with a fixed

radius) to the center of the object. The distance between the

sphere surface and the object surface becomes the distance

value captured by the spherical distance map [8]. Second,

spherical CNNs use convolutions directly in the spherical

harmonic domain, which keeps 3D rotation-equivariance of

the spherical signals. See discussions about an empirical

support for rotation-invariance in [8]. More discussion on

its rotation-invariant capability is provided in the supple-

mentary materials. Third, the network does not require any

pose alignment.

In our overall model, we refer to the object-centered

module branch with spherical CNNs as the OCb module,

where the superscript b indicates that it is a base module.

4.3. Viewercentered representation (VC module)

For viewer-centered representations, different modules

with two different inputs are used: 1) the original view VC

(2D) module; 2) views re-projected using 3D viewpoint

augmentation from the 3D output of the GenRe VC (3D)

module. For both tasks, we find that ResNet18 works well

as a 2D image classifier compared to other classic convo-

lutional neural networks. To select augmented views, we

implement three options for the view selection layer (dis-

cussed in detail in Section 4.4).

VC (2D) module. This module uses 2D augmentation with

in-plane rotation. We evaluate ResNet18 with different an-

gles of rotation augmentation, including intervals of 90, 30,

10, 5, and 1 degrees for gMIRO. We observe that the evalu-

ation accuracy stops increasing as we provide denser angle

augmentations. Rotation ablation studies (see the supple-

mentary materials) show that ResNet18’s accuracy plateaus

when we augment the input view with 2D in-plane rotations

at 30-degree intervals for the gMIRO dataset. In contrast,

for gMIVO, the network performance plateaus with aug-
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mentations of 90-degree intervals. We use these numbers

in our later experiments. If trained under identical views,

ResNet18, as shown in Figure 3.b and c, experiences dif-

ficulties recognizing images from new angles for the same

set of objects. We refer to this effect as “ mental rotation”.

VC (3D) module. This module uses 2D augmentation from

3D viewpoints. We augment images with 10 evenly di-

vided elevation angles and 16 evenly divided azimuth an-

gles, yielding 160 views per object. The viewpoint aug-

mentation setting is shown in Figure 3.a [16]. The view-

point layout imitates the organization of object views in the

dataset, starting from the input view. Additionally, we add

in-plane (2D) rotation augmentations in 90-degree intervals

to each augmented viewpoint.

For the VC (3D) module, we explore three types of view

selection methods: 1) the nearest neighbor approach where

the network only uses the augmented image that is closest

to the input viewpoint for testing; 2) a simple selection layer

where the network learns a set of weights for all augmented

views; 3) an attention layer where the network learns a set

of attention weights based on the input information. Option

1 is the most suitable for a dataset that has limited training

views, such as gMIRO, and is the most efficient in terms of

runtime. For options 2 and 3, we further divide the train-

ing views into a sub-training set1 and set2. We first use

set1 for training ResNet18 and then use the set2 to train the

selection network. We observe an improvement in average

accuracy using a view selection network compared to a sim-

ple ensemble of all augmented views. However, given the

limitation of the 3D reconstruction and size of the dataset,

for the gMIRO dataset, using the input viewpoint alone out-

performs the other options.

Other augmentations are also considered. We include 20

views taken from the 20 vertices of a dodecahedron around

the object [41, 16] for a GenRe [51] + multi-view base-

line. We also include 36 viewpoints from a sampling grid

of spherical maps with a bandwidth of 3 [8] for a viewer-

centered assisted object-centered module, OC (Section 4.4).

For the multi-view baseline, we include GenRe + multi-

view CNN (MVCNN) [41] and GenRe + RotationNet [16].

A 20-view version of MVCNN is used due to memory

constraint. The best performing backbones are VGG for

MVCNN and ResNet18 for RotationNet. The results are en-

couraging for GenRe + MVCNN. However, MVCNN uses

pretrained weights and requires 20-view augmentation dur-

ing test. In contrast, we train our model with a single view

and from scratch to avoid prior knowledge of unseen in-

stances learned from the pretrained dataset.

4.4. Fused representation (OVCNet)

In summary, our overall network (Figure 2) includes 3

branches: OCb branch (GenRetext + spherical CNNs [8]),

VC (3D) branch (GenRetext + ResNet18 [14] + view selec-

tion), and VC (2D) branch (ResNet18).

To fuse the OCb base module with the VC (3D) module,

we create an OC module (Figure 2). In this module, in ad-

dition to the 160-view set, we use the information from 36

augmented views to reduce the number of views needed for

training. We then organize the learned ResNet features into

a grid and pass them into an ancillary spherical CNNs with

an input bandwidth of 3. This new branch is then trained

with the original OCb base module fused by a fully con-

nected layer as the final OC module. The result of gMIRO

is shown in Table 3.

To fuse the output of OC and VC modules, we exper-

iment with 3 options. The first option is to train a fully

connected fusion layer with or without each module frozen.

The second option is to learn an attention layer to fuse the

three results. The third option is to use a set of weights

found through a grid search using a validation set. Our ex-

periment has shown that the third option works the best for

the gMIRO dataset. Two reasons may contribute to this: 1)

different branches have different learning rates due to di-

verse input and module modalities; 2) Even with the three

branches frozen, the simpler fusion method adapts better

when we have limited training information. We find the

learned weights from option 3 are stable, e.g., around 0.2,

0.3, and 0.5 for combining OC module, VC (3D) module,

and VC (2D) module on both gMIRO and gMIVO datasets.

Please see the supplementary materials for details on

runtime analysis.

5. Experiments

5.1. Baselines

Next, we report the results of various baseline classifiers

as well as those by our OVCNet.

Traditional image classification networks. We learn 2D

image classification using convolutional neural networks in-

cluding AlexNet [18], ResNet18 [14], and ResNet152 [14]

directly on the input views. For AlexNet and ResNet18, the

batch size for training is 96. For ResNet152, a batch size of

32 is used due to memory constraint. We start with an ini-

tial learning rate of 0.01 and decay by 10 every 30 epochs.

ResNet18 seems to generalize better and has more efficient

memory usage.

3D shape-based classification networks. We convert the

reconstructed 3D object from GenRe to voxels (30×30×30

or 128×128×128), point sets (2500 point samples), and dis-

tance spherical maps in order to run 3D CNNs [23], Point-

Net [31], and spherical CNNs [8], respectively, without tex-

ture information.

Re-projected viewer-centered classification networks.

For re-projections from GenRe’s output, as a baseline for

VC (3D) module, we evaluate ResNet18 with a different

number of view augmentations. Although our algorithm

only uses a single view during testing in the overall model,

we also show our results with 20 views during evaluation
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with GenRe [51] + RotationNet [16] and GenRe + MVCNN

[41] as a multi-view module baseline.

Object and viewer-centered network. Since OVCNet

combines three modules, for a fair comparison, we include

two ensemble strategies of three VC (2D) modules and re-

port the results in Table 2 (ResNet18rot30/90 Ensemble I , II).

To compare with the ensemble results, we randomly select

six VC (2D) modules and report the average over two sets of

ensemble results. For a fair comparison with OVCNet, we

randomly select one VC (2D) module from the ensemble set

to combine with our OC module and VC (3D) module. En-

semble I uses three equally weighted random models of the

same type. Ensemble II trains additional fusing weights

for the three random models.

accuracy overall (%) accuracy overall (%)

SeenInstances NovelInstances

gMIRO

AlexNet [18] 24.61 ± 3.02 27.40 ± 2.13

ResNet152 [14] 45.97 ± 1.08 43.68 ± 1.91

ResNet18 [14] 51.34 ± 0.52 44.04 ± 1.31

ResNet18* 45.08 ± 0.98 38.70 ± 2.09

ResNet18r30(VC (2D)) 68.34 ± 1.57 53.27 ± 0.89

ResNet18rot30 (Ensemble I) 70.56 ± 0.56 54.91 ± 1.85

ResNet18rot30 (Ensemble II) 70.91 ± 0.34 55.74 ± 2.52

GenRe [51] + PointNet [31] 27.33 ± 0.48 27.67 ± 0.80

GenRe + 3D CNNs [23] 30.26 ± 0.62 30.01 ± 0.75

GenRetex + RotationNetpre [16] 46.55 ± 3.97 46.44 ± 4.54

GenRetex + MVCNNpre [41] 58.68 ± 0.59 54.56 ± 0.41

OVCNet (ours) 73.24 ± 0.08 65.85 ± 0.14

gMIVO (ShapeNetCoreV2 subset)

ResNet18rot90 (VC (2D)) 64.40 ± 0.45 64.86 ± 0.43

ResNet18rot90 (Ensemble I) 65.70 ± 0.25 66.25 ± 0.59

ResNet18rot90 (Ensemble II) 65.73 ± 0.18 66.27 ± 0.44

OVCNet (ours) 79.24 ± 0.12 75.03 ± 0.30

Table 2. Results summary. ResNet18*: a standard 2D image data

augmentation [18]. ResNet18rot[d]: 2D in-plane rotation augmenta-

tion with multiples of d degree rotation. GenRetex: texture is used

for 3D viewpoint augmentation. RotationNetpre and MVCNNpre:

using pretrained weights. Ensemble I uses an equally weighted

ensemble of three models. Ensemble II includes learned fusing

weights for the three random models. Two repeats for OVCNet

and the ensembles.The proposed OVCNet performs the best here.

5.2. Datasets
We adopt the following three datasets: a grayscale ver-

sion of the MIRO dataset [16] (gMIRO), our new dataset,

grayscale multi-view images of virtual objects (gMIVO),

and natural-colored images from Pascal VOC [12].

gMIRO. We use preprocessed grayscale images from the

MIRO dataset [16] (gMIRO) as our primary dataset for ab-

lation studies. This dataset contains 12 classes with 10 ob-

ject instances for each class. For each object, there are 160

views (10 elevations × 16 azimuth angles) from real ob-

jects with empty backgrounds. We randomly select 80% of

the instances as familiar object instances. For each object,

we randomly select an arbitrary single view to use in the

training set (12 classes× 10 objects× 80% seen split×
1 view = 96 images). We use the remaining views of the

familiar instances as the first test set that evaluates how well

the model generalizes towards unseen views of seen object

instances (SeenInstances). The final test is done utilizing all

the views from the remaining 20% new instances, where we

can evaluate the generalization towards views from all 160

angles of the unseen object instances (NovelInstances).

gMIVO. gMIVO is a larger dataset with a similar setup

as gMIRO. A subset of ShapeNetCore v2 is selected to

generate this dataset. We do not use ModelNet [46] di-

rectly for this paper because an aligned ModelNet40 was

not available at the time the project first started. Addition-

ally, most of the objects are lacking material and texture

information. ShapeNetCore v2 includes materials and tex-

tures and all objects are aligned [7]. We select a subset

of the objects from ShapeNetCore v2 by referring to the

10 classes with the highest frequency from DensePoint [6]

(which uses ShapeNetCore v2 objects with good material

and texture information) and take 160 views of each object.

This new dataset contains ten classes where each class has

110 objects. For each object, 160 views are generated using

similar viewpoints from MIRO [16] as shown in Figure 3.a.

Our rendering tool is built on top of the Stanford ShapeNet

renderer. During training, we randomly select 80% of the

objects for every class as the familiar objects. The two test

sets, SeenInstances and NovelInstances, are set up similarly

to gMIRO.

Pascal VOC. We use a subset of Pascal VOC images [12]

to evaluate the capability of OVCNet with real color images

with background. For training, to use GenRe, we obtain

the masks for each object from [30]. For testing, an object

mask is first obtained through a foreground segmentation

algorithm using [15]. We choose images of aeroplane, bicy-

cle, car, and motorbike because there are fewer occlusions

in those images, which allows adequate 3D reconstructions.

We randomly select 20% of the images from each category

for training and the remaining for testing.

We start with grayscale images for gMIRO and gMIVO

to illustrate the fundamental idea of OVCNet. We then ex-

periment with colored inputs for MIRO and PASCAL im-

ages. Please see Section 6 for more details.

5.3. Metrics

For both the gMIRO and gMIVO datasets, we partition

the data into familiar and novel instances with an 80%/20%
train-test split. If not otherwise specified, we conduct three

repeats for each experiment and averge the results. We re-

port the overall class accuracy (the mean and standard de-

viation) for unseen views with seen objects (SeenInstances)

and all views with unseen objects (NovelInstances).

6. Results and Discussions

Object-centered feature learning. For the object-centered

branch, we compare the results of different representations

of the 3D reconstruction using GenRe + 3D CNNs, GenRe

+ PointNet, and GenRe + spherical CNNs in Table 3. We
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find that the performance for GenRe + 3D CNNs increases

as the voxel resolution increases; however, the network size

increases as well. For GenRe + spherical CNNs, the per-

formance increases as bandwidth increases and plateaus at

bandwidth = 112 for gMIRO. Overall, our OC branch out-

performs other combinations in terms of overall accuracy

for both SeenInstances and NovelInstances with compara-

ble network size. Additionally, the OC module that further

integrates information learned from the VC (3D) branch

(bw=3 sgrid) can give OCb baseline module an extra 10%

boost on the gMIRO dataset.

Networks accuracy overall (%)

SeenInstances NovelInstances

GenRe + 3D CNNs [23] (30× 30× 30vx) 20.94 ± 0.41 21.74 ± 0.42

GenRe + 3D CNNs (128× 128× 128vx) 30.26 ± 0.62 30.01 ± 0.75

GenRe + PointNet [31] (2500pt) 27.33 ± 0.48 27.67 ± 0.80

GenRe + spherical CNNs [8] (bw=60) 40.79 ± 1.21 41.50 ± 0.44

GenRe + spherical CNNs (bw=112) 42.43 ± 1.24 40.80 ± 0.51

GenRe + spherical CNNs (bw=128) 40.94 ± 1.88 41.23 ± 0.77

GenRetex + spherical CNNs (bw=112) (OCb) 44.62 ± 0.58 44.65 ± 0.53

OC branch 54.62 ± 0.73 54.21 ± 0.54

Table 3. Ablation study for object-centered network structure

(OC) on gMIRO. GenRetex + spherical CNNs [8] (with addi-

tional approximated texture spherical map information) is chosen

as our OCb module in our OVCNet due to its relative performance

advantage. vx indicates voxel representation, pt indicates point

cloud representation, and bw indicates the bandwidth for spheri-

cal signals. The final OC model with an ancillary spherical path-

way integrating the information learned from the VC (3D) module

(bw=3 sgrid) performs the best.

Viewer-centered feature learning. For viewer-centered

network structures with re-projected 2D images (VC (3D)

module), we compare different 3D viewpoint augmenta-

tions during training, shown in Table 4. For GenRe +

ResNet18, the performance increases as the number of

training viewpoints increases. Once we introduce texture

in the re-projection, both GenRe + MVCNN and VC (3D)

outperform other methods. GenRe + MVCNN uses all 20

different viewpoints for testing. In contrast, VC (3D) only

uses one viewpoint during the evaluation. Hence, it is more

efficient than GenRe + MVCNN.

We also experiment with the attention structure as our

view-selection layer (Not shown in tables). Compared to a

simple ensemble of all 160 views at test time, we do notice

a performance gain from the attention view selection layer

in the Pascal dataset. This result suggests that a more com-

plex view selection module during inference may boost the

performance with increased training data.

For viewer-centered network structures with original 2D

images (VC (2D) module), we conduct an ablation study

on 2D rotation augmentation. In the supplementary ma-

terials, we show that, for gMIRO, the performance of

ResNet18 plateaus with rotations of 30-degree intervals (12

augmented images per input). For gMIVO, we find that

the performance of ResNet18 plateaus with rotations of 90-

degree intervals (4 augmented images per input). These

results may indicate that with increasing number of train-

ing instances, random viewing angles of similar instances

increase. Hence, less in-plane rotation is needed to boost

performance.

3D-aug accuracy overall (%) accuracy overall (%)

1/160/640 SeenInstances NovelInstances

GenRe + ResNet18 1 32.49 ± 0.68 32.95 ± 0.93

GenRe + ResNet18 160 45.15 ± 0.46 40.20 ± 0.51

GenRe + ResNet18 640 51.24 ± 0.23 47.57 ± 0.55

GenRetex + RotationNetpre [16] 20 46.55 ± 3.97 46.44 ± 4.54

GenRetex + MVCNNpre [41] 20 58.68 ± 0.59 54.56 ± 0.41

scratch VC (3D) (ours) 640 65.70 ± 0.44 58.27 ± 0.04

Table 4. Ablation study for viewer-centered network structures

with gMIRO by using different types of data augmentations. 3D-

aug: the number of re-projected images used during training.

Section 4.3 offers viewpoint details. GenRetex + MVCNNpre

and GenRetex + RotationNetpre use fine-tuned weights with pre-

trained models and 20 views for evaluation, whereas other meth-

ods only use single view. The final VC (3D) model with GenRetex

and ResNet18 trained from scratch performs the best.

Object and viewer-centered network. Finally, we com-

bine the results from both object (OC) and viewer -centered

modules (VCs) for both gMIRO and gMIVO datasets.

Through a simple grid search on the validation sets, the fu-

sion layer outputs a weighted sum of probabilities from OC,

VC (3D), and VC (2D) branches. The results are shown in

Table 5. Our results show that the three models are comple-

mentary to each other for both datasets.

The advantage of OVCNet over the ensemble of

ResNet18s appears to be more significant for gMIVO. The

test accuracy improves by ∼ 13.5% for unseen views of

familiar object instances and ∼ 9% for novel object in-

stances in Table 2. It suggests that training with more ar-

bitrary views of instances from the same category helps

with classifying views from other viewpoints. Interestingly,

for gMIVO in Table 5, the test accuracy of the VC (3D)

branch alone is already higher than that of VC (2D); this

further validates the importance of inferring 3D reconstruc-

tion through which our 3D view augmentation is realized.

We also evaluate the average class accuracy for OVC-

Net and the corresponding ensemble baseline (not shown in

tables). For gMIVO, for all ten classes, the SeenInstances

(other views from familiar instances) accuracy is raised by

13.41% from 65.89% to 79.36%. The NovelInstances (all

views from novel instances) accuracy is raised by 8.68%
from 66.65% to 75.33% (we list these numbers here in the

text directly).

Given that we use a pretrained GenRe model that is

trained on three classes from ShapeNet and our gMIVO

dataset is also a subset of ShapeNet, we additionally test on

gMIVO after removing the three classes that are overlap-

ping between the two datasets. Our model shows a slightly

greater improvement compared to using all ten classes. The

final OVCNet model outperforms the ensemble of VC (2D)

by 14.45% for unseen views of seen objects and 9.3% for
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Experiments OC VC (3D) VC (2D) SeenInstances NovelInstances

accuracy (%) accuracy (%)

gMIRO

(1) ✓ 52.65 53.02

(2) ✓ 65.70 58.31

(3) ✓ 69.74 54.11

(4) ✓ ✓ 67.24 61.48

(5) ✓ ✓ 72.47 62.99

(6) ✓ ✓ 72.04 58.57

OVCNet ✓ ✓ ✓ 73.25 65.99

gMIVO (ShapeNetCoreV2 subset)

(1) ✓ 52.83 50.49

(2) ✓ 77.00 70.53

(3) ✓ 63.66 64.50

(4) ✓ ✓ 77.60 71.23

(5) ✓ ✓ 77.71 74.50

(6) ✓ ✓ 67.83 67.63

OVCNet ✓ ✓ ✓ 79.36 75.33

Table 5. Ablation study over different model integrations.

gMIRO uses an OC module (see Section 4.4), whereas gMIVO

uses an OCb module (see Section 4.2). For the VC (3D) branch

(see Section 4.3), gMIRO uses textured reconstructed 3D models

from GenRe to generate 640 3D viewpoint augmentations per in-

put view, whereas gMIVO uses 160 viewpoints. For the VC (2D)

branch (see Section 4.3), gMIRO uses 30-degree intervals whereas

gMIVO uses 90-degree intervals. The three modules are shown to

be complementary to each other on both datasets.

all views of unseen objects. We demonstrate that the effec-

tiveness of OVCNet does not depend on the training classes

from GenRe. The improvement may be due to the removed

classes being harder to classify.

80%− 20% 50%− 50% 20%− 80%

test accuracy for SeenInstances (%)

VC (2D) 68.34 ± 1.57 64.42 ± 0.43 64.53 ± 0.84

OVCNet* 69.95 ± 0.35 67.24 ± 0.08 69.13 ± 0.75

test accuracy for NovelInstances (%)

VC (2D) 53.27 ± 0.89 47.36 ± 0.83 36.66 ± 0.54

OVCNet* 59.57 ± 0.28 50.99 ± 0.31 42.09 ± 0.06

Table 6. Ablation study with different train-test split percent-

ages. Each column corresponds to a different train-test split for

the gMIRO dataset. OVCNet* uses a less optimal configuration

compared to the OVCNet used in Table 2. Under varying training

sizes, the trend of OVCNet w.r.t. VC (2D) is consistent as in Table

5 and Table 2.

Ablation study for train-test split percentages. To eval-

uate our model’s performance on the varying training data

size, we experiment with two more train-test splits. In ad-

dition to the original split (80% familiar instances vs. 20%

new instances), we also test 50%/50% and 20%/80% train-

test splits. Table 6 shows the means and standard deviations

for the test accuracies on seen instances and novel instances

under multiple repeats. As the number of familiar instances

decreases, the overall classification accuracy also declines,

which is typical when trained on fewer data. However, we

see a similar improvement as that in Table 5 and Table 2

for OVCNet w.r.t. VC (2D) module. These experiments are

tested with an earlier version of OVCNet for gMIRO that

uses a less optimal configuration than what is used in Ta-

ble 5 and Table 2.

Color and Natural Images.

Figure 4. Algorithm pipeline for the PASCAL experiment.

Our experiments in Table 3 show the results of com-

bining approximated texture information with the grayscale

input. In a similar spirit, we also provide results for colored

input as follows (not shown in tables). We use color im-

ages from MIRO to train the VC (2D) module (ResNet18

with in-plane rotations) as a baseline; we keep OC and VC

(3D) the same since they mostly concern with shape. Nev-

ertheless, our results show that, for gMIRO, OC, and VC

(3D) modules still provide a consistent boost to the VC (2D)

baseline trained with color images from MIRO. The accu-

racy improves from 73.23% to 75.64% for SeenInstances

(unseen views from familiar instances) and from 54.53%
to 67.66% for NovelInstances (unseen instances). This im-

provement validates the benefit of having an object- and

viewer-centered representation for colored images as well.

test accuracy (%)

OCb (bw=112) 80.08

VC (3D) (160) 82.35

VC (2D) 72.84

VC (2D) (Ensemble I) 75.49

VC (2D) (Ensemble II) 75.91

OVCNet 85.24

Table 7. Test accuracy for Pascal VOC subset images for the aero-

plane, bicycle, car, and motorbike classes.

An evaluation of natural-colored images with a back-

ground (a subset of Pascal VOC) also shows encouraging

results. Experimental results are reported in Table 7. We

see a 10% improvement over the baseline. Random rotation

does not improve the performance for VC (2D) here.

7. Conclusion
We have developed a new algorithm for any view ob-

ject recognition that is inspired by the object and viewer-

centered recognition theories. The resulting OVCNet is

an integrated framework that learns viewpoint-independent

and viewpoint-dependent features for an image from an un-

known view, and it can be used to recognize novel instances

from novel views. We show a clear advantage of OVCNet

over the object-centered and viewer-centered baselines in

Table 2 and 5. We also report results on natural-colored

images in Table 7.
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