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Abstract

Semi-supervised generative learning aims to learn the

underlying class-conditional distribution of partially la-

beled data. Generative Adversarial Networks (GANs) have

led to promising progress in this task. However, it stil-

l needs to further explore the issue of imbalance between

real labeled data and fake data in the adversarial learn-

ing process. To address this issue, we propose a regular-

ization technique based on Random Regional Replacement

(R3-regularization) to facilitate the generative learning pro-

cess. Specifically, we construct two types of between-class

instances: cross-category ones and real-fake ones. These

instances could be closer to the decision boundaries and are

important for regularizing the classification and discrimi-

native networks in our class-conditional GANs, which we

refer to as R3-CGAN. Better guidance from these two net-

works makes the generative network produce instances with

class-specific information and high fidelity. We experimen-

t with multiple standard benchmarks, and demonstrate that

the R3-regularization can lead to significant improvement in

both classification and class-conditional image synthesis.

1. Introduction

Considerable progress has been recently made in synthe-

sizing high-fidelity images. There are many deep generative

models proposed to learn the underlying distribution of re-

al data and synthesize new instances from random noise,

such as Generative Adversarial Networks (GANs) [9] [6]

[28] [20] [45] [4] [21]. Most existing GAN-based models

were designed to perform unsupervised or fully supervised

generative learning on a dataset.

In practice, one may also be interested in learning on

partially labeled data, since this has a wide range of appli-

∗Joint first authors.
†Corresponding author.

(a) Baseline (ful. sup.) (b) R3-CGAN (semi-sup.)

Figure 1. Synthesized images of a baseline model and R3-CGAN

on SVHN (top), CIFAR-10 (middle) and FaceScrub-100 (bottom).

We adopt the SN-GAN [20] as our baseline, and perform fully su-

pervised learning. For fair comparison, we adopt a similar network

architecture for the generator as [16] [8] [40]. To highlight the ef-

fectiveness of the proposed model in semi-supervised generative

learning, our R3-CGAN is trained with 1k, 4k and 2k labels on

the three benchmarks, respectively. The results suggest that R3-

CGAN is able to synthesize images having similar or even higher

fidelity than the baseline with full supervision.

cations in which fully supervised data is difficult to acquire.

How to leverage the large amount of unlabeled data is cru-

cial for semi-supervised generative learning. Several mod-

els utilize a categorical discriminative network to simulta-

neously identify real instances and predict the correspond-

ing class labels in the adversarial learning process, such

as CatGAN [35], ImprovedGAN [32], and CT-GAN [39].

Considering that these two tasks of the discriminative net-

work may be incompatible, another strategy is adopted by

including an additional classification network into the min-

imax game, like Triple-GAN [16], Triangle-GAN [8] and

EnhancedTGAN [40]. In those models, the generative and

classification networks learn to produce two types of fake
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Figure 2. An overview of the proposed R3-CGAN model for semi-supervised generative learning. There are four constituent networks: a

generator G, a classifier C and two discriminators D1 and D2. To address the issue of insufficiency of labeled data, the random regional

replacement strategy of CutMix is adopted to construct x′ and x′′, corresponding to cross-category instances and real-fake instances,

respectively. Each pair of randomly selected images are combined by replacing a rectangular region of one image with that of the other.

The replacement region is determined by a random variable γ having a beta distribution. We construct suitable training targets for x′ and

x′′ to regularize the behaviors of C and D1, thereby inducing G to synthesize instances with class-specific information and high fidelity.

instance-label pairs: real unlabeled instance with pseudo la-

bel, and synthesized instance with specified label. The dis-

criminative network is trained to distinguish real instance-

label pairs from these fake pairs. However, there are still

two issues: (i) The limited supervision on class label pre-

diction. The classification network often gives incorrect,

yet confident predictions on unlabeled data. (ii) The imbal-

ance between real and fake pairs. The discriminator tends to

memorize the real labeled instances and reject unseen types

of instances even from the distribution of true data. In this

work, we address these two issues by proposing a regular-

ization technique based on Random Regional Replacement

(R3-regularization) in the learning process of the classifi-

cation and discriminative networks. Figure 1 indicates the

possibility of semi-supervised class-conditional image syn-

thesis comparable to the case of full supervision.

Specifically, we propose a Class-conditional Generative

Adversarial Network with the R3-regularization for improv-

ing semi-supervised generative learning, and our model is

referred to as R3-CGAN. An overview of the proposed ap-

proach is shown in Figure 2. We adopt the Triangle-GAN

as our base model, and jointly train four players in the min-

imax game, including a generative network, a classifica-

tion network, and two discriminative networks. We believe

that the classification and discriminative networks play im-

portant roles in guiding the generative network to produce

high-fidelity instances. To avoid the generalization capa-

bility of the classification and discriminative networks from

being affected by the insufficiency of labeled data, we adopt

the CutMix strategy [43] to construct two types of between-

class instances: cross-category ones and real-fake ones. For

both real labeled and unlabeled data, we perform replace-

ment in a random rectangular region between different im-

ages. When the original images are from different classes,

the constructed image can be complex and may be close

to the decision boundaries. We further construct suitable

training targets for the new instances to regularize the clas-

sification network, such that it has continuous and smooth

predictions in-between the original instances. On the other

hand, we also combine the real and synthesized instances

in a similar way to regularize one of the discriminators.

As a result, the generative network is able to receive bet-

ter learning signals from both classification and discrimina-

tive networks. The extensive experiments confirm that the

proposed R3-CGAN is able to significantly outperform the

competing methods in both image synthesis and classifica-

tion. In summary, our main contribution is three-fold: (1)

We analyze the issues caused by the insufficiency of labeled

data in state-of-the-art semi-supervised generative models

[16] [8] [40], and adopt an effective regularization strategy

based on random regional replacement to address them. (2)

Different from previous semi-supervised CGANs, we im-

prove generative learning by regularizing the behaviors of

the classification and discriminative networks on two type-

s of constructed between-class instances and corresponding

suitable training targets. (3) We carefully formulate the op-

timization problem of the constituent networks in our model

to obtain an effective solution to our challenging genera-

tion tasks. We find that the proposed R3-CGAN is able to

achieve both state-of-the-art image synthesis and classifica-

tion on multiple standard semi-supervised benchmarks.

2. Related Work

Convolutional Neural Networks (CNNs) have been suc-

cessfully applied to many applications, in which the net-

works are often trained in a supervised fashion [14] [33]

[30]. In the semi-supervised setting, there are a large

amount of unlabeled data. To exploit these data, a number
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of existing works provide various strategies for construct-

ing training targets for them [12] [31] [41] [17] [2]. The

ladder network [29] is a well-known CNN architecture for

semi-supervised learning. Similar to the Γ-model of the lad-

der network, Laine and Aila proposed the Π-model [15], in

which each training sample was fed into a CNN twice, and

the model is optimized by minimizing the prediction diver-

gence. Adversarial perturbation in the inputs [23] [22] and

model parameters [26] was used to maximally change the

model’s predictions, and penalizing the divergence can lead

to better generalization performance. To make the train-

ing process more efficient, Laine and Aila also proposed a

temporal ensembling model [15] to aggregate the prediction

on each training sample over previous training epochs, and

used the result as a training target to optimize the current

model. In most cases, the aggregated result is more accurate

than the current prediction, and the generalization perfor-

mance can thus be significantly improved due to the better

supervision. To avoid maintaining the aggregated results on

the whole training set, Tarvainen and Valpola constructed

a teacher network by aggregating the parameters of a clas-

sification network, and providing the teacher’s predictions

as the training targets for the original network [36]. Luo et

al. utilized the teacher’s predictions to construct a similari-

ty graph of training samples for constraining representation

learning [18]. Further, mutual learning [46] between two

constituent networks was applied to semi-supervised learn-

ing [27] [42]. The networks are able to be mutually rein-

forced via providing training targets for each other.

Adopting GANs for class-conditional image synthesis is

another direction of semi-supervised learning. To address

the issue of insufficient labeled data, the GAN-based model-

s aim at synthesizing high-fidelity instances, conditioned on

the specified class labels. There are a number of condition-

al generative models, such as CGAN [19], CVAE [34] and

CVAE-GAN [3]. For semi-supervised generative learning,

Springenberg [35] proposed a Categorical Generative Ad-

versarial Network (CatGAN). A categorical discriminative

network was used to simultaneously distinguish real data

from fake data, and predict the corresponding class labels.

Salimans et al. [32] investigated several useful techniques

for improving the training process, such as feature match-

ing, historical averaging, etc. When incorporating them in-

to model training, both semi-supervised image generation

and classification performance can be improved. Further,

Wei et al. [39] proposed a soft consistency term to enhance

the Lipschitz continuity of the discriminative network in a

Wasserstein GAN [1]. However, it may be incompatible

for a single discriminative network to simultaneously distin-

guish real data from fake data and predict the corresponding

class labels. In this situation, it would become more diffi-

cult to find a good solution in the two-player minimax game.

Therefore, Li et al. [16] included an additional classifica-

tion network in the adversarial learning process. In the re-

sulting three-player game, a generative network along with

the classification network synthesizes image-label pairs for

fooling a discriminative network. Wu et al. [40] enhanced

the generative network in learning class-conditional distri-

butions by adopting feature-semantic matching between re-

al and fake data. Gan et al. [8] further incorporated an ad-

ditional discriminative network into the adversarial learning

process to distinguish the two types of fake data pairs, such

that unlabeled real data can be exploited to improve the gen-

eration performance.

This work focuses on semi-supervised generative learn-

ing. Triangle-GAN is used as our base model. However,

the proposed approach is significantly different from the

above GAN-based methods. We propose to improve class-

conditional instance synthesis by regularizing the predic-

tions of the classification and discriminative networks on

constructed between-class instances. As a result, the gener-

ative network is able to receive better guidance from them.

There are a few interpolation strategies proposed recently

for constructing between-class instances, like MixUp [44]

[37]. However, interpolating between real and fake images

blurs the output image, which may confuse the discrimina-

tive network. Therefore, we consider that the CutMix s-

trategy is more suitable for our purpose. Although CutMix

was first proposed to combine labeled images, we extend

it to adapt both real labeled (unlabeled) data and fake da-

ta. We include different regularization terms in the overall

loss of the proposed model accordingly, and achieve signif-

icant improvement in both class-conditional synthesis and

classification.

3. Proposed Approach

For semi-supervised instance synthesis, we adopt the

Triangle-GAN as our base model. As shown in Figure 2,

there are 4 players in the game-theoretic adversarial learn-

ing process: a generative network G, a classification net-

work C, and two discriminative networks D1 and D2. The

four constituent networks are parameterized by θG, θC , θD1

and θD2
, respectively. The generator G and classifier C

are trained to synthesize two types of fake data in the for-

m of instance-label pair: synthesized instances with speci-

fied class labels and real unlabeled instances with predicted

class labels, respectively. D1 learns to distinguish the pairs

of real labeled instances and corresponding ground-truth la-

bels from both types of fake pairs. Further, D2 learns to

identify the two types of fake data. We adopt a random re-

gional replacement strategy to construct different between-

class instances for enhancing C and D1 separately. More

accurate predictions on both object classes and real/fake

classes in turn enhance the generation performance. In the

following subsections, we will present the optimization for-

mulation of the constituent networks in detail.
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3.1. Semantics­guided Synthesis

The generator G learns to map a random vector z to a

visually realistic image G(z, yz), conditioned on a specified

class label yz . The goal is to match the class-conditional

distribution of synthesized data with that of real data. To

produce instances as close to real instances as possible, an

adversarial training term LG
adv is defined as follows:

LG
adv = Ez∼pz

[

log
(

1−D1(G(z, yz), yz)
)

+ logD2(G(z, yz), yz)
]

,
(1)

where the random vector z is drawn from a prior pz , and

D1(·, ·) (D2(·, ·)) denotes the predicted probability of an

instance-label pair being from the real labeled data (fake da-

ta produced by the generator). Minimizing this term forces

the generator to fool the two discriminators by synthesiz-

ing high-fidelity instances. However, the discriminators fo-

cus on the degree of similarity between real and synthe-

sized instances within each class, while the discriminabil-

ity of synthesized instances from different classes is often

overlooked. To highlight the discrepancy between differ-

ent classes, the generator should ensure that the classifier’s

predictions on the synthesized instances are consistent with

the specified class labels. Therefore, we include a semantic

regularization term into the optimization formulation of the

generator G as follows:

min
G

LG
adv + Ez∼pz

[

CE(yz, C(G(z, yz)))
]

, (2)

where CE denotes the cross entropy loss function, and C(·)
represents the predicted class probability distribution for an

input. Eq.(2) indicates that the generator can be guided by

both the classifier and discriminators in the learning pro-

cess. Therefore, we can improve the generation quality by

enhancing these networks.

3.2. Improving the Classifier

A better classifier can capture more discriminative and

robust information for identifying different classes, and

thus guide the generator G to synthesize instances with

class-specific information. To improve the classifier C in

our framework, we propose to construct between-class in-

stances. Toward this end, we apply the random regional

replacement strategy of CutMix [43] on labeled data, and

also extend CutMix to adapt unlabeled data, such that data

augmentation can be performed without depending on the

availability of ground-truth class labels.

Specifically, given two random instances xa and xb, we

adopt CutMix to construct a new instance x′ as follows:

x′ = CutMix(xa, xb, γ)

= M(γ)⊙ xa +
(

I −M(γ)
)

⊙ xb,
(3)

where I = 1W×H , M(γ) ∈ {0, 1}W×H denotes a binary

mask associated with a random variable γ ∼ Beta(α, α),
and ⊙ represents element-wise multiplication. Both I and

M(γ) have the same resolution as the input images. To

perform regional replacement, M(γ) should indicate a rect-

angular region B(γ) as follows:

M(γ)(u, v) =

{

0, if (u, v) ∈ B(γ),

1, otherwise,
(4)

where B(γ) is determined by the top-left corner (u0, v0)
and bottom-right corner (u0 +W

√
1− γ, v0 +H

√
1− γ).

The coordinate (u0, v0) is randomly sampled on the image

plane. When xa and xb are from different classes, x′ is a

between-class instance, and the corresponding training tar-

get is constructed as follows:

t(x′) = γt(xa) + (1− γ)t(xb), (5)

where t(·) denotes the training target of an input. We spec-

ify different training targets for labeled and unlabeled in-

stances as follows:

t(x) =

{

yx, if x ∼ pl,

fC̄(x), if x ∼ pu,
(6)

where pl (pu) represents the distribution of real labeled (un-

labeled) data, yx denotes the ground-truth class label of x,

fC̄(·) denotes the learnt representation for an input, and C̄

denotes the ensemble of classifiers C over previous train-

ing epochs by performing exponential moving average on

its parameters as follows:

θC̄ ← ηθC̄ + (1− η)θC , (7)

where θC̄ denotes the parameters of the network C̄, and

η denotes the updating rate. We consider that the ensem-

ble C̄ is more stable and has better generalization perfor-

mance. For unlabeled instances, instead of pseudo-labeling,

we use the features associated with the last hidden layer as

the training targets to mitigate the risk of error propagation.

The constructed instances, along with the original real

instances and fake instances synthesized by the generator

G, are used to train the classifier C, and the corresponding

optimization formulation is presented as follows:

min
C

LC
adv + Ez∼pz

[

CE(yz, C(G(z, yz)))
]

+ Ex′∼p′

l

[

CE(t(x′), C(x′))
]

+ Ex′∼p′

u

[

MSE(t(x′), fC(x
′)
]

,

(8)

where fC(·) represents the features associated with the last

hidden layer of C, and the adversarial learning term LC
adv is

defined as follows:

LC
adv = Ex∼pu

[

max(C(x)) log
(

1−D1(x, l(x))
)

+ max(C(x)) log(1−D2(x, l(x)))
]

,
(9)
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and

l(x) = one-hot(C(x)), w.r.t x ∼ pu. (10)

In Eqs.(8-10), p′l (p′u) denotes the distribution of the con-

structed instances derived from real labeled (unlabeled) da-

ta, MSE is the mean square error function, and the function

one-hot transforms a class probability distribution into

a one-hot vector indicating the class that the correspond-

ing sample should belong to. Training the classifier on the

between-class instances forces it to have continuous and s-

mooth predictions in between the classes. This helps to pre-

vent the network from abruptly changing its output around

the decision boundaries. In the 4-player game, the classifier

C and generator G work cooperatively and compete with

the discriminators D1 and D2.

3.3. Improving the Discriminators

To improve synthesis quality, a better discriminator is

also required to provide guidance for the generator G. Con-

sidering the issue of imbalance between real and fake pairs,

the R3-regularization can also be applied to enhance the ca-

pability of the discriminator D1. Different from Eq.(3), we

construct new between-class instances by mixing real and

synthesized instances as follows:

x′′ = CutMix(x,G(z, yz), γ). (11)

In the case of x ∼ pu, the class label of x′′ is determined as

follows:

l(x′′) = one-hot(γl(x) + (1− γ)yz). (12)

For x ∼ pl, l(x
′′) is computed by substituting the ground-

truth label yx for the pseudo label l(x) in Eq.(12). The con-

structed pairs (x′′, l(x′′)) are fed into the discriminator D1

to alleviate the imbalance of the original training pairs. To

avoid confusing D1 in the adversarial training process, we

construct a binary training target for x′′ as follows:

t(x′′) =

{

1, if γ > 0.5,

0, otherwise.
(13)

Eq.(13) indicates that x′′ is viewed as real if the region of re-

al instance is greater than that of fake instance, and fake oth-

erwise. After including an adversarial training term LD1

adv ,

we formulate the optimization problem of D1 as follows:

max
D1

LD1

adv + Ex′′∼p′′

s

[

CE(t(x′′), D1(x
′′, l(x′′)))

]

, (14)

where

LD1

adv = Ex∼pl

[

logD1(x, yx)
]

+ Ex∼pu

[

log
(

1−D1(x, l(x))
)]

+ Ez∼pz

[

log
(

1−D1(G(z, yz), yz)
)]

,

(15)

p′′s represents the distribution of the constructed instances

by using Eq.(11). In addition to distinguishing real data

from the two types of fake data, D1 is also encouraged to

classify the constructed instances, which are more challeng-

ing than the original instances. On the other hand, the opti-

mization formulation of D2 is expressed as follows:

max
D2

LD2

adv = Ex∼pu

[

log
(

1−D2(x, l(x))
)]

+ Ez∼pz

[

logD2(G(z, yz), yz)
]

.
(16)

The discriminator D2 is trained to identify the instance-

label pairs produced by the generator and classifier. By

competing with both discriminators D1 and D2, the gener-

ator G learns to synthesize instances matching the statistics

of both real labeled and unlabeled instances.

4. Experiments

We present experimental results on the widely used s-

tandard benchmarks: SVHN [24] with 1k labels, CIFAR-

10 [13] with 4k labels, CIFAR-100 [13] with 10k label-

s, and FaceScrub-100 [25] with 2k labels. We evaluate

both semi-supervised image synthesis and classification on

these datasets. Specifically, we first compare our R3-CGAN

with the main competing generative models including Im-

provedGAN [32], Triple-GAN [16], Triangle-GAN [8] and

EnhancedTGAN [40]. Note that the same network architec-

ture is used in the generators of these models and our R3-

CGAN for fair comparison. To provide insights into what

makes our model synthesize high-fidelity images, we con-

duct an investigation on the benefits of the proposed R3-

regularization. Furthermore, we perform extensive compar-

ison with state-of-the-art methods in image classification.

4.1. Setting

In the experiments, the labeled instances are distributed

equally across the classes in each dataset. We adopt the ad-

versarial training process of Triangle-GAN in general, and

train our model from scratch. The total number of training

epochs is set to 400. Each mini-batch consists of 32 labeled

samples, 128 unlabeled samples, and the same number of

between-class samples constructed according to Eqs.(3-6).

In addition, there are 128 samples synthesized by the gener-

ator from noise, and there are also 128 between-class sam-

ples constructed according to Eqs.(11-13). We adopt the

Adam method [11] to optimize the constituent network-

s. We find that extensive tuning of the hyperparameters is

not necessary to achieve state-of-the-art results on the test

datasets. For the classifier, the learning rate µC is set to 0.1

during the first 350 epochs, and then is ramped down to 0

according to a Gaussian function. For the generator G and

discriminators, both the learning rates µG and µD are set to

0.0003 during the first 350 epochs, respectively. After that,

they are ramped down to 0 according to a linear function.
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Table 1. Synthesis qualities of our R3-CGAN and competing generative models on SVHN, CIFAR-10, CIFAR-100 and FaceScrub-100.

SVHN (1k) CIFAR-10 (4k) CIFAR-100 (10k) FaceScrub-100 (2k)

Method IS FID IS FID IS FID IS FID

ImprovedGAN [32] - - 5.56±0.28 47.25 - - - -

Triple-GAN [16] - - 5.77±0.14 47.08 - - - -

Triangle-GAN [8] 2.75±0.02 36.56 6.56±0.07 35.31 - - - -

EnhancedTGAN [40] 2.87±0.05 22.99 7.23±0.09 25.64 4.86±0.04 65.11 1.57±0.02 57.58

Baseline 2.66±0.02 45.03 6.57±0.06 37.21 4.29±0.06 72.39 1.66±0.03 31.21

R3-CGAN 2.99±0.02 10.87 7.42±0.05 20.34 7.49±0.01 26.29 1.73±0.02 25.28

Figure 3. The FID score for each class on the synthesized CIFAR-

10 data.

Table 2. Ablation experiment results of the proposed R3-CGAN

and variants on CIFAR-10 and CIFAR-100.

CIFAR-10 (4k) CIFAR-100 (10k)

Method IS FID IS FID

Baseline 6.57±0.06 37.21 4.29±0.06 72.39

+ R3-Reg. on D1 7.03±0.07 25.30 7.02±0.10 31.18

Improvement ↑ 0.46 ↓ 11.91 ↑ 2.73 ↓ 41.21

Baseline (ful. sup.) 7.07±0.08 26.49 7.11±0.06 32.39

+ R3-Reg. on D1 7.78±0.07 17.98 7.83±0.14 23.45

Improvement ↑ 0.71 ↓ 8.51 ↑ 0.72 ↓ 8.94

R3-CGAN 7.42±0.05 20.34 7.49±0.01 26.29

w/o R3-Reg. on D1 6.82±0.09 32.68 5.33±0.05 55.26

w/o R3-Reg. on C 7.14±0.07 22.52 7.26±0.06 29.11

The momentum parameters β1 and β2 in Adam are fixed to

0.5 and 0.999, respectively. The hyperparameter α of Cut-

Mix is set to 0.2 for each task.

4.2. Comparison in Image Synthesis

We first conduct experiments on class-conditional im-

age synthesis on the four benchmarks. The SVHN images

contain digits with various backgrounds. The CIFAR-10

and CIFAR-100 images are from 10 and 100 natural object

classes, respectively. In addition, the objects in FaceScrub-

100 are human faces, and this dataset is constructed by se-

lecting the 100 largest classes from FaceScrub [25]. We e-

valuate the synthesized images quantitatively via the Incep-

tion Score (IS) [32] and Fréchet Inception Distance (FID)

[10]. These two criteria have been widely used to evaluate

the diversity and realism of synthesized data. A larger IS

and a lower FID indicates that a model can generate more

diverse and realistic instances. Table 1 summarizes the re-

sults of our R3-CGAN model and the competing generative

models. To demonstrate the benefit of our R3-regularization

to semi-supervised generative learning, we build a baseline

model by using the open-source code of the Triangle-GAN

and train the model in the same configuration as ours. The

results demonstrate that R3-CGAN achieves significant im-

provement over the baseline model in synthesis quality. In

particular, the gains reach 3.2 in IS and 46.1 in FID on

CIFAR-100. In Figure 3, we show the improvement in FID

per class on CIFAR-10. Our model also outperforms the

competing methods on the four benchmarks. On CIFAR-

100, R3-CGAN also significantly outperforms EnhancedT-

GAN, currently a state-of-the-art model, by 2.63 in IS and

38.82 in FID. On SVHN and FaceScrub-100, the FIDs of

our model are 10.87 and 25.28 while those of EnhancedT-

GAN are 22.99 and 57.58. We also visualize the images

synthesized by our model and the baseline model in Figure

4. Our model is able to synthesize realistic images in speci-

fied classes, and the injected random vector encodes mean-

ingful styles. In particular, we can observe better-resolved

face images with reasonable structure and well preserved i-

dentities on FaceScrub-100 compared to the baseline, which

confirms the outcome of Table 1.

4.3. Ablation Study

To highlight the effectiveness of our R3-regularization in

facilitating semi-supervised generative learning, we build

a set of variants and test them on CIFAR-10 and CIFAR-

100. Table 2 shows the evaluation results of the variants

in synthesis quality. Compared to the baseline, including

the R3-regularization in the discriminative network D1 in-

deed leads to significant improvement. On CIFAR-100, the

IS increases from 4.29 to 7.02, and the corresponding FID

decreases from 72.39 to 31.18. On CIFAR-10, the gain in

FID is also very obvious. We also verify the effectiveness of

the R3-regularization in the case of full supervision. Since

we can access the class labels of all training instances, the

baseline model is equivalent to a SN-GAN [20]. We still ob-

serve that the R3-regularization can lead to an improvement

on each dataset in this case.
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(a) Baseline (b) R3-CGAN

Figure 4. Examples of the synthesized images produced by the

baseline model and our R3-CGAN on the benchmarks which from

top to bottom are SVHN (1k), CIFAR-10 (4k), CIFAR-100 (10k)

and FaceScrub-100 (2k). Each column shares the same random

vector, and each row uses the same class label.

On both CIFAR-10 and CIFAR-100, the results of our

R3-CGAN in the semi-supervised setting are better than

those of the baseline with full supervision. To assess the

relative contributions of the R3-regularization to the final

performance, we perform two ablation experiments by dis-

abling the corresponding terms in the overall loss functions

of the discriminative network D1 and classification network

C, respectively. A drop in performance can be observed in

both cases, which indicates that enhancing C is also useful

Figure 5. An experiment on CIFAR-10 (4k) to verify the effective-

ness of the R3-regularization on the discriminator D1. The left

subfigure shows that it is harder for D1 to identify the complex

instances constructed via CutMix. The right subfigure shows that

more synthesized images are correctly classified by the classifier

when applying this regularization, which indicates that the quality

and discriminability of synthesized images are improved.

Figure 6. An experiment on CIFAR-10 (4k) to visualize the distri-

butions of real data points (blue), synthesized data points (green)

and CutMix-based constructed data points (orange). The embed-

dings of the 3 types of data points are plotted in epoch 50 (left),

epoch 250 (middle) and epoch 350 (right).

for improving synthesis quality as well as enhancing D1.

4.4. Model Analysis

We perform further experiments on CIFAR-10 to obtain

insight on how the R3-regularization enhances the discrim-

inative network in our framework. In Figure 5, we plot the

loss values of D1 for the cases with and without regulariza-

tion in the training process. We can observe that the con-

structed complex instances lead to slow convergence of D1.

On the other hand, we also plot the accuracies of the classi-

fication network on the synthesized instances. Note that the

classifier is optimized on the real data only in this experi-

ment. Applying the R3-regularization on D1 provides the

synthesized instances with more class-specific information,

such that the classifier can correctly identify more of them.

In addition, we visualize the distributions of real in-

stances, synthesized instances and CutMix-based construct-

ed instances in the latent space associated with D1 in Fig-

ure 6. Specifically, we include a fully-connected layer with

3 nodes between the last hidden layer and output without

sacrificing its performance. We can observe that the distri-

butions of real and synthesized data points can be matched.

The constructed data points typically deviate from them,

and induce D1 to learn an embedding space in which the

distributions become more dispersed.

In our R3-regularization, the random variable γ is sam-
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Figure 7. An experiment to investigate the impact of the hyper-

parameter α on the IS (left) and FID (right) on the synthesized

CIFAR-10 data.

pled from a beta distribution Beta(α, α). The hyper-

parameter α controls the combination strength. We investi-

gate the impact of different values of α from 0.1 to 1 on the

synthesis quality in Figure 7. The results suggest that this

regularization can lead to performance gains in all the cases,

but the improvement is relatively stable when α ≤ 0.5.

4.5. Comparison in Image Classification

In addition to image synthesis, we also evaluate the pro-

posed model in image classification. We compare our mod-

el with both state-of-the-art generative models and non-

generative models. Note that we adopt a network architec-

ture of CNN-13 for the classifier of our model. This ar-

chitecture has also been used in most of the state-of-the-art

works. The test error rates of our R3-CGAN and the com-

peting methods are shown in Tables 3-4. We can make the

following observations: our R3-CGAN significantly outper-

forms the baseline model by 2.50, 6.82, 3.29 and 17.07

percentage points on SVHN, CIFAR-10, CIFAR-100 and

FaceScrub-100, respectively. These performance gains over

the baseline model demonstrate the effectiveness of the R3-

regularization in enhancing the classification network. On

all the benchmarks, R3-CGAN achieves state-of-the-art re-

sults consistently. In particular, the proposed model sub-

stantially outperforms the second best model EnhancedT-

GAN, which demonstrates the superiority of our model in

semi-supervised image classification on complex datasets.

5. Conclusion

We present a class-conditional GAN-based model for

improving semi-supervised generative learning. To address

the issue of imbalance between real labeled data and fake

data in the adversarial learning process, we adopt the strat-

egy of random regional replacement to construct two types

of between-class instances, cross-category ones and real-

fake ones, respectively. Training our model on the extended

data can effectively regularize the behaviors of the classi-

fication and discriminative networks, thereby inducing the

generative network to synthesize instances with more class-

specific information and high fidelity. The experimental re-

sults demonstrate the effectiveness of our R3-regularization

Table 3. Test error rates (%) of the proposed R3-CGAN and previ-

ous state-of-the-art methods on SVHN and CIFAR-10.

Method SVHN (1k) CIFAR-10 (4k)

Ladder Network [29] - 20.40±0.47

SPCTN [41] 7.37±0.30 14.17±0.27

Π-model [15] 4.82±0.17 12.36±0.31

Temporal Ensemb. [15] 4.42±0.16 12.16±0.24

Mean Teacher [36] 3.95±0.19 12.31±0.28

VAT [23] 3.74±0.09 11.96±0.10

VAdD [26] 4.16±0.08 11.68±0.19

SNTG+Π-model [18] 3.82±0.25 11.00±0.13

Deep Co-Train [27] 3.61±0.15 9.03±0.18

CCN [42] 3.36±0.18 8.80±0.24

ICT [38] 3.89±0.04 7.29±0.02

CatGAN [35] - 19.58±0.58

ImprovedGAN [32] 8.11±1.30 18.63±2.32

ALI [7] 7.42±0.65 17.99±1.62

Triple-GAN [16] 5.77±0.17 16.99±0.36

Triangle-GAN [8] - 16.80±0.42

GoodBadGAN [5] 4.25±0.03 14.41±0.03

CT-GAN [39] - 9.98±0.21

EnhancedTGAN [40] 2.97±0.09 9.42±0.22

Baseline 5.47±0.43 13.51±0.58

R3-CGAN 2.97±0.05 6.69±0.28

Table 4. Test error rates (%) of the proposed R3-CGAN and previ-

ous state-of-the-art methods on CIFAR-100 and FaceScrub-100.

Method CIFAR-100 (10k) FaceScrub-100 (2k)

Π-model [15] 39.19±0.36 23.72±0.19

Temporal Ensemb. [15] 38.65±0.51 22.38±0.16

SNTG+Π-model [18] 37.97±0.29 -

Deep Co-Train [27] 34.63±0.14 -

CCN [42] 35.28±0.23 -

EnhancedTGAN [40] 36.18±0.37 16.08±0.24

Baseline 35.95±0.30 24.03±0.55

R3-CGAN 32.66±0.21 6.96±0.43

and superior performance of the R3-CGAN model in both

class-conditional image synthesis and classification.

The training process of CGANs can be sensitive to

many aspects. To generate high-resolution images, more

advanced model architectures and training techniques are

needed. In our future work, we would consider how to

apply the proposed R3-regularization to other CGANs for

more complex tasks.
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