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Abstract

Understanding of human vision system (HVS) has in-

spired many computer vision algorithms. Stereo matching,

which borrows the idea from human stereopsis, has been ex-

tensively studied in the existing literature. However, scant

attention has been drawn on a typical scenario where binoc-

ular inputs are qualitatively different (e.g., high-res master

camera and low-res slave camera in a dual-lens module).

Recent advances in human optometry reveal the capabil-

ity of the human visual system to maintain coarse stereop-

sis under such visually imbalanced conditions. Bionically

aroused, it is natural to question that: do stereo machines

share the same capability? In this paper, we carry out a

systematic comparison to investigate the effect of various

imbalanced conditions on current popular stereo match-

ing algorithms. We show that resembling the human vi-

sual system, those algorithms can handle limited degrees of

monocular downgrading but also prone to collapses beyond

a certain threshold. To avoid such collapse, we propose a

solution to recover the stereopsis by a joint guided-view-

restoration and stereo-reconstruction framework. We show

the superiority of our framework on KITTI dataset and its

extension on real-world applications.

1. Introduction

There have been remarkable signs of progress in under-

standing and mimicking the human vision system, and lots

of works are focusing on sensing the 3D structures sur-

rounding us. In human’s visual brain, depth perception is in-

terceded by a set of scale-variant spatial filters, where low-

frequency stimuli establish coarse stereopsis, and then high-

frequency visual cues escalate stereo acuity [5]. Early re-

searchers in computer vision define this problem as search-

ing for corresponding pixels [3], edges [1], or patches [2]

among different views. Taxonomy and benchmark were

later constructed in [35]. With large datasets becoming

available, NN-based stereo algorithms exhibited superior
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Figure 1. Illustration of visually imbalanced scenarios: (a) input

left view (b) Input downgraded right view, from top to bottom:

monocular blur, monocular blur with rectification error, monocular

noise. (c) Disparity predicted from mainstream monocular depth

(only left view as input)/stereo matching (stereo views as input)

algorithms: from top to bottom are DORN [9], PSMNet [7] and

CRL [31]. (d) Disparity generated from our proposed framework.

performance [45].

However, little attention has been drawn on the imbal-

anced condition between the stereo views. In many real-

world cases, the visual quality of the left view and the right

view are not guaranteed to be matched. It is common for

human stereopsis to suffer from different degrees of ani-

sometropia and astigmatism in binocular vision [6, 21]; or

for computer vision, the master and slave camera in a dual-

lens module to have different resolution, lens blur, imaging

modality, noise tolerance, and rectification accuracy [43].

Not until recently, discovery in optometry reveals that it

is attainable for the human to maintain decent stereo acuity

with imbalanced binocular signals. In fact, the monocular

downgrading jeopardizes stereo acuity for high spatial fre-

quencies components, but low-frequency targets like struc-

tures are merely affected through a natural process called

spatial frequency tuning [24]. With this unearthing in mind,

we tend to ask: are stereo machines able to handle qualita-

tively imbalanced inputs?
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Figure 2. Intuition behind our proposed guided view synthesis framework: predicting the latent view solely based on single view is an

ill-posed problem, as there exists a bunch of plausible novel views IiR with different disparities. However, with the geometric information

in the downgraded right view Ir as a guide, the task is achievable. Even though high-frequency component of Ir is missing, rough object

contour can still be inferred, as shown in our toy example. The contour provides a positional hint for the later displacement prediction.

We design a systematic comparison to answer this ques-

tion. In a controlled-variant setting, we test several ma-

jor monocular degradation effects on current mainstream

stereo matching algorithms, including both NN-based and

heuristics-based methods. By selectively increasing the

corrupted levels of monocular downgrading factors, we

show that existing stereo matching frameworks are resis-

tant to mere degrees of monocular downgrading. Neverthe-

less, stereo matching accuracy quickly degenerates as the

monocular downgrading increases. Similar to human stere-

opsis, all tested algorithms are observed to ‘collapse’ be-

yond specific downgrading threshold, leading to unreason-

able disparity predictions.

Ideally, there exist potential cures to alleviate such col-

lapse, but each of them has a certain limit. One intuitive

approach is to conduct depth estimation only based on the

high-quality monocular view. However, it cannot generalize

well for unseen scenarios because it relies on prior knowl-

edge of the object size and other physical attributes. An-

other approach is to conduct stereo matching on a lower

resolution as a compromise to the information loss in the

downgraded view, but low-res solutions cannot satisfy the

demand of sharp disparity for tasks like portrait defocusing.

Taking a detour in thinking, instead of directly predict-

ing the disparity from imbalanced views, it is easier to first

restore the corrupted view using the high-quality textures in

the main view and then conduct stereo matching. With the

vague object contour observed in the corrupted view, human

beings are pretty good at hallucinating the missing textures

by ‘moving’ the objects from the high-quality view to the

corresponding position in the corrupted view. The problem

of predicting the dense disparity map between imbalanced

binocular inputs can be decomposed into two sub-problems:

view restoration guided by limited structural information in

the corrupted view, and reconstruct stereopsis based on the

restored view. For the first sub-problem, we formulate it as

a guided view-synthesis process and designed a structure-

aware displacement prediction network to achieve that. Our

approach achieves unprecedented performance and demon-

strates impressive generalization capabilities on a dataset

with real-world imbalanced factors.

The main contributions of our work are threefold:

• We discover that constructing stereopsis from imbal-

anced views is not only feasible for human visual sys-

tems but also achievable for computer vision. It is

the first work to consider the imbalanced condition for

stereo matching.

• We explore the potential of current stereo machines on

the task of visually imbalanced stereo matching and

examine the threshold of ‘stereo collapse’ on different

models and various imbalanced conditions.

• We exploited a guided view synthesis framework to re-

store the corrupted view and tackle scenarios beyond

‘stereo collapse’, which is even out of the capability of

human stereopsis.

2. Related Work

Depth Perception There are diverse methods proposed

to predict depth from single view [26], stereo views [27],

and multiple views [19]. Among these variants, stereo

matching is the currently popular way for low-cost depth

perception. For the traditional stereo matching setup, a rep-

resentative taxonomy was proposed in [35]. Many com-

prehensive testbeds were later introduced for quantitative

evaluation of different stereo frameworks [10, 35]. Analy-

sis of subpixel calibration error and radiometric differences

emerges in [15, 14]. Significant progress in single view

depth estimation emerged in [9], but estimating depth from

a single view remains hard considering the ill-posed body

of the problem.

Human Stereopsis Early theoretical frameworks of

binocular disparity detection mechanisms were proposed in

[41, 11]. Neural models of frequency-variant spatial filters

in the human’s visual brain were then proposed and devel-

oped in [5, 4]. To better analyze the neural network sub-

serving stereopsis, a large portion of work has been con-

ducted to characterize the functional attributes for these ba-

sic operators in the visual brain [32, 33, 38].
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Model All / Est 1X 2X 3X 5X 8X 10X 15X 20X SVS

D1-bg 14.13% 15.66% 19.53% 24.20% 62.60% 79.49% 83.98% 89.11% 25.18%

D1-fg 21.99% 22.35% 25.36% 32.32% 58.36% 80.16% 85.48% 90.39% 20.77%SGBM

D1-all 15.88% 16.76% 20.49% 25.88% 61.89% 79.60% 84.23% 89.32% 24.44%

D1-bg 3.09% 3.12% 3.31% 4.69% 11.40% 24.38% 89.51% 98.16% 25.18%

D1-fg 3.16% 3.21% 3.28% 4.23% 11.08% 24.72% 89.75% 98.35% 20.77%DispNetC

D1-all 3.10% 3.13% 3.30% 4.62% 11.35% 24.44% 89.55% 98.18% 24.44%

D1-bg 3.02% 3.05% 3.25% 4.84% 12.24% 29.16% 94.47% 99.42% 25.18%

D1-fg 2.89% 3.00% 3.18% 4.41% 12.36% 28.76% 95.27% 99.66% 20.77%CRL

D1-all 3.00% 3.04% 3.24% 4.77% 12.26% 29.09% 94.60% 99.64% 24.44%

D1-bg 2.36% 2.75% 5.63% 8.23% 20.86% 91.81% 99.32% 99.89% 25.18%

D1-fg 5.72% 5.78% 8.42% 10.25% 18.85% 100.00% 100.00% 100.00% 20.77%PSMNet

D1-all 2.92% 3.25% 6.21% 10.01% 20.52% 92.93% 99.91% 99.97% 24.44%

Table 1. Performance of stereo algorithms under different levels of monocular blur: we mark the ‘turning point’ observed as red. D1-

bg/D1-fg/D1-all refers to average percentage of outliers only over background/foreground/full regions.

Imbalanced Vision For human vision, it is quite com-

mon for patients to have unequal visual acuity and contrast

sensitivity in the two eyes [6]. In computer vision, it is usual

for slave cameras to equip with cheaper sensors compar-

ing with the master camera, resulting in relatively poor per-

formance in color, resolution, contrast, and noise-tolerance

[43]. Stelmach [39] showed that the quality of the binocular

perception is dominated by the sharpest image. Seuntiens

[36] shows that the perceived-quality of an assymetrically-

degraded image pair is about the average of both perceived

qualities. Stevenson and Schor [40] demonstrate that human

stereo matching does not precisely follow the epipolar lines,

where human subjects can still make accurate near/far depth

discrimination with 45 arcmin vertical disparity range.

Image Enhancement In low-level vision, there exist lit-

eratures on restoring blur image by super resolution or im-

age deblur. The current state-of-the-art image enhancement

methods [22, 25, 16, 37] generally tackle blur up to 5X,

where our framework focuses on more severe monocular

blur of 10X or more. Furthermore, although GAN-based

enhancement methods [22, 23] generate visually pleasing

results, consistency between stereo views is not enforced,

which is not very suitable for stereo matching.

View Synthesis The most proximate work of our de-

tailed framework design is the dynamic guided filtering net-

work proposed in [17] and extended in [30, 29]. Instead of

predicting the image after spatial transformation, it is more

efficient to estimate the transformation matrix itself. There

also exist algorithms for novel view synthesis from the sin-

gle image, such as deep3d [44], appearance flow [48], and

stereo magnification [47]. However, none of them operates

in a guided manner for imbalanced view restoration.

3. Demystifying Imbalanced Stereopsis

3.1. Motivation and Assumption

In human visual system, disparity signal is generated by

responsible cells, by comparing the signals from the spa-

tial receptive field (RF) of the left and right eye [5]. These

two spatial RFs can be approximately described by 2D Ga-

bor functions. Correspondingly, there are two types of shift

thet formulates the imaging relationship between the two

RFs: the positional shift, and the phase shift. The positional

shift can be formulated as an overall positional difference

between two RFs [4]:

RFL = exp(−x2/σ2)cos(ωx) (1)

RFR = exp(−(x− d)2/σ2)cos(ω(x− d)) (2)

where ω is the spatial frequency, σ is the spatial constant,

and d is the overall position difference. Also, the phase

shift can be expressed as a phase difference between the

sinusoidal modulations of the Gabor functions centered at

the origin:

g(x, y, φ) =
1

2πσxσy
exp(−

x2

2σ2
x

−
y2

2σ2
y

)cos(ω(x+ φ))

(3)

where φ is the phase parameter of the sinusoidal modula-

tions, and σx and σy are constants related to the dimensions

of the RFs. From the expression of Eq. 2 and Eq. 3, we can

see that the positional disparity d can be arbitrarily large,

while phase disparity φ is limited to a maximum of ±π/ω.

In the coarse to fine disparity model proposed in [8], the re-

sponse of a complex cell with both positional shift d and the

phase shift ∆φ between the two eyes can be simplified as:

rhybridq ≈ 4A2cos2(
ω(D − d)−∆φ

2
) (4)

where D is the reference position for RFL. The construc-

tion of the preferred type of disparity under different fre-

quency in Eq. 4 can be approximated as:

Dhybrid ≈
∆φ

ω
+ d (5)

With higher frequency (refers to smaller search range in

phase domain), the response from phase disparity is more

robust than the response from position disparity. There ex-

ists evidence showing that the search for the optimized d
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Figure 3. Performance attenuation of stereo machines: the ‘turn-

ing point’ mostly occurs at 5X to 8X, with error rate of 20%-

30%, which is close to our baseline [26] of only using the left

high-quality image as input. It turns out that rigorous condi-

tions of monocular blur invalidate the multi-scale matching design

in stereo machines, leading to unreasonable disparity predictions

with error rate > 80%. VIS denotes our proposed guided view

synthesis method, which can still maintain decent disparity accu-

racy regarding severe monocular downgrading.

and ∆φ are conducted in a coarse-to-fine iteration [8]. It

starts on a large scale and sets ∆φ as the full range to

optimize positional disparity d. The process will update

d iteratively while gradually decreasing the search range.

When the iteration approaches a microscopic scale within

the range of phase disparity, ∆φ will be optimized based on

the responses of matching high-frequency textures.

If one view is downgraded with loss of high-frequency

components, it mainly jeopardizes the precision of the

phase detectors. Nevertheless, position detectors still able

to process coarse disparity based on the low-frequency com-

ponents, and initial iterations at relatively large scale of the

coarse-to-fine search are merely affected. Similarly, many

stereo machines are embedded with a multi-scale matching

mechanism, where the disparity is initially estimated in low

resolution and then refined in higher resolution [13, 27].

Until the final refinement step, we expect low and mid-

frequency components to be sufficient for coarse stereopsis.

3.2. Benchmark and Comparison

Our next step is to confirm the previous assumption. We

consider one of the major factors affecting the stereo ac-

curacy of real-world dual-lens camera modules: monocular

blur. For example, budget-limited smartphones are usually

equipped with a high-res master camera and low-res, rela-

tively less expensive slave camera1. In our test configura-

tion, the right view is first downsampled by a scale factor

and then upsampled to its original resolution. Eight differ-

ent scales are applied to subtilize the degree blur effect: 1X,

2X, 3X, 5X, 8X, 10X, 15X, and 20X. We use the KITTI

1e.g. Samsung S5KHMX 108MP, S5KGW1 64MP, SONY IMX586

48MP, as master sensor of mobile dual-lens module.

dataset [28] as our testbed. Results are collected respec-

tively from several stereo matching algorithms (both tradi-

tional methods and NN-based methods): SGBM [13], Disp-

NetC [27], CRL [31], and PSMNet [7].

The next problem is how to define ‘stereo collapse’. One

intuitive method is to search for the ‘turning point’ of the

plot. Additionally, a baseline for evaluating ‘stereo col-

lapse’ is preferred to be set: we think that before reaching

the ‘turning point’, stereo machines should at least exploit

the low-frequency information in the corrupted view, which

means they should outperform the result if we only input

the high-quality left view. From this perspective, we choose

the recent view-synthesis based monocular depth estimation

network [26] as the baseline for disparity prediction.

3.3. Implication and Discussion

As shown in Table 1 and Figure 3, stereo machines show

the capability to exploit the low-frequency data to establish

the coarse disparity. Surprisingly, we observe mere perfor-

mance decay for deep architectures under low downgrad-

ing factors. Only using 1/25 of the original pixels in the

right view, stereo algorithms can generate coarse disparity

predictions within 30% error. Our tests show that the capa-

bility of constructing stereopsis from low-frequency struc-

tures is a universal but varying capability of stereo ma-

chines. Within the limit of ‘stereo collapse’, it is possible

that coarse disparity can be generated from the remaining

structural difference of geometry in both views.

Nevertheless, even in human stereopsis, not all imbal-

anced binocular conditions lead to reliable disparity results.

The core problem is that when vast losses of textural infor-

mation already exceed the limits of spatial frequency tun-

ing, disparity from imbalanced views should be an unavail-

able option. In all of the test set-ups, we also observe simi-

lar ‘stereo collapse’ on stereo machines, which is the result

of increasing ambiguities and loss of high-frequency data.

The turning point for ‘stereo collapse’ varies from 5X to

8X. Beyond such thresholds, stereo machines tend to pre-

dict unreasonable disparities.

4. Stereopsis Beyond Collapse

4.1. Problem Formulation

To reconstruct stereopsis beyond ‘stereo collapse’, one

feasible way is first to restore the corrupted image. Al-

though there is no evidence that the human visual system

is capable of doing that, learning-based restoration model

has already been widely used in computer vision. In dual-

camera modules with relatively small baseline, most object

regions appear in both views, and only a few of them are oc-

cluded. Admittedly, severe monocular downgrading brings

considerable ambiguities, but the rough contour of objects

can still be recognized. With such object contour, the next
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Figure 4. Illustration of the dynamic displacement filters: wrap-

ping is conducted based on the two filter volumes generated by the

view synthesis network, of size H ×W × Lh and H ×W × Lv

respectively. As defined in Equation 6, the hadamard product ⊗

of the filter volume and the image plane are calculated to perform

pixel-wise 2D displacement. Different from the only ‘1’ in this

toy example, in real setting, a pixel in the final output can be the

aggregation of multiple pixels from the source image plane.

question is how to properly move and fill the textures from

the uncorrupted view to the corrupted view using the con-

tour hints. In many 3D vision tasks, such move-and-fill can

be described by various types of 1D or 2D transformation.

As shown in Figure 2, our idea is to profile a robust solution

by estimating the spatial-variant transformation for each re-

gion of pixels in order to move the textures to retore the

corrupted view properly.

To simplify the notation, we take the left view IL as the

intact view and right view Ir as the corrupted view. In gen-

eral, there are two steps of our proposed framework:

1. Guided View Synthesis: Guided by the object con-

tour and low-frequency components in the corrupted right

view Ir, estimate spatial-variant transformations to warp the

textures from left view IL to a latent intact view IR.

2. Stereo Reconstruction: Estimate disparity d based

on the restored right view ÎR and the original left view IL.

4.2. Dynamic Displacement Filtering Layer

We introduce the dynamic displacement filtering layer

inspired by dynamic filtering network (DFN) [17]. As

shown in Figure 4, each displacement filter can be thought

of as a learned kernel to convolve with a specific local re-

gion from the image plane. The job of the dynamic dis-

placement filtering layer is to wrap the high-quality textures

in the left view IL to the appropriate position using the cor-

rupted right view Ir as the positional guide.

The original dynamic filters are designed to be two-

dimensional. If we want to estimate the vertical displace-

ment of Lv and horizontal displacement Lh, one 2D dy-

namic filter requires O(H×W ×Lh×Lv) memory. When

handling high-res images with large displacements, mem-

ory consumption could be arbitrarily large. Instead, in-

spired by [30], our network predicts two 1D linear filters

per pixel to approximate the 2D filters. This design only

takes O(H ×W × (Lh +Lv)) memory, which reduces the

space complexity by O(n).
Given the pixel ÎR in the restored right view, and a pair

of 1D linear displacement filters Kh(i, j) and Kv(i, j) pre-

dicted by the network. We can convolve IL with the dis-

placement filters to achieve the spatial transformation to the

right image plane IR:

ÎR(i, j) = (Kh(i, j)×Kv(i, j)
T )⊗ PL(i, j) (6)

where Kh(i, j) are of size Lh, Kv(i, j) are of size Lv . The

cross product of vector Kh(i, j) and vector Kv(i, j)
T ap-

proximates the 2D displacement filters. PL denotes the lo-

cal image patch of size Lh × Lv , which is the neighbor-

hood region in the left image IL centering IL(i, j). Differ-

ent from general convolution where kenels are applied on

the whole image, here Kh(i, j) and Kv(i, j) are only ap-

plied on the local patch, which means that each pixel will

have the corresponding displacement filters to handle spa-

tial transformation for its corresponding local patch.

4.3. Deep Guided Filtering Layer

If we take a slice of the horizontal displacement volume

Kh of size H ×W × Lh with the axis of Lh, we will get

Lh slices, corresponding to the displacements from 1 to Lh.

Ideally, if one object has displacement d from the left view

IL to the right view IR, the corresponding d-th slice Kh[d]
should reflect the shape of that object. However, the back-

ground of that object may be a complex region with sophis-

ticated textures, precisely distinguish the object from the

background can be challenging for RGB data. The object

shape in the displacement map might be partially complete,

with significant notches and surpluses.

One way of refining the edge is to use the object shape

knowledge in IL to conduct guided filtering on the filter

volume. The original guided image filtering is proposed by

[12]. It is a local linear model between the guide image

G and the filter output O. We assume that O is a linear

transform of G in a window ωk centered at pixel k:

Oi = akGi + bk, ∀i ∈ ωk (7)

where i is the index of the pixel, k is the index of local

square window ω. The linear coefficients (ak, bk) is as-

sumed to be constant in the window wk. The local linear

model ensures thatO has an edge only ifG has an edge, be-

cause ∇O = a ·∇G. In addition, the filter outputOi should

be similar to the input Pi with the constrain:

E(ak, bk) =
∑

k:i∈ωk

((Oi − Pi)
2 + ǫa2k), (8)

where ǫ is a regularization parameter. By minimizing

E(ak, bk), we can get the filtered output O. In our task,
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Figure 5. Network architecture for the visually imbalanced stereo matching task: the design contains two sub-networks. The upper one is

our guided view synthesis network, which aims to restore the high-quality right view IR by shifting and deforming the objects in the left

view IL. This shift and deformation operation is handled by the dynamic filters predicted by the first network. The filter volume will be

processed by a deep guided filtering layer, which utilizes the shape knowledge from IL to do edge-aware refinement. The lower one is the

stereo reconstruction network, which predicts disparity based on IL and the restored right view IR.

we use the left view IL as the guide G, and the d-th slice

of the filter volume Kh[d] as the O. If we consider all win-

dows in the image to be filtered, the linear transformation

can be written as:

(IL)i =
1

|ω|

∑

k:i∈ωk

(ak · (Kh[d])i + bk) = ai(Kh[d])i + bi

(9)

where the gradient in the displacement volume slice

∇(Kh[d]) should be consistent with the gradient of the

guide image ∇IL for the optimized ak and bk. To embed

this design as a differentiable layer in our network, we pro-

pose to apply the deep guided filter [42] as the layer after

displacement volume in our network, which is an acceler-

ated and fully differentiable version of [12].

4.4. Guided View Synthesis Network

The task of the proposed guided view synthesis network

is to take the corrupted right view Ir as the guide and re-

store the high-quality right view ÎR by selectively moving

the textures from the left view to the proper position in the

right view. The guided view synthesis network inputs the

uncorrupted left view IL and the corrupted right view Ir
and predicts displacement filter volumes Kh and Kv . The

overall network architecture is shown as Figure 5, where the

top part refers to our guided view synthesis framework, and

the lower part refers to the stereo restoration network.

We use a bottleneck design with skip connections for the

guided view synthesis network, which is similar to U-Net

proposed in [34]. The intuition behind our guided view

synthesis network is illustrated in Figure 2. With IL and

bilinear upsampled Ir concatenated as input, the network

uses the two images to estimate the spatial differences and

predicts the per-pixel displacement Kh and Kv . As ex-

hibited in Figure 5, our guided view synthesis network has

two branches for its last few layers, estimating the horizon-

tal displacement and the vertical displacement, respectively.

After the last upsample layer, we obtain the feature map of

size H ×W ×Lh or H ×W ×Lv and use them as the hor-

izontal filter volume and vertical filter volume respectively.

Then we add a deep guided filter layer in the last to refine

the shape in the filter volume. In the last, cross product is

applied on the two filter volume, and hadamard product is

applied to warp the left view to obatin the latent right view

as network output.

4.5. Stereo Reconstruction Network

We select DispNet [27] to conduct stereo reconstruction

based on the left view IL and the restored right view ÎR.

We further follow the modification made in [31] to adopt

the DispFulNet structure for full resolution disparity output.

In this network, IL and ÎR are first passed to several convo-

lution layers with shared weights. Then the resulted feature

map will be processed by a correlation layer, which embeds

the geometry cues into the correlation of different horizontal

patches. The feature maps outputted by the correlation layer

will be concatenated with higher-level feature maps from

the left image IL. Then followed by an encoder-decoder

structure, the network further refines the feature map and

outputs the final disparity map d.

4.6. Loss Function

For our guided view synthesis network, although our net-

work aims at learning the displacement volumeKh andKv ,

we do not directly supervise dynamic displacement filters.

One of the reasons is that while stereo pairs are easy to ob-
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Figure 6. Qualitative evaluation on various downgrading factors: (a) downgraded right view (from top to bottom: monocular blur 10X,

monocular blur 15X, gaussian noise with σ=0.5, σ=1, monocular blur 10X and maximum 0.5 degree of rectification error, monocular blur

10X and maximum 1.0 degree of rectification error). From left to right, the rest columns are disparity maps generated by (b) PSMNet [7]

(c) CRL [31] (d) DORN [9] (pseudo disparity, visualization is converted from depth) (e) VIS (our framework).

tain by the dual-lens camera, displacement ground truth is

hard to gather since it is a many-to-many matching prob-

lem. Instead, we consider two types of loss functions that

measure the difference of the restored right view ÎR and its

ground truth IR. The first loss is the photometric loss con-

sisting of the l1-norm and MS-SSIM:

Lpixel = α·‖ÎR−IR‖1+(1−α)·(ÎR, IR)MS−SSIM , (10)

where α is the hyper parameter to balance the two term,

which is set to be 0.84 in our experiment as suggested in

[46]. The other loss function is the perceptual loss proposed

in [18]. It is defined as the l2-norm between feature repre-

sentations of ÎR and IR:

Lfeat =
1

CjHjWj

∥

∥

∥
ψj(ÎR)− ψj(IR)

∥

∥

∥

2

, (11)

where ψj() denotes the feature map from the j-th VGG-19

convolutional layer and Cj , Hj , Wj are the number, height

and width of the feature maps, respectively. As suggested

in [29], we use the feature map generated from the relu4 4
of VGG-19 to calculate the perceptual loss. The overall loss

function for the guided view synthesis framework is:

Lsyn = β · Lpixel + (1− β) · Lfeat, (12)

where β is the hyper-parameter balancing the two losses. In

our experiment, β is set to be 0.5.

For the stereo reconstruction network, In the training

step, it is supervised by the ground truth disparity using l1
loss as shown in Eq. 13. To ensure smooth training, we also

adopt the multi-scale disparity loss to supervise the inter-

mediate results.

Ldisp =

N
∑

n=1

‖d̂n − dn‖1, (13)

where d̂n and dn are the estimated disparity and ground

truth disparity of n-th scale respectively.

5. Experiments

In this section, we present our experiments and corre-

sponding results. In our experiment, we extend the bound-

ary of the imbalanced condition to consider monocular blur,

rectification error, and sensor noise in dual-lens cameras.

We use KITTI raw [28] for training, which contains in total

of 42382 rectified stereo pairs captured from 61 scenes. We

benchmark all the models on KITTI 2015 stereo dataset.

5.1. Implementation Details

For both training and testing step in all imbalanced sce-

narios, only horizontal displacement kernels are enabled,

and vertically displacement kernels are disabled. We use

Adam [20] to optimize the network with β1 = 0.9 and

β2 = 0.999. For our training strategy, the initial learning

rate is set to be 1e−5 and multiplied by 0.9 after every five

epochs. We train our framework for 100 epochs.

5.2. Experimental Details

Monocular Blur In this experiment, we think our testing

images are well-rectified thus we only use the horizontal dy-

namic displacement filters and set its maximum size to 201.

We test our framework with monocular blur scales larger
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Figure 7. Qualitative evaluation of the restored view under monoc-

ular blur of 15X. ‘Syn’ denotes the synthesized right view from our

network, and ‘GT’ denotes the ground-truth right view.

than those previously discovered ‘stereo collapse’ thresh-

olds. We use the photometric criteria to evaluate the guided

view synthesis network, as long as the disparity error to as-

sess the disparity predictions from entire framework. The

results are shown in Table 2 and Figure 6. Our method

achieves much more resonable disparity predictions with

much lower disparity error than all other stereo matching

models tested in Section 3. It is worth noticing that even

without end-to-end finetuning, our framework can still gen-

erate reliable results from severe monocular blur beyond the

turning point of ‘stereo collapse’. As reference, other stereo

matching performance is shown in Table 1.

VIS:10X VIS:15X VIS:20X CRL:10X

PSNR 19.066 18.030 17.213 N/A

SSIM 0.8249 0.7891 0.7785 N/A

D1-bg 15.24% 16.72% 18.97% 29.16%

D1-fg 18.61% 20.52% 22.78% 28.76%

D1-all 16.72% 18.32% 21.90% 29.09%

Table 2. Monocular blur as imbalanced factor. The CRL [31] col-

umn indicates the performance of direct stereo matching. PSNR

and SSIM are calculated based on the restored right view image

with respect to the right view groundtruth.

Rectification Error In this experiment, we introduce

rectification error as the imbalanced factor, which widely

exists in mobile dual-lens modules after accidental drop or

a long time of use. To also address the low resolution of

the slave camera, we maintain the monocular blur of 10X

for the downgraded right view input. We set the horizontal

filter size to 201. We simulate the rectification error by ro-

tating the right view (slave lens) by a maximum degree in its

X, Y, and Z-axis. Note that such rotation violates the formu-

lation of the 1D search problem in all other stereo matching

algorithms, thus even rotation of 0.5 degree leads to dispar-

ity error larger than 70%.

However, as shown in Table 3, our proposed framework

is still able to fix this rectification error and produce a rec-

Figure 8. Qualitative evaluation on mobile dataset2: (a) high-res

left master camera view, (b) low-res right slave camera view. Slave

image has severe monocular blur, and some rectification error.

CRL [31] leads to failure result in (d). Our framework first es-

timates the restored view (c) and reconstruct the stereopsis in (e).

tified high-quality right view image. Additionally, we test

our framework on the real-world dual-lens dataset. Exam-

ple portrait stereo pair is provided in Figure 8.

VIS:0.5D VIS:1.0D CRL:0.5D

PSNR 17.916 17.732 N/A

SSIM 0.7729 0.7663 N/A

D1-bg 18.63% 20.14% 99.10%

D1-fg 21.35% 24.20% 99.43%

D1-all 19.47% 21.94% 99.24%

Table 3. Rectification error as imbalanced factor. Aside from rec-

tification error, test cases have 10X monocular blur. The CRL [31]

column indicates the performance of direct stereo matching.

Sensor Noise In this experiment, we use gaussian noise

to synthesize the monocular downgrading due to noise in

the low-light environment. We set the horizontal filter size

to 201. We control the variance σ in Gaussian distribution

and use two of σ values 0.5 and 1.0.

VIS:σ=0.5 VIS:σ=1.0 DispNet:σ=0.5

PSNR 20.217 19.142 N/A

SSIM 0.8405 0.8261 N/A

D1-bg 13.97% 15.82% 21.19%

D1-fg 16.64% 20.10% 22.36%

D1-all 15.39% 18.91% 21.78%

Table 4. Monocular noise as the imbalanced factor. The DispNet

[27] column indicates performance of direct stereo matching.

6. Conclusion

Our paper defines the problem of visually imbalanced

stereo matching. We start by discussing the human vi-

sual system, illustrating the mechanism behind the stereo

capability under imbalanced binocular input. With such

evidence at hand, we question the existence of a similar

phenomenon in stereo machines, and carry out a system-

atic comparison to confirm whether and when ‘stereo col-

lapse’ generally occurs on current stereo matching algo-

rithms. Moreover, we present a practical solution to recon-

struct stereopsis to support computer vision stereo systems

to operate beyond such thresholds. The experiments show

that our framework can effectively avoid stereo collapse,

which in some sense, outperforms human stereopsis.

2Since images are shot horizontally in landscape mode and displayed

vertically in portrait mode, objects in the right view are positionally higher.
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