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Abstract

While significant advances have been made for single-

agent perception, many applications require multiple sens-

ing agents and cross-agent communication due to benefits

such as coverage and robustness. It is therefore critical

to develop frameworks which support multi-agent collab-

orative perception in a distributed and bandwidth-efficient

manner. In this paper, we address the collaborative percep-

tion problem, where one agent is required to perform a per-

ception task and can communicate and share information

with other agents on the same task. Specifically, we propose

a communication framework by learning both to construct

communication groups and decide when to communicate.

We demonstrate the generalizability of our framework on

two different perception tasks and show that it significantly

reduces communication bandwidth while maintaining supe-

rior performance.

1. Introduction

Remarkable progress has been achieved for single-agent

perception and recognition, where one or more sensor

modalities are used to perform object detection [30, 31, 22]

and segmentation [3, 12, 19], depth estimation [10, 38, 11],

and various other scene understanding tasks. However, in

many applications, such as robotics, there may be multiple

agents distributed in the environment, each of which has lo-

cal sensors. Such multi-agent systems are advantageous in

many cases, for example, to increase coverage across the

environment or to improve robustness to failures.

Thus, we tackle the problem of multi-agent collaborative

perception, an under-studied topic in the literature, where

multiple agents are able to exchange information to improve

overall accuracy towards perception tasks (e.g., semantic

segmentation or object recognition). One major challenge

for multi-agent collaborative perception is the transmission

bandwidth, as high bandwidth results in network conges-

tion and latency in the agent network. We therefore inves-
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Figure 1: Illustration of multi-agent collaborative per-

ception. We construct a multi-agent perception system to

improve the agent-wise perception accuracy and reduce the

transmission bandwidth. Each agent learns to construct

communication groups and decide when to communication.

tigate the scenario where information across all agents (and

hence sensors) is not available in a centralized manner, and

agents can only communicate through bandwidth-limited

channels. We also consider several challenging scenarios

where some sensor data may be uninformative or degraded.

Prior works on learning to communicate [34, 8] mainly

address decision-making tasks (rather than for improving

perception) under simple perceptual environments. In addi-

tion, these methods also do not consider bandwidth limita-

tions: They learn to communicate across a fully-connected

graph (i.e. all agents communicate with each other through

broadcasts). Such methods cannot scale as the number of

agents increases. Similarly, since all information is broad-

cast there is no decision of when to communicate condi-

tioned on the need. An agent does not need to consume

bandwidth when the local observation is sufficient for the

prediction. When messages sent by other agents are de-

graded or irrelevant, communication thus could be detri-

mental to the perception task.

In this paper, we propose a learning-based communi-
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cation model for collaborative perception. We specifically

view the problem as learning to construct the communica-

tion group (i.e. each agent decides what to transmit and

which agent(s) to communicate with) and to decide when

to communicate without explicit supervision for such deci-

sions during training. In contrast to broadcast-based meth-

ods (e.g. TarMac [6]) and inspired by the general attention

mechanisms, our method decouples the stages of commu-

nication and this allows for asymmetric message and key

sizes, reducing the amount of transmitted data.

Our method can be generalized to several downstream

vision tasks, including multi-agent collaborative semantic

segmentation (dense prediction) and multi-agent 3D shape

recognition (global prediction). Our model is able to be

trained in an end-to-end manner with only supervision from

downstream tasks (e.g. ground-truth masks for segmenta-

tion and class labels for image recognition) and without the

need for explicit ground-truth communication labels.

We demonstrate across different tasks that our method

can perform favorably against previous works on learning to

communicate while using less bandwidth. We provide ex-

tensive analyses, including trade-offs between message and

query sizes, the correlation between ground-truth key and

predicted message, and visualization of the learned com-

munication groups.

Our contributions are listed as follows:

• We address the under-explored area of collaborative per-

ception, which is at the intersection of perception, multi-

agent systems, and communication.

• We propose a unified framework that learns both how to

construct communication groups and when to communi-

cate. It does not require ground truth communication la-

bels during training, and it can dynamically reduce band-

width during inference.

• Our model can be generalized to several down-stream

tasks, and we show through rigorous experimentation

that it can perform better when compared with previous

works investigating learned communication.

• We provide a collaborative multi-agent semantic seg-

mentation dataset, AirSim-MAP, where each agent has

its own depth, pose, RBG images, and semantic segmen-

tation masks. This dataset allows researchers to further

investigate solutions to multi-agent perception.

2. Related works

Learning to communicate. Communication is an es-

sential component for effective collaboration, especially for

multi-agent decision-making and perception tasks. Early

works [35, 27] facilitated information flow and collabora-

tion through pre-defined communication protocols. Simi-

larly, auction-based methods [21, 29] for camera grouping

use several assumptions (e.g., static cameras) and heuristic

rules to decide the agents’ communication. However, such
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Figure 2: Fully connected versus group communication.

Fully connected communication results in a large amount of

bandwidth usage, growing on the order of O(N2), where N

represents the number of agents in a network. Group com-

munication is able to prune irrelevant connections and can

substantially reduce the overall network complexity.

rigid protocols do not evolve with dynamic environments

and do not easily generalize to complex environments.

Thus, in recent years, several multi-agent reinforcement

learning (MARL) works have explored learn-able interac-

tions between agents. For example, assuming full coopera-

tion across agents, each agent in CommNet [34] broadcasts

its hidden state to a shared communication channel so that

other agents can decide their actions based on this integrated

information. A similar scheme was proposed by Foerster et

al. [8], where agents instead communicate via learned, dis-

crete signals. To further leverage the interactions between

agents, Battaglia et al. [2] and Hoshen [15] integrate ker-

nel functions into CommNet. Additionally, several works

have addressed communication through recurrent neural

networks (RNN). For example, DIAL [7] uses an RNN to

derive the individual Q-value of each agent based on its ob-

servation and the messages from other agents. BiCNet [28]

connects all agents with a Bi-directional LSTM to inte-

grate agent-specific information, and ATOC [18] addition-

ally applies an attention unit to determine what to broad-

cast to the shared channel. Although substantial progress

has been made by several MARL works, most experimen-

tal tasks are built on simplistic 2D-grid environments where

each agent observes low-dimensional 2D images. As men-

tioned in Jain et al. [16], studying agents’ interactions in

simplistic environments does not permit study of the inter-

play between perception and communication.

Recent works have proposed to construct communi-

cation groups based on pre-defined rules [18, 17] or a

unified communication network [33, 34, 15, 28, 33, 6].

With these techniques, bandwidth usage during communi-

cation increases as the number of agents scales up. While

Who2com [23] uses a handshake communication to reduce

the bandwidth usage, this model assumes all agents always

4107



(a) (b)

Figure 3: Our (a) Multiple-Request Multiple-Support Model and its (b) Handshake-Communication (H-Com) Module.

need to communicate with one of the other agents. This

results in the waste of bandwidth consumption and cannot

prevent the issue of detrimental messages. In contrast, our

proposed framework alleviates these problems by learning

to decide when to communicate and to create communica-

tion groups.

Attention mechanisms. Attention mechanisms have

been widely used in recent learning-based models. In a

nutshell, the attention mechanism can be viewed as a soft

fusion scheme to weight different values based on a sim-

ilarity between query and keys. A few noticeable and

widely used attention mechanisms are additive [1], scale

dot-product [36], and general [25]. One key finding of our

work is that the general mechanism allows for asymmet-

ric queries and keys, which makes it especially suitable for

tasks with bandwidth considerations: An agent’s transmit-

ted query message can be smaller than its retained key, and

hence its overall bandwidth consumption can be reduced.

3. Method

The goal of our proposed model is to address the multi-

agent collaborative perception problem, where an agent is

able to improve its perception by receiving information

from other agents. In this paper, we are specifically inter-

ested in learning to construct communication groups and

learning when to communicate in a bandwidth-limited way.

3.1. Problem Definition and Notation

We assume an environment consisting N agents with

their own observations X = {xn}n=1,...,N . Among those

agents, some of them are degraded X̃ = {x̃l}l=1,..,L, and

the set of degraded agents is a subset of all agents X̃ ⊂
X . Each agent outputs the prediction of perception task

Ỹ = {ỹn}n=1,...,N with the proposed communication mech-

anism. Note that each agent is a requester and supporter

simultaneously. However, which agents are degraded is un-

known in our problem setting.

3.2. Communication Groups Construction

As demonstrated in Figure 2, previous works on learn-

ing to communicate applied fully-connected communica-

tion for information exchange across agents. This frame-

work results in a large amount of bandwidth usage and is

difficult to scale up when the number of agents increases.

To reduce the network complexity and bandwidth us-

age, inspired by communication network protocol [20], we

propose a two-step group construction procedure: we first

apply the handshake communication [23] to determine the

weights of connections, and we further prune the less im-

portant connections with an activation function.

To start constructing a communication group, we apply

a three-stage handshake communication mechanism [23],

which consists of three stages: request, match, and select.

Agent i first compresses its local observations xi into a com-

pact query vector µi and a key vector κi:

µi = Gq(xi;θq) ∈ R
Q
, κi = Gk(xi;θk) ∈ R

K
, (1)

where Gq is a query generator parameterized by θq and Gk

is a key generator parameterized by θk. We further broad-

cast the query to all of other agents, and note that this

only causes limited amount of bandwidth transmission as

all queries are compact compared to the high-resolution im-

ages. To decide who to communicate with, we compute a

matching score mi, j between an agent i (as a requester) and

an agent j (as a supporter),

mi, j = Φ(µi,κ j), ∀i 6= j, (2)

where Φ(·, ·) is a learned similarity function which mea-

sures the correlation between two vectors. The matching
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score mi, j implies correlation between agent i and j, and

intuitively this value also represents the amount of informa-

tion the supporting agent j can provide for the requesting

agent i.

However, the above method does not learn “when” to

communicate, and it results in wasted bandwidth when an

agent has sufficient information and the communication is

not necessary. An ideal communication mechanism is to

switch on transmission when the agent requires information

from other agents to improve its perception ability, while it

should also switch off the transmission when it has suffi-

cient information for its own perception task. Toward this

end, inspired by self-attention mechanism [4], we use the

correlation between the key and query from the same agent

to determine if the agent potentially requires more informa-

tion and thus learn when to communicate,

mi,i = Φ(µi,κi). (3)

Note that m̂i,i ≈ 1 represents that the agent has sufficient in-

formation and does not need communication for perception

tasks.

In order to minimize bandwidth usage during transmis-

sion, we further propose an asymmetric message method,

which compresses the query into an extremely low-

dimensional vector (which is transmitted) while keeping

a larger size for the key vector (which is not transmit-

ted). Once extremely compact queries are passed to receiver

agents, we use a scaled general attention [25, 36] to com-

pute the correlation between agent i and agent j:

Φ(µi,κ j) =
µT

i Wgκ j√
K

, (4)

where Wg ∈R
Q×K is a learnable parameter to match the size

of query and key, and Q and K are dimension of query and

key respectively.

Based on the above self-attention and cross-attention

mechanism across all queries and keys, we thus derive the

matching matrix M :

M = σ(











m1,1 m1,2 · · · m1,N

m2,1 m2,2 · · · m2,N

...
...

. . .
...

mN,1 mN,2 · · · mN,N











) ∈ R
N×N

, (5)

where σ(·) is a row-wise softmax function.

To construct the communication groups, we prune the

less connections with an activation function:

M̄ = Γ(M ;δ ), (6)

where Γ(·;δ ) is an element-wise function, which zeros out

the elements smaller than δ . (We set δ = 1
N

in our experi-

Figure 4: An example of our constructed communication

groups and the corresponding adjacency matrix. Blue

arrow indicates the intra-agent transmission without band-

width consumption, and red arrow represents the inter-agent

transmission with bandwidth consumption.

ment.)

The derived matrix M̄ can be regarded as the adjacency

matrix of a directed graph, where the entries of the ma-

trix indicate when to communicate and non-entries repre-

sent who to communicate with as demonstrated in Figure 4.

Each row of the matrix represents how a receiver agent col-

lects information from different supporting agents, and each

column of the matrix is how one supporter sends its own in-

formation to different requesting agents.

As shown in Figure 3, once a requesting agent collects

the information from its linked supporting agents, the re-

questing agent i integrates its local observation and the com-

pressed visual feature maps from supporters based on the

matching scores:

ŷi = D([fi;f
in f
i ];θd), f int

i =
N

∑
j=1

m̄i, j 6=0

m̄i, jf j, (7)

where D is an perception task decoder parameterized by θd ,

m̄i, j is the element located in i-th row and j-th of the matrix

M̄ , fi =E(xi;θe) is an feature map of agent i encoded by

an image encoder E, [·; ·] is concatenation operation along

channel dimension. It is worth noting that our perception

task decoder is not limited for specific vision tasks, and we

demonstrate our communication framework can be general-

ized to different visual tasks in our experiments.

3.3. Learning of Communication

Our learning strategy follows the centralized training and

decentralized inference procedure [24]. Precisely, all agents

are able to access all local observations of agents in the

training stage, while each agent can only observe its own

local observation in the inference stage. Our goal is to learn

a bandwidth-efficient communication mechanism, so that

in the inference stage, our proposed model is able to per-

form multi-agent collaborative perceptions in a bandwidth-

limited and distributed manner.
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We follow the aforementioned handshake communica-

tion to compute the matching matrix M, and we weight the

agents’ feature maps based on the matching matrix M and

further integrate them as:

fall
i =

N

∑
j=1

m̃i, jf j, (8)

where m̃ the element located in i-th row and j-th of the

matrix M . Note that in the above equation mi, jf j repre-

sents who to communicate with, and mi,ifi indicates when

to communicate. Then, a client agent i combines its own

feature map fi and the integrated feature fall
i to compute

the prediction for downstream visual tasks,

ỹi = D([fi;f
all
i ];θd), (9)

In order to train our model, we use the label for down-

stream tasks (e.g., segmentation masks) as supervision, we

compute the loss as:

L=H(y j, ỹ j), (10)

where H(·, ·) can be the objective function for any down-

stream visual tasks (e.g. pixel-wise cross-entropy for seg-

mentation tasks or cross-entropy for recognition tasks). We

later update the weights of our model Θ = (θk,θq,θe,θd)
using the above loss in an end-to-end manner.

4. Experiment

We evaluate the performance of our proposed frame-

work on two distinct perception tasks: collaborative seman-

tic segmentation and multi-view 3D shape recognition.

4.1. Experimental Cases and Datasets

4.1.1 Collaborative Semantic Segmentation

Our first task is collaborative 2D semantic segmentation of

a 3D scene. Given observations (an RGB image, aligned

dense depth map, and pose) from several mobile agents, the

objective of this task is to produce an accurate 2D semantic

segmentation mask for each agent.

Since current semantic segmentation datasets [9, 5, 26,

14] only provide RGB images and labels captured from

the perspective of single agent, we thus use AirSim sim-

ulator [32] to collect our AirSim-MAP (Multi-Agent Per-

ception) dataset. For this dataset, we fly a swarm of five

to six drones with different yaw rates through a series of

waypoints in the AirSim “CityEnviron” environment. We

record pose, depth maps, and RGB images for each agent.

Note that we also provide semantic segmentation masks for

all drones.

We consider three experimental cases within this task.

We refer to the agent attempting segmentation as the re-

questing agent, and all other agents as the supporting

agents. Details for each case are listed as follows:

Single-Request Multiple-Support (SRMS) This first case

examines the effectiveness of communication for a single

requesting agent under the assumption that if an agent is

degraded, then its original, non-degraded information will

be present in one of the supporting agents. We include a to-

tal of five agents, of which only one is selected for possible

degradation. We add noise to a random selection of 50% of

this agent’s frames, and we randomly replace one of the re-

maining agents with the non-degraded frame of the original

agent. Note that only the segmentation mask of the original

agent is used as supervision.

Multiple-Request Multiple-Support (MRMS) The sec-

ond case considers a more challenging problem, where mul-

tiple agents can suffer degradation. Instead of requiring a

single segmentation output, this case requires segmentation

outputs for all agents, degraded and non-degraded. We fol-

low the setup of the previous case, and we ensure that each

of the several degraded requesting agents has a correspond-

ing non-degraded image among its supporting agents.

Multiple-Request Multiple-Partial-Support (MRMPS)

The third case removes the assumption that there exists a

clean version of the degraded view among the supporting

agents. Instead, the degraded agent must select the most

informative view(s) from the other agents, and these views

might have a variable degree of relevance. Specifically, as

the drone group moves through the environment, the im-

ages from each drone periodically and partially overlap with

those of other drones. Intuitively, the segmentation output

of the requesting drone is only aided from the supporting

drones that have overlapping views.

4.1.2 Multi-Agent 3D Shape Classification

In addition to the semantic segmentation task, we also con-

sider a multi-agent 3D shape classification task. For this

experimental case, we construct a multi-agent variant of the

ModelNet 40 dataset [37]. The original dataset contains 40

common object categories from ModelNet with 100 unique

CAD models per category and 12 different views of each

model. However, our variant adds a communication group

structure to the original dataset. Specifically, we sample

three sets of class-based image triplets. Each triplet corre-

sponds to a randomly selected 3D object model and each

triplet contains three randomly selected 2D views of its cor-

responding object model. To make this problem setting

more challenging, we further degrade one image from each

triplet. The objective of this task is to predict the corre-

sponding object class for each agent by leveraging the in-

formation from all agents. Figure 6 shows an example of

the dataset in one trial with 9 agents. This modified task is

essentially a distributed version of the multi-view classifi-
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Table 1: Experimental results on Multiple-Request Multiple-Support and Multiple-Request Multiple-Partial-Support.

Note that we evaluate these models with the metric of mean intersection of union (mIoU) and use MBytes per frame (Mbpf)

and the averaged number of links per agent for measuring bandwidth.

Multiple-Request Multiple-Support Multiple-Request Multiple-Partial-Support

Models Bandwidth (Mbpf / # of links) Noisy Normal Avg. Bandwidth (Mbpf / # of links) Noisy Normal Avg.

AllNorm - 57.85 57.74 57.80 - 47.9 48.37 48.14

Fully-Connect.

CatAll 2.5 / 5 29.07 51.83 40.45 2.0 / 4 26.86 45.27 36.07

AuxAttend 2.5 / 5 33.69 56.27 44.98 2.0 / 4 26.97 51.03 39.00

CommNet [34] 2.5 / 5 23.68 52.67 38.18 2.0 / 4 26.56 49.07 37.82

TarMac [6] 2.5 / 5 51.09 56.74 53.92 2.0 / 4 29.78 51.39 40.59

Distri.

RandCom 0.5 / 1 21.22 52.74 36.98 0.5 / 1 24.13 45.19 34.66

Who2com [23] 0.5 / 1 31.96 56.11 44.04 0.5 / 1 26.97 50.71 38.84

Ours 0.385 / 0.77 56.52 58.04 57.28 0.55 / 1.08 30.38 51.26 40.82

OccDeg - 30.06 56.31 43.19 - 25.2 46.74 35.97

30.86

38.08

25.12

37.67

52.1

44.1
46.09 45.06

42.68

54.24

53.08

25.94

CatAll
(FC)

AuxAttend
(FC)

RandCom
(Distr.)

Who2com
(Distri.)

Ours
(Distr.)

m
Io

U
 

Noisy samples Normal samples AllNorm OccDeg

Figure 5: Experimental results of Single-Request

Multiple-Support.

cation task [37].

4.2. Baselines and Evaluation Metrics

Here we consider several fully-connected (FC) and dis-

tributed communication (DistCom) models as our base-

lines. FC models fuse all of the agents’ observations (either

weighted or unweighted) whereas DistCom models only

fuse a subset of those observations.

• CatAll (FC) is a naive FC model baseline which con-

catenates the encoded image features of all agents prior

to subsequent network stages.

• Auxiliary-View Attention (AuxAttend;FC) uses an atten-

tion mechanism to weight auxiliary views from the sup-

porting agents.

• RandCom (DistCom) is a naive distributed baseline

which randomly selects one of other agents as a support-

ing agent.

• Who2com [23] (DistCom) excludes self-attention mech-

anism such that it always communicates with one of the

supporting agents.

• OccDeg and AllNorm are baselines that employ no com-

munication, i.e. each agent (view) independently com-

putes the output for itself. For OccDeg the data is de-

graded similarly as before, while in AllNorm we use

clean images for all views. These two serve as an up-

per and lower reference for comparison.

We also consider communication modules of Comm-

Net [34], VAIN [15], and TarMac [6] as our baseline meth-

ods for all multiple-outputs tasks. For a fair comparison,

we use ResNet18 [13] as the feature backbone for our and

all mentioned baseline models. For the 3D recognition task,

we also add MVCNN [37] as a baseline.

We evaluate the performance of all the models with mean

IoU on the segmentation task and prediction accuracy on

the 3D shape recognition task. In addition, we report Band-

width of all FC and DistCom models in Megabyte per frame

(MBpf). To obtain MBpf, We add the size of the feature

vectors which need to be transmitted to the requesters and

size of keys broadcast to all supporters and multiply by the

number of bytes required for storage.

4.3. Quantitative results

Single-Request Multiple-Support (SRMS) The goal of

this case is to examine if our model is able to learn when

to communicate and learn who to communicate with for a

single requesting agent. Figure 5 shows the performance of

our proposed model and several baseline models. Although

most fully-connected methods can improve the prediction

mIoU compared with NoCom, they need to propagate all

information in a fully-connected manner and thus require

high bandwidth consumption. In contrast, our model re-

ports higher prediction accuracy yet smaller bandwidth us-

age (Who2com [23]: 2 MBpf; ours: 0.98 MBpf). Another

observation is that our model is able to further improve

compared with Who2com [23]. This demonstrates the ben-

efit of learning when to communicate, which reduces the

waste of bandwidth and prevent detrimental message when

the requesting agent has sufficient information and commu-

nication is not required.
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Table 2: Experimental results on Multi-agent 3D Shape recognition. We report the accuracy of the degraded split, and all

methods perform similar results for the normal split (≈ 83%).

OccDeg AllNorm RandCom CatAll MVCNN [37] CommNet [34] VAIN [15] TarMac [6] Ours

Degraded Split Accuracy (%) 55.02 83.66 54.28 73.82 31.80 71.52 75.09 78.73 80.72

Bandwidth (links/MBpf) - - 0.11 / 0.89 1 / 8 1 / 8 1 / 8 1 / 8 1 / 8 0.176 / 1.32

Supporting

Requesting

Dresser Box Box Person Person Person Wardrobe WardrobeNoCom Bookshelf

Box Box Box Person Person Person Wardrobe Wardrobe WardrobeGT

Dresser Box Box Person Person Person Wardrobe WardrobeRandCom Bowl

Box Box Box Person Person Person Wardrobe WardrobeOurs Wardrobe
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Figure 6: Bipartite communication graph between supporting and requesting agents. During the query phase, each

requesting agent sends a low-dimensional query vector to all other agents (including itself) to establish communication.

Then during the transmission phase, supporting agents transmit their high-dimensional feature representations. We visualize

the flow of data during the transmission phase, where blue and red arrows refer to internal and external communication,

respectively. More prominent colors and larger numerical values indicate stronger feature weightings, whereas missing

arrows represent the pruned links in the communication graph. Note that these images are ordered for visualization purposes;

the actual dataset is unordered, and each agent observes a random class with a random chance of degradation.

Multiple-Request Multiple-Support (MRMS) In this

case, we further address a more challenging problem, where

multiple agents suffer degradation. Each agent should (1)

identify when it needs to communicate, (2) decide who to

communicate with when it needs to, and (3) avoid the selec-

tion of noisy views from the supporting agents. We list the

experiment results in the Table 1. It can be seen that, when

the requesting agents cannot prevent the selection of noisy

supporting agents, both CatAll and RandCom perform even

worse than NoCom. This verifies our intuition that the infor-

mation from the supporting agents is not always beneficial

for the requesting agents, and selection of incorrect infor-

mation may even hinder the prediction of the requesters.

With the use of attention mechanisms for weighting the

feature maps from the supporting agents, both AuxAttend

and Who2com [23] are able to prevent incorrect views from

deteriorating performance and thus improve with respect to

NoCom, CatAll, and RandCom. However, without learning

when to communicate, those models are forced to always

request information from at least one supporting agent re-

sulting in both poorer performance and unnecessary band-

width usage.

In addition to the above baseline methods, we also con-

sider CommNet [34] and TarMac [6]. Even though Comm-

Net integrates the information from other agents by using an

average pooling mechanism, it does not improve the predic-

tion of either degraded or non-degraded requesting agents

because it indiscriminately incorporates all views.

On the other hand, TarMac [6] is able to provide bet-

ter results compared with the baseline models. However,

TarMac uses one-way communication and results in large

bandwidth usage which presents difficulty in the real sce-

nario. On the contrary, our model is not only able to out-

perform it on both degraded and non-degraded samples,

but also consumes less bandwidth by using our asymmet-

ric query mechanism and pruning redundant connections

within the network with the activation function.

Multiple-Request Multiple-Partial-Support (MRMPS)

In this case, there is less chance to have completely over-

lapped observations between any two agents. This presents

an inherent difficulty in the perception task because only

incomplete information is available for the prediction. As

shown in the right part of Table 1, the performance improve-

ment margin of all FC and DistCom models is smaller with

respect to NoCom, in comparison to more significant im-

provement observed in the previous scenario.

Nonetheless, we observe that all methods exhibit a sim-

ilar trend as the previous scenario. Our model is still able

to maintain a similar prediction accuracy as fully-connected

models, while we only use one-fourth bandwidth for com-
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Figure 7: Ablation study on varying query size.

munication across agents. This demonstrates the superior

bandwidth-efficiency of our model.

Multi-agent 3D shape Recognition In order to demon-

strate the generalization of our model, here we apply our

model to the task of multi-agent 3D shape classification.

Table 2 provides the quantitative evaluation on this task

using our proposed model and other baselines, including

VAIN [15], CommNet [34], and TarMac [6]. Our model

is able to perform competitively compared with TarMac [6]

with only approximately one-eighth bandwidth usage. We

also provide qualitative results in Figure 6 to demonstrate

the effectiveness of our model, which allows agents to com-

municate with the correct and informative agents.

4.4. Analyses

To investigate the source of our model’s improvement

over the baselines, we computed two selection accuracy

metrics on the SRMS dataset, WhenToCom and Grouping.

WhenToCom accuracy measures how often communication

between a requester and a supporter(s) is established and

when it is needed; and Grouping measures how often the

correct group is created when there is indeed communica-

tion. We also comment on the trade-off between bandwidth

and performance of communication by conducting a con-

trolled experiment on the size of query and key on the 3D

recognition dataset.

Effect of handshake communication As demonstrated

in Figure 8, we conduct an ablation study on the pro-

posed handshake communication. In the Ours (w/o H-Com)

model, we remove the handshake communication module,

so that each agent only uses its local observations to com-

pute both (1) the communication score and (2) its commu-

nication group.

We additionally provide the result of RandCom. We ob-

served that our model with the proposed handshake commu-

nication offers a significant improvement over both Rand-

Com and our model without handshake communication.

This finding demonstrates the necessity of communication

for deciding when to communicate and who to communi-

cate with. That is, an agent without communication cannot

decide what information it needs and which supporter has

the relevant information to help better perform on percep-

tion tasks.
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Figure 8: Effect of our proposed H-Com. Handshake

communication significantly improves the communication

accuracy.

Figure 6 visualizes three examples from the 3D shape

recognition task. Each agent clearly knows when communi-

cation is needed based on information provided by the sup-

porters and its own observation. For example, in the first

three box examples, the degraded agent on the left knows

to select an informative view from the other agents; the

non-degraded agent in the middle decides to select a more

informative view even though it possesses sufficient infor-

mation; and the third agent decides that communication is

not needed because it has the most informative view among

all. It is worth mentioning that all 9 views are provided

to every agent and the agent needs to identify informative

views and detrimental views based on the matching scores.

Query and key size We further analyze the effect of query

and key size on Grouping accuracy and classification accu-

racy on the 3D shape classification task. We vary the query

size from 1 to 128 with a fixed key size of 16 as shown in

Figure 7. We observe that both selection and classification

accuracy improve as the message size increases. Our model

can perform favorably with a message size of 4. The same

trend is also observed for key sizes. Most noticeably, we

find that there exists asymmetry in query-key size. While

the selection accuracy saturates at 16-dimensional query,

selection accuracy consistently improves with increasing

key size until 1024-dimensional key. Our model exploits

this asymmetry to save bandwidth in communication while

maintaining high performance.

4.5. Conclusion

In this paper, we proposed a general bandwidth-efficient

communication framework for collaborative perception.

Our framework learns both how to construct communica-

tion groups and when to communicate. This framework

can be generalized to several down-stream tasks including

(but not limited to) multi-agent semantic segmentation and

multi-agent 3D shape recognition. We demonstrated supe-

rior performance with lower bandwidth requirements across

all compared methods.
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