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Abstract

Rectified Linear Units (ReLUs) are among the most

widely used activation function in a broad variety of tasks in

vision. Recent theoretical results suggest that despite their

excellent practical performance, in various cases, a substi-

tution with basis expansions (e.g., polynomials) can yield

significant benefits from both the optimization and general-

ization perspective. Unfortunately, the existing results re-

main limited to networks with a couple of layers, and the

practical viability of these results is not yet known. Moti-

vated by some of these results, we explore the use of Hermite

polynomial expansions as a substitute for ReLUs in deep

networks. While our experiments with supervised learning

do not provide a clear verdict, we find that this strategy of-

fers considerable benefits in semi-supervised learning (SSL)

/ transductive learning settings. We carefully develop this

idea and show how the use of Hermite polynomials based

activations can yield improvements in pseudo-label accura-

cies and sizable financial savings (due to concurrent run-

time benefits). Further, we show via theoretical analysis,

that the networks (with Hermite activations) offer robust-

ness to noise and other attractive mathematical properties.

1. Introduction

Analyzing the optimization or the loss landscape of deep

neural networks has emerged as a promising means to un-

derstand the behavior and properties of various neural net-

work architectures [4]. One reason is that insights into how

the loss function behaves geometrically is closely tied to

the types of optimization schemes that may be needed [29],

why specific ideas work whereas others do not [23], and

how or whether the corresponding model may generalize to

unseen data [30]. Notice that we must leverage such “alter-

∗Please direct correspondence to Lokhande, Ravi, Singh.

native” strategies as a window into these models’ behavior

because in deep learning, most models of interest are highly

non-linear and non-convex. As a result, one finds that ex-

tending mature ideas, which work well for analysis in clas-

sical settings (e.g., linear models), is quite a bit harder for

most deep architectures of interest.

Why study activation functions? While there are many

ways we may study the optimization landscape of deep

models, a productive line of recent results [6] proposes ana-

lyzing the landscape (i.e., the behavior of the loss as a func-

tion of the network parameters) via the activation functions

of the neural network. This makes a lot of sense because the

activation function is one critical place where we introduce

non-linearity into the network, and their omission signifi-

cantly simplifies any analysis. Activation functions greatly

influence the functional space which a neural network can

represent [14], often the first step in a more formal study of

the model’s behavior. For example, universal finite-sample

expressivity of certain architectures has been shown by fix-

ing the activations to be ReLU functions [9]. In other words,

if we use ReLU as activations, such an architecture can be

shown to represent any function if the model has more pa-

rameters than the sample size. The scope of such work is not

just theoretical – for instance, the above results were used to

derive a much simpler architecture consisting of only resid-

ual convolutional layers and ReLU activations. Further, the

estimation scheme needed was also much simpler and re-

quired no batch normalization, dropout, or max pooling. In

summary, the choice of activations enabled understanding

the loss landscape and enabled simplifications.

More on activations functions and loss landscape.

The authors in [28] showed that conditions that prevent

presence of spurious valleys on the loss landscape can be

identified, via the use of smooth activations. Independently,

[25] demonstrated that the use of quadratic activation func-

tions enables efficient localization of global minima in cer-

tain classes of deep models. Closely related to smooth and

quadratic activations, the use of polynomial non-linearity as
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Figure 1: Hermite Polynomials as Activations (leftmost): Incorporating Hermite Polynomials as an activation function in a single hidden unit one

hidden layer network. (middle): The functional form of the first 5 hermites are shown in the right.

an activation has also been studied in the last few years. For

example, [20] studied deep ReLU networks by using a poly-

nomial non-linearity as an approximation for ReLU: this

enabled a much cleaner analysis of the empirical risk land-

scape. More recently, [14] analyzed the functional space of

the networks with the help of polynomial activation based

on techniques from algebraic geometry. Earlier, for a one

hidden layer network, [6] investigated optimizing the popu-

lation risk of the loss using stochastic gradient descent and

showed that one could avoid spurious local minima by uti-

lizing an orthogonal basis expansion for ReLUs. A key

takeaway from this work is that the optimization would be-

have better if the landscape was nicely behaved — this is

enabled via the basis expansion. The foregoing results and

analyses, especially the use of basis expansion, is interest-

ing and a starting point for the development described here.

A common feature of the body of work summarized above

is that they rely on networks with polynomial activations

(polynomial networks) to analyze the loss landscape. This

choice helps make the mathematical exploration easier.

Where is the gap in the literature? Despite the inter-

esting theoretical results summarized above, relatively less

is known whether such a strategy or its variants are a good

idea for the architectures in computer vision and broadly, in

AI, today. We can, in fact, ask a more practically focused

question: are there specific tasks in computer vision where

such a strategy offers strong empirical advantages? This is

precisely the gap this paper is designed to address.

The main contributions include: (a) We describe mech-

anisms via which activation functions based on Hermite

polynomials can be utilized within deep networks instead of

ReLUs, with only minor changes to the architecture. (b) We

present evidence showing that while these adjustments are

not significantly advantageous in supervised learning, our

scheme does yield sizable advantages in semi-supervised

learning speeding up convergence. Therefore, it offers clear

benefits in compute time (and cost) needed to attain a cer-

tain pseudo-label accuracy, which has direct cost implica-

tions. (c) We give technical results analyzing the math-

ematical behavior of such activations, specifically, robust-

ness results showing how the activation mitigates overcon-

fident predictions for (out of distribution) samples.

2. Brief Review of Hermite polynomials

We will use an expansion based on Hermite polynomials

as a substitute for ReLU activations. To describe the con-

struction clearly, we briefly review the basic properties.

Hermite polynomials are a class of orthogonal polyno-

mials which are appealing both theoretically as well as in

practice, e.g., radio communications [2]. Here, we will use

Hermite polynomials [21] defined as,

Hi(x) = (−1)iex
2 di

dxi
e−x2

, i > 0; H0(x) = 1 (1)

In particular, we use normalized Hermite polynomials

which are given as hi =
Hi√
i!

. Hermite polynomials are often

used in the analysis of algorithms for nonconvex optimiza-

tion problems [18]. While there are various mathematical

properties associated with Hermites, we will now discuss

the most important property for our purposes.

Hermite polynomials as bases. Classical results in

functional analysis show that the (countably infinite) set

{Hi}
d=∞
i=0 defined in (1) can be used as bases to represent

smooth functions [22]. Formally, let L2(R, e−x2/2) denote

the set of integrable functions w.r.t. the Gaussian measure,

L2(R, e−x2/2) = {f :

∫ +∞

−∞
f(x)2e−x2/2dx <∞},

It turns out that L2(R, e−x2/2) is a Hilbert space with the

inner product defined as follows (see [6] for more details)

〈f, g〉 = Ex∼N(0,1)[f(x)g(x)] (2)

The normalized Hermite polynomials form an orthonormal

basis in L2(R, e−x2/2) in the sense that 〈hi, hj〉 = δij .

Here δij is the Kronecker delta function and hi, hj are any

two normalized Hermite polynomials.

Recently, the authors in [6] showed that the lower or-

der terms in the Hermite polynomial series expansion of
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ReLU have a different rate of convergence on the optimiza-

tion landscape than the higher order terms for one hidden

layer networks. This leads to a natural question: are these

properties useful to accelerate the performance of gradient-

based methods for deep networks as well?

Hermite Polynomials as Activations. Let x =
(x1, . . . , xn) be an input to a neuron in a neural network and

y be the output. Let w = (w1, w2, . . . , wn) be the weights

associated with the neuron. Let σ be the non-linear activa-

tion applied to wTx. Often we set σ = ReLU. Here, we

investigate the scenario where σ(x) =
∑d

i=0 cihi(x), de-

noted as σhermite, were hi’s are as defined previously and ci’s
are trainable parameters. As [6] suggests, we initialized

the parameters c′is associated with hermites to be ci = σ̂i,

where σ̂i = 〈ReLU, hi〉. Hermite polynomials as activa-

tions on a single layer neural network with a single hidden

unit can be seen in Figure 1.

3. Sanity checks: What do we gain or lose?

Replacing ReLUs with other activation functions re-

viewed in Section 1 has been variously attempted in the

literature already, for supervised learning. While improve-

ments have been reported in specific settings, ReLUs con-

tinue to be relatively competitive. Therefore, it seems that

we should not expect improvements in what are toy super-

vised learning experiments. However, as we describe be-

low, the experiments yield useful insights regarding settings

where Hermites will be particularly useful.

A) Two-layer architectures. We start with the CIFAR10

dataset and a simple two-layer network (more details in the

supplement). Basically, we ask if this modification will

lead to better or worse performance in accuracy and run-

time (over ReLU activation) with all other parameters (e.g.,

learning rates) fixed. Positives: Here, we observed faster

training loss convergence (over the initial epochs) compared

to ReLU in general. Negatives: When we assessed the per-

formance as a function of the number of Hermite polynomi-

als d, we see a tradeoff where the speeds first improve with

Figure 2: Other Activation Functions. We observe an increase in the

rate of convergence of the validation loss for Hermites when compared to

other activations such as ELU, ReLU and SeLU. A standard auto-encoder

model as outlined in [29] is used to test on MNIST dataset.

Method LR ǫ Train Loss Test Loss

Sigmoid-Adam [29] 10−3 10−8 2.97± 0.06 7.91± 0.14
Sigmoid-Adam [29] 10−3 10−3 1.90± 0.08 4.42± 0.29

Hermite-Adam (Ours) 10−3 10−8 1.89 ± 0.01 3.16 ± 0.02

Table 1: Deep autoencoders with Hermite Activations give lower

test loss Results from our implementation following directions from [29].

increasing d and then worsen when d is as high as 8, indi-

cating that too many bases, especially for relatively shallow

architectures are not ideal.

B) Deep Autoencoders. Encouraged by the shallow

network experiments, we moved to a standard benchmark

for neural network optimization runtimes: the deep autoen-

coders setup from [29]. We replicate the experiments re-

ported in [29] for the MNIST dataset: we use 4 Hermite

polynomials as an activation instead of the original sigmoid.

Positives: We see from Table 1 that Hermite activations

not only converge faster but also achieve lower test loss.

We also evaluated how activation functions such as ReLU,

SeLU or ELU perform in this setting. As shown in Figure 2,

we find that Hermites still offer runtime improvements here

with a comparable validation loss. We find that SeLU does

not seem to be as stable as the other activation functions.

Therefore, in the remainder of this paper, we study Hermite

activations compared to ReLUs as a baseline. Of course,

it is quite possible that some other activations may provide

slightly better performance compared to ReLUs in specific

settings. But the choice above simplifies the presentation

of our results and is consistent with the general message of

our work: while research on polynomial activations has so

far remained largely theoretical, we intend to show that they

are easily deployable and offer various practical benefits.

Adjustments needed for deeper architectures? When

implemented naively, Hermite activations do not work well

for deeper architectures directly, which may be a reason that

they have not been carefully explored so far. Basically, with

no adjustments, we encounter a number of numerical issues

Figure 3: Hermite Polynomials as Activations in ResNets. We intro-

duce softsign function to handle the numerical issues from the unbounded

nature of Hermite polynomials. W denotes the weight, BN denotes batch

normalization, σ is the Hermite activation and SS is the softsign function.
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(a) Loss and Accuracy curves (b) Effects of changing d

Figure 4: Hermites vs. ReLUs on ResNet18. (a) Hermites provide faster convergence of train loss and train accuracies than ReLUs. Hermites have

faster convergence in test accuracies over the initial epochs but ReLU has the higher test accuracy at the end of training. (b) As we increase the number of

hermite polynomials, the speed of loss convergence increases until d = 6 and then it starts to reduce. d ≥ 1 performs better than d = 0 where only softsign

is used as an activation. The close overlap between d = 4 to d = 10 suggests that tuning for d is not very expensive.

that are not easy to fix. In fact, [8] explicitly notes that

higher-order polynomials tend to make the activations un-

bounded making the training unstable. Fortunately, a trick

mentioned in [1] in the context of quadratic functions, ad-

dresses the problem. The solution is to add a softsign func-

tion in (3), which has a form similar to tanh however, it ap-

proaches its maximal (and minimal) value slower than tanh.

Softsign(x) =
x

1 + |x|
(3)

C) ResNet18. With the above modification in hand, we

can use our activation function within Resnet18 using Pre-

activation Blocks [10, 11]. In the preactivation block, we

found that having the second softsign function after the

weight layer is useful. The slightly modified preactivation

block of ResNets is shown in Figure 3. We train ResNets

with Hermite activations on CIFAR10 to assess the general

behavior of our substitution. We use SGD as an optimizer

and follow the data augmentation techniques and the learn-

ing rate schedules as in [10, 3]. We perform cross-validation

for the hyper-parameters. After training, we obtain the loss

curve and the training set accuracies for Hermite activa-

tions and ReLUs (see Fig. 4). Positives: Figure 4 shows

that the loss values and trainset accuracies converge at a

much faster rate for Hermites than ReLUs. While the test

set accuracy at the final epoch is higher for ReLU than

Hermites, the test set accuracies for networks using Her-

mite activations make much quicker progress in the initial

epochs. These results hold even when varying the learning

rates of ReLU networks (see supplement). Negatives: We

also tune the choice of the number of Hermite polynomi-

als d for d ∈ {0, 2, 4, 6, 8, 10}. The setting d = 0 is the

case where we only use a softsign as an activation with-

out any Hermite activations. Figure 4b shows the results of

this experiment. From the plot, we observe a trend simi-

lar to the two-layer network above, where the convergence

speeds first improves and then reduces as we increase the

number of Hermite polynomials. The close overlap of the

trend lines between d = 4 to d = 10 suggest that tuning for

d is not very expensive. Hence, in all our experiments we

mostly set d = 4. The setting d = 0 performs worse than

when d is at least one, suggesting that the performance ben-

efits are due to Hermite activations with softsign (and not

the softsign function on its own).

Interesting take away from experiments? Let us con-

sider the negative results first where we find that a large

number of bases is not useful. This makes sense where

some flexibility in terms of trainable parameters is useful,

but too much flexibility is harmful. Therefore, we simply

need to set d to a small (but not too small) constant. On

the other hand, the positive results from our simple experi-

ments above suggest that networks with Hermite activations

make rapid progress in the early to mid epoch stages – an

early riser property – and the performance gap becomes

small later on. This provides two potential strategies. If

desired, we could design a hybrid optimization scheme that

exploits this behavior. One difficulty is that initializing a

ReLU based network with weights learned for a network

with Hermite activations (and retraining) may partly off-

set the benefits from the quicker progress made in the early

epochs. What will be more compelling is to utilize the Her-

mite activations end to end, but identify scenarios where

this “early riser” property is critical and directly influences

the final goals or outcomes of the task. It turns out that

recent developments in semi-supervised learning satisfy ex-

actly these conditions where leveraging the early riser prop-

erty is immensely beneficial.

4. Semi-Supervised Learning (SSL)

SSL, Transductive learning and pseudo-labeling. We

consider the class of algorithms that solve SSL by gener-

ating pseudo-labels for the unlabelled data. These Pseudo-

label (PL) based SSL methods serve as a way to execute

transductive learning [13, 24], where label inference on the

given test dataset is more important for the user as com-

pared to using the trained model later, on other unseen sam-

ples from other data sources. Stand-alone PL based meth-
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Algorithm 1

Input: Labeled data (xi, yi), unlabeled data (zi), num-

ber of classes k, #-outer (inner) epochs MO(MI), loss

function L = LCE(xi, yi)+LCE(zi, yi)+RegE(zi, yi),
learning rates ηw, η

p
P , η

d
P . Initial Pseudo-labels for unla-

beled data chosen as: yi = ei with probability 1/k where

ei is the one-hot vector at i−th coordinate.

for O = 0, 1, 2, ...,MO do

Reinitialize the network parameters w0

∆Pu = 0
for I = 0, 1, 2, ...,MI do

(Primal) SGD Step on w: wt+1 ← wt − ηw∇L
(Primal) SGD Step on ∆Pu: ∆Pu ← ∆Pu−η

p
P∇L

end for

(Dual) SGD Step on Pu: Pu ← Pu − ηdP∆Pu

end for

Output: Classification model w.

Figure 5: SaaS framework illustration. SaaS runs over two loops:

inner loop denoted by I and outer loop denoted by O.

ods can be used for generic SSL problems also – where

the generation of pseudo-labels are merely a means to an

end. The literature suggests that in general they perform

competitively, but some specialized SSL methods may pro-

vide some marginal benefits. In the other direction, general

(non PL based) SSL methods can also be used for obtaining

pseudo-labels. But PL based SSL generates pseudo-labels

concurrently with (in fact, to facilitate) estimating the pa-

rameters of the model. So, if the eventual goal is to obtain

labels for unlabeled data at hand, these methods are a good

fit – they explicitly assign (potentially) high accurate labels

for the unlabeled data at the end of training.

Improved deep classifiers by assigning PL. It is well

known that poor (random) labels are harder to fit (train)

[30], or equivalently, high quality (pseudo) labels acceler-

ates the training procedure. In other words, highly accurate

labels → fast training. Interestingly, [5] showed that the

converse statement, i.e., fast training→ accuracy of labels,

is also true using empirical evidence, during training. SaaS

(Speed as a Supervisor) is used to estimate the pseudo-

labels using “speed” as a surrogate. That is, for a classifier

Dataset # Labeled. # Unlabeled. Augmnt. MI / MO

SVHN 1K 72,257 A + N 5 / 75

CIFAR-10 4K 46,000 A + N 10 / 135

SmallNORB 1K 23,300 None 10 / 135

MNIST 1K 59,000 N 1 / 75

Table 2: SSL experimental details. A and N denote the data augmen-

tation techniques, affine transformation and normalization respectively.

MI and MO denote the inner and outer epochs respectively.

such as ResNet, SaaS takes advantage of the fact that the

loss decreases at a faster rate for correct labels (compared

to random labels) during training. Furthermore, the rate of

loss reduction decreases as the percentage of incorrect la-

bels in the dataset increases. The SaaS framework. There

are two phases in SaaS. In the primal phase (inner loop),

SaaS seeks to find a set of pseudo-labels that decreases the

loss function over a small number of epochs, the most. In

the dual phase (outer loop), the “pseudo-label” optimization

is carried out by computing a posterior distribution over the

unlabeled data. Specifically, the algorithm consists of two

loops: (i) in the outer loop, we optimize over the posterior

distribution of the pseudo-labels, and (ii) in the inner loop,

we retrain the network with fixed pseudo-labels. After every

inner loop, we reinitialize the network, and compute the rate

of change of the loss value with which the posterior can be

computed. A flowchart is shown in Figure 5. We can easily

use a ResNet/DenseNet model in the primal phase. There

are two different loss functions that are optimized during

training: the cross-entropy loss (LCE) over the labeled data,

the unlabeled data and an entropy regularizer (RegE) on the

pseudo-labels. A pseudocode is provided in Algorithm 1.

Pseudo-labels with Hermites. Recall that networks

with Hermite activations manifest the “early riser” property.

This turns out to be ideal in the setting described above

and next, we show how this property can be exploited for

transductive/semi-supervised learning. Intuitively, the early

riser property implies that the training loss decreases at a

much faster rate in the initial epochs. This is expected,

since the optimization landscape, when we use Hermites

are, by definition, smoother than ReLUs, since all the neu-

rons are always active during training with probability 1.

Setting up. For our experiments, we used a ResNet-18

architecture (with a preactivation block) [11] architecture

to run SaaS [5] with one crucial difference: ReLU activa-

tions were replaced with Hermite activations. All other hy-

perparameters needed are provided in Table 2. We will call

this version, Hermite-SaaS. To make sure that our findings

are broadly applicable, we conducted experiments with four

datasets commonly used in the semi-supervised learning lit-

erature: SVHN, CIFAR10, SmallNORB, and MNIST.

4.1. Faster Convergence.

SaaS tries to identify labels on which the training loss de-

creases at a faster rate. Our experiments show that the use of
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Figure 6: Hermite-SaaS trains faster. We plot the number of outer epochs MO vs. the pseudo-label accuracy across 4 datasets. We consistently observe

that the minimum number of outer epochs MO to reach a given value of pseudo-label accuracy is always lower for Hermite-SaaS than ReLU-SaaS.

Hermites provides models on which the loss function can be

optimized easily, thus stabilizing the two phase procedure.

Figure 7 shows the result of our experiment on CIFAR10

dataset. Notice that the periodic jumps in the loss value is

expected. This is because the big jumps correspond to the

termination of an inner epoch, where the pseudo-labels are

updated and weights are reinitialized. From Figure 7, we

observe that Hermite-SaaS provides a smoother landscape

during training, accelerating the training process overall.

4.2. Computational Benefits.

When the accuracy of pseudo-labels is assessed against

the actual labels for SVHN dataset, we obtain an error rate

of 5.79 over the pseudo-label error rate of 6.22 in [5]. This

indicates that the quality of pseudo-labels can be signifi-

cantly improved using Hermite-SaaS. Moreover, we also

find that the number of epochs needed to reach a specific

pseudo-label accuracy is also significantly lower. Table 3

shows two common metrics used in classification: (i) “max

gap in accuracy” (Max ∆) measures the maximum differ-

ence in pseudo-label accuracy over epochs during train-

ing; and (ii) “pseudo-label accuracy” (Max PL ACC) mea-

sures the maximum pseudo-label accuracy attained during

the course of training. Both these measures form a proxy

to assess the the quality of pseudo-labels. In addition, Fig-

Figure 7: Convergence of loss functions in SaaS. Larger spikes corre-

spond to the end of inner loop and are due to weight reinitialization. Right

plot shows that Hermites accelerate the training, ensuring high-quality

pseudo-labels.

ure 6 shows that the number of epochs needed to reach a

specific pseudo-label accuracy is significantly lower when

using Hermite-SaaS. This behavior for Hermite-SaaS holds

over all the four datasets.

4.3. Financial Savings.

ReLU takes less time per iteration since in our Hermite-

SaaS procedure, we must perform a few more matrix-vector

multiplications. However, our experimental results indi-

cate that the lower per iteration time of ReLU is negligible

as compared to the total number of iterations. To provide

a better context for the amount of savings possible using

Hermite-SaaS, we performed an experiment to assess finan-

cial savings. We use AWS p3.16x large cluster for training.

We calculate the cost (to train a network) by running the

algorithm to reach a minimum level of pseudo-label accu-

racy, using the default pricing model given by AWS. We

can clearly see from Table 3, that we get significant cost

savings if we use Hermite-SaaS. Note that we found cases

where ReLU-SaaS could not reach the pseudo-label accu-

racy that is achieved by Hermite-SaaS: in these cases, we

report a conservative lower bound for cost savings.

Time/ Total

Max Max PL Epoch Time Cost Saved

∆ ACC (sec) (hrs) ($) ($)

SVHN
H

6.1%
94.2% 470 5.6 137

71
R 93.3% 409 8.5 208

CIFAR10
H

3.4%
85.5% 348 2.7 66

≥ 213
R 84.4% 304 ≥ 11 ≥ 280

Small H
5.2%

92.6% 47 0.5 12
≥ 13

NORB R 90.4% 27 ≥ 1 ≥ 25

MNIST
H

4.5%
98.2% 94 1.2 29

-11
R 98.2% 55 0.3 18

Table 3: Cost effective and accurate pseudo-labels are generated

by Hermite-SaaS. Expenses when training Hermite-SaaS (H) and ReLU-

SaaS (R) on AWS and the performance metrics on pseudo-labels gener-

ated. We observe that although Hermite-SaaS takes more time per epoch

than ReLU-SaaS, the overall gains are better for Hermite-SaaS.
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Method
SVHN Method CIFAR10

1000 (SSL with PL) 500 1000 2000 4000

VAT+EntMin [17] 3.86
TSSDL [24] - 21.13 14.65 10.90

MT [27] 3.95

TSSDL [24] 3.80
Label Prop. [15] 32.4 22.02 15.66 12.69

TE [15] 4.42

ReLU-SaaS 3.82 ReLU-SaaS - - - 10.94

Hermite-SaaS 3.57 ± 0.04 Hermite-SaaS 29.25 20.77 14.28 10.65

Table 4: Hermite-SaaS generalizes better. (left): Test-set accura-

cies on SVHN dataset in comparison to the baselines provided in [5].

(right):Test-set accuracies on CIFAR10 dataset in comparison to other

pseudo-label based SSL methods.

4.4. Better Generalization.

From the work of [30], we know that more accurate

labels provide better generalization. With more accurate

pseudo-labels from Hermite-SaaS, we expect a standard su-

pervised classifier, trained using the pseudo-labels, to pro-

vide better accuracy on an unseen test set. We indeed

observe this behavior in our experiments. The left sub-

table in Table 4 shows the performance of Hermite-SaaS

on SVHN datast against popular SSL methods reported in

[5]. We also compare against known PL based SSL meth-

ods for CIFAR10 dataset in right sub-table of Table 4. We

use ResNet18 with a preactivation block for the supervised

training phase, although other networks can be used.

4.5. Noise Tolerance.

SSL approaches, especially PL methods, suffer from

confirmation bias [27] which is when the network starts to

predict incorrect labels with higher confidence and resists

change in the course of training. A recent result describes

how ReLU networks [12] tend to provide high confidence

predictions even when the test data is different from the

training data: this can be used in adversarial settings [19]. In

other words, [27] and [12] taken together hint at the possi-

bility that ReLUs may, at least, partly contribute to the con-

firmation bias in PL based SSL methods. While evaluating

this question comprehensively is an interesting topic on its

own, we present some interesting preliminary results. We

can assess the question partly by asking whether Hermites-

SaaS is more tolerant to noise than ReLU-SaaS: approached

by artificially injecting noise into the labels. In this section,

we first evaluate this issue on the theoretical side (for one

hidden-layer Hermite networks) where we find that Her-

mite networks do not give (false) high confidence predic-

tions when the test data are different from the train data.

We later demonstrate noise tolerance of Hermite-SaaS.

Accurate confidence of predictions in one-hidden

layer hermite networks. In order to prove our main re-

sult, we first prove a generic pertubation bound in the fol-

lowing lemma. Consider a 2 layer network with an input

layer, hidden layer and an output layer, each with multiple

units. Denote fk(x) and fl(x) to be two output units with

x denoting the input vector. Let wj be the weight vector

between input and the jth and alk be the weight connecting

lth hidden unit to the kth output unit.

Lemma 1. Consider the output unit of the network,

fk(x) =
∑

j akj
∑d

i=0 cihi(w
T
j x), where c′is are the Her-

mite coefficients and d is the maximum degree of the herim-

ite polynomial considered. Then,

|fl(x)− fk(x)| ≤ Cdαβ

Here, C is a constant proportional to the ℓ∞ norms of ci’s;

α = max
lk

∑
j

|alj − akj | ; β = max(‖w‖dp‖x‖
d
q , ‖w‖p‖x‖q),

such that 1/p+ 1/q = 1.

Now, we use the perturbation bound from Lemma 1 to

show the following result (proof in the supplement) that

characterizes the behavior of a network if the test example

is “far” from examples seen during training.

Theorem 2. Let fk(x) =
∑

j akj
∑∞

i=0 cihi(w
T
j x), be a

one-hidden layer network with the sum of infinite series of

Hermite polynomials as an activation function. Here, k =
1, 2, ...,K are the different classes. Define wJ = minwT

j x.

Let the data x be mean normalized. If ǫ > 0, the Hermite

coefficients ci = (−1)i and

‖x‖ ≥
1

‖wJ‖
log

α

log (1 +Kǫ)

then, we have that the predictions are approximately (uni-

formly) random. That is,

1

K
− ǫ ≤

efk(x)∑K
l=1 e

fl(x)
≤

1

K
+ ǫ ∀ k ∈ {1, 2...,K}

Proof. Sketch. Note that the form of coefficients is impor-

tant for this theorem. In particular, we use the exponential

generating functions expansion of Hermites and exploit the

form of normalization due to the softmax layer to provide

a lower bound for the confidence of prediction for an arbi-

trary class. For this event to occur with high probability, we

show that the test data has to be at least a certain distance

far away from training data.

As the data is mean normalized, any test example x with

high ‖x‖ implies that it is far from the training data. For

large ‖xtest‖, this result shows that the predictions are fairly

random – a desirable property – clearly, we should not pre-

dict confidently if we have not seen such an example earlier.

Hermite-SaaS is more noise tolerant. To further assess

if Hermite-SaaS reduces confirmation bias, we experiment

by injecting noise in the labels provided for SSL training.

11441



Figure 8: Hermite generates smoother landscape than ReLU. (left): Magnitude of loss and its variation is lower for Hermites. (middle): Gradients

are more stable on Hermite loss landscape: lower maximum beta smoothness. (right): Hermite networks have a higher effective learning rate .

In particular, we chose the label for a subset of images, uni-

formly at random. We conduct experiments with 30% la-

bel noise levels on CIFAR10. After estimating the pseudo-

labels we trained a model in a supervised manner using

Resnet18. Our results show that Hermite-SaaS based mod-

els obtain similar or a higher test set accuracy of about 80%.

This is encouraging, but we also observe faster convergence

(95 epochs) compared to a ReLU-SaaS model (at least 600

epochs). In other words, Hermite activations based training

yields models/estimators with low variance suggesting that

they may behave well in the presence of outliers. We also

investigate how Hermite activations behave in presence of a

standard robust learning method with noisy labels, specifi-

cally [26]. We observe that the Hermites version boosts the

performance of [26] both in terms of accuracy and rate of

convergence (see supplement).

5. Why Hermites provide faster convergence?

We discussed how the noise tolerance properties of Her-

mites help with faster convergence of Hermite-SaaS. Here,

we show how incorporating Hermite activations within a

network makes the loss landscape smoother relative to Re-

LUs. Smoother landscapes implying faster convergence

is not controversial [7]. One difference between ReLUs

and Hermites is the nonsmooth behavior: for ReLU net-

works, standard first order methods require O(1/ǫ2) (ver-

sus O(1/ǫ) iterations for Hermite nets) to find a local min-

ima. This is the reason why is it not enough to just replace

Hermites with (a sufficiently large number of) ReLUs even

though ReLU networks are universal approximators. We

provide three pieces of empirical evidences to support our

claim that Hermites provide smoother landscape.

(a) Lower Loss Values. We examine the loss land-

scape, along the SGD trajectory, following the directions

outlined in [23]. The authors there showed that BN gen-

erates smoother landscapes: in Fig. 8, we show that

BN+Hermites generate even smoother landscapes imply-

ing much faster training. In Fig. 8 (left), we plot training

loss L(w − η∇L) for different η values for ResNet18 ar-

chitecture. Hermite network generates a better loss land-

scape (lower magnitude) than ReLU network. (b) Max-

imum Beta smoothness. In Fig. 8 (middle), we show the

maximum difference in the ℓ2 norm of gradients over the

distance moved in that direction. Hermite networks have

a lower variation of gradient norm change than ReLU net-

works, indicating that the gradients on Hermite Landscape

are more stable implying faster convergence. (c) Higher ef-

fective learning rate. In Fig. 8 (right), we plot deviation of

weights from initialization and observe an increase in this

metric with Hermites.

6. Conclusion

In this paper, we studied the viability and potential bene-

fits of using a finite Hermite polynomial bases as activation

functions, as a substitute for ReLUs. The lower order Her-

mite polynomials have nice mathematical properties from

the optimization point of view, although little is known in

terms of their practical applicability to networks with more

than a few layers. We observed from our experiments that

simply replacing ReLU with an expansion in terms of Her-

mite polynomials can yield significant computational ben-

efits, and we demonstrate the utility of this idea in a com-

putationally intensive semi-supervised learning task. Under

the assumption that the training is being performed on the

cloud (published pricing structure), we show sizable finan-

cial savings are possible. On the mathematical side, we also

showed that Hermite based networks have nice noise sta-

bility properties that appears to be an interesting topic to

investigate, from the robustness or adversarial angles. Fur-

thermore, since Hermite-nets avoid over-confident predic-

tions on newer test samples, it would be interesting to inves-

tigate the benefits of using Hermite-nets to solve (variants

of) meta learning problems.
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