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Abstract

A common strategy adopted by existing state-of-the-art

unsupervised domain adaptation (UDA) methods is to em-

ploy two classifiers to identify the misaligned local regions

between a source and target domain. Following the ’wis-

dom of the crowd’ principle, one has to ask: why stop at

two? Indeed, we find that using more classifiers leads to

better performance, but also introduces more model param-

eters, therefore risking overfitting. In this paper, we intro-

duce a novel method called STochastic clAssifieRs (STAR)

for addressing this problem. Instead of representing one

classifier as a weight vector, STAR models it as a Gaus-

sian distribution with its variance representing the inter-

classifier discrepancy. With STAR, we can now sample an

arbitrary number of classifiers from the distribution, whilst

keeping the model size the same as having two classifiers.

Extensive experiments demonstrate that a variety of existing

UDA methods can greatly benefit from STAR and achieve

the state-of-the-art performance on both image classifica-

tion and semantic segmentation tasks.

1. Introduction

Remarkable advances on image classification accuracy

have been realised in the supervised learning paradigm

[14, 20, 48, 52]. This success is based on two assumptions:

there are hundreds/thousands of labelled training images

per class available for model training, and the training and

test data are drawn from the same domain, and with sim-

ilar distributions. However, collecting such a big training

set for every target domain is prohibitively expensive and

time-consuming in large scale real-world applications. An

intuitive solution is to transfer knowledge from an available

richly-labelled domain (i.e., source domain) to a target do-

main without labelled training data but containing the same

set of classes. Often, the data distributions of the source

domain and target domain are different significantly, which

renders the model trained/specialised on the source domain

not directly applicable to the target domain. Unsupervised

Domain Adaptation (UDA) provides an effective approach

to solving this problem [10, 29].
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Figure 1: The test accuracy vs. classifier number using the

Maximum Classifier Discrepancy (MCD) model [45] on

two digit classification UDA tasks. The solid line is the

average accuracy over 5 trials, whilst the standard deviation

is represented by shadows. The best results are clearly not

obtained with two classifiers.

There have been a large spectrum of UDA methods de-

veloped in the literature [36, 56]. From a distribution align-

ment perspective, existing UDA methods can be divided

generally into two groups: (i) Global Alignment (GA) meth-

ods [10, 28, 15] and (ii) Local Alignment (LA) methods

[45, 22, 31]. Considering holistically the per-domain data

distribution as a whole, GA methods tend to overlook the

local class decision boundary information during adapta-

tion, thereby resulting in sub-optimal performance on the

target domain. This limitation can be addressed by the re-

cent LA methods which take into account class-level cross-

domain distribution alignment. Concretely, LA methods

first leverage the disagreement of a small number (typically

two) of classifiers, to identify the misalignment areas be-

tween source and target distributions in a joint feature em-

bedding space. Subsequently, a feature extraction model is

trained in a way such that the discovered misalignment can

be minimised in the embedding space. The two operations

are repeated alternately until convergence.

Whilst the LA methods [45, 22, 31] yield the state-of-

the-art UDA performance on various benchmarks with two

classifiers, a fundamental yet largely ignored question is:
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Task

USPS SVHN SYNTH

l ↓ ↓
MNIST MNIST GTRSB

# Para. of G 0.04 M 25.5 M 1.1 M

# Para. of C 0.18 M 12.6 M 6.6 M

# Total Para. 0.22 M 38.1 M 7.7 M

Table 1: The number of parameters of the feature extrac-

tor G and the two classifiers C in MCD [45] on different

tasks. Obviously, the classifier parameters take the majority

part in most cases. This means adding more classifiers will

increase the model size significantly.

what is the optimal number of classifiers for the LA model

design? In particular, why stop at two when the ‘wisdom

of the crowd’ principle suggests that the more the merit. To

answer this, we start by experimenting a varying number of

classifiers in MCD (Maximum Classifier Discrepancy) [45]

on two digit classification tasks. As shown in Figure 1, the

optimal classifier number is largely task-specific, and using

more classifiers results in better model performances in gen-

eral. This analysis hence suggests that LA methods should

use more than two classifiers. A plausible rationale behind

is that using more classifiers can identify and explore more

comprehensively misaligned local regions in the Dempster-

Shafer theory of evidence [41]. However, it is nontrivial

to design a principled method for estimating the optimal

classifier number. Besides, simply adding many classifiers

to existing methods will not only lead to higher computa-

tion complexity (a quadratic cost in the number of classifier

for computing the pairwise classifier discrepancy), but also

significantly increase the model parameter number (cf. Ta-

ble 1) and suffer from a higher risk of overfitting.

To overcome the above problems, in this work we in-

troduce STochastic clAssifieRs (STAR) to integrate an ap-

proximately infinite number of classifiers into existing LA

methods without adding more parameters nor extra com-

putational overhead. With STAR, the classifiers are repre-

sented by a weight distribution, rather than specific weight

points as in the conventional LA methods. Concretely, the

classifiers are modelled with a Gaussian distribution that

needs to be optimised in training. That is, we consider a

classifier weight vector as a random variable. The mean of

the distribution serves as the final classifier weight whilst

the variance represents the discrepancy (i.e., disagreement)

degree of different classifiers. In each training iteration,

a small number of (e.g., two) different new classifiers are

sampled randomly from the current distribution estimate,

finally leading to a large number of classifiers being sam-

pled over the entire training process with many iterations.

Consequently, the UDA model is allowed to be trained with

far more different classifiers than before. Importantly, this is

achieved without extra need for tuning the classifier number

whilst avoiding the negative effects of using many specific

classifiers and increasing the model size.

However, the inference and training of a deep CNN that

models the classifiers as a weight distribution is nontrivial.

This is because the random sampling of classifiers at each

iteration prevents the conventional end-to-end training. To

solve this issue, a reparameterisation trick is introduced to

enable the STAR model to be trainable with any off-the-

shelf optimiser. This enables the direct use of existing LA

model’s loss functions, making our STAR generally appli-

cable and usable in a plug-in manner.

We make the following contributions: (1) We identify the

significance of using many classifiers in the state-of-the-art

local alignment UDA methods to model performance. To

the best of our knowledge, this is the first attempt to inves-

tigate this issue in UDA. (2) We formulate a novel solution

for addressing the classifier scalability issue for UDA by in-

troducing STochastic clAssifieRs (STAR) that enables exist-

ing LA methods to leverage an approximately infinite num-

ber of classifiers for improved local domain misalignment

identification. STAR is a generically stochastic UDA frame-

work which can benefit any previous methods using multi-

classifiers. This is also the very first work that introduces

the stochastic deep learning concept into the UDA prob-

lem, to our knowledge, expanding the application scope of

stochastic deep learning. (3) With extensive evaluations on

both image classification and semantic segmentation tasks,

we show that a variety of existing LA methods benefit from

the proposed STAR, often resulting in large improvement

and state-of-the-art performance.

2. Related Work

Distribution Alignment Distribution alignment between

different domains is a common way to alleviate do-

main shifts in unsupervised domain adaptation (UDA)

tasks. Previous methods based on that can be divided

into global alignment (GA) and local alignment (LA).

For GA, many metrics, including Maximum Mean Dis-

crepancy (MMD) [28, 29], Central Moment Discrepancy

(CMD) [60] and Wasserstein distance [47], have been pro-

posed or utilised. Since these methods neglected the local

class-level alignment, they may reach a sub-optimal solu-

tion. To solve this problem, most recent UDA methods are

based on some forms of LA. In particular, [15] introduced a

cycle-consistency loss, matching a pixel-level distribution.

Similarly, MCD [45] adapted the target features by aligning

the outputs of diverse classifiers and CLAN [31] designed

a category-level adversarial loss for semantic segmentation.

Based on MCD [45], [22] designed a novel discrepancy

loss to diversify classifiers. In this work, we focus on im-

proving the LA methods that rely on multiple classifiers to

identify local misalignment regions in a feature embedding

space.
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Adversarial Training Regardless of whether the distri-

bution alignment is done globally or locally, one common

way to align source and target domain data distribution is

via adversarial training [12]. These methods can be roughly

separated into three groups depending on which level the

adversarial training is introduced: feature-level [11, 45],

pixel-level [2, 27] and output-level [54]. To make features

discriminative for the classification task on the source do-

main and indiscriminate concerning domain shifts, [11] pro-

posed a new gradient reversal layer for the domain adver-

sarial training. In the pixel-level methods, [2] designed a

style transferring method based on GAN [12] and used the

transferred results on the target domain for UDA scenarios.

[54] considered semantic segmentation has structured out-

puts, so they conducted the adversarial training on the out-

put level. In contrast, [45] proposed a novel within-network

adversarial training strategy whereby a feature generator

competes with two task-specific classifiers. Based on adver-

sarial training, some other strategies, e.g., dropout [44] and

domain-specific batch normalisation (DSBN) [3], have been

proposed to impose on previous methods. In this paper, we

follow the adversarial training pipeline, but it is worth not-

ing that our method can also be applied to non-adversarial

based methods such as [43, 61] as long as they require mul-

tiple classifiers.

Stochastic Neural Networks Conventionally, neural

network models are deterministic, i.e., their parame-

ters/weights are point-estimate. Thus, they cannot model

the uncertainty and usually produce the predictions in an

overly confident way [1]. In contrast, stochastic neural net-

works, e.g., Bayesian Neural Networks (BNNs) [33, 9], can

deliver the intermediate products and/or final predictions in

the form of distribution, which can lead to richer represen-

tations. Recently, stochastic neural networks have been ap-

plied to several computer vision problems. For example,

[50] proposed an uncertainty aware multi-modal BNNs for

activity recognition and [59] modelled the feature uncer-

tainty using distributions in person re-identification. [19]

utilised a Gaussian distribution to model the latent variables

of input images as a means for data augmentation. Differ-

ently, in this work, stochastic models is used for UDA for

the first time.

3. Methodology

3.1. Problem Setting

We study the problem of unsupervised domain adapta-

tion (UDA) for classification and segmentation. We have

access to source domain data XS along with their labels

YS . Meanwhile, we have target domain data XT which is

unlabelled but shares the same label space with XS . The

objective is to train a classifier using {XS , YS} and XT that

generalises to the target domain.

Figure 2: The architecture of STochastic clAssifieRs

(STAR). At each training iteration, the classifier weights are

sampled randomly from the distribution whilst the parame-

ters of the distribution are simultaneously optimised.

3.2. Diverse Classifiers

Recently, several studies utilised the concept of two di-

verse classifiers [53] in ensemble learning for unsupervised

domain adaptation. For example, MCD [45] proposed to

use two classifiers for class-level local alignment with a

focus on the classification tasks. CLAN [31] instead fo-

cuses on the semantic segmentation problem. It trained two

classifiers, measured their outputs difference, and weighted

the pixel level adversarial loss according to that difference.

Note that the diversity of the two classifiers is realised by

different mechanisms. MCD maximises the classifier dis-

crepancy on target domain in ℓ1 norm, whilst CLAN min-

imises the cosine similarity of the classifier parameters.

3.3. Stochastic Classifiers

Empirically we found that increasing the number of clas-

sifiers usually improves the model performance (cf. Fig-

ure 1). However, this comes with a number of limitations as

discussed earlier. The core idea of our method is to model

a distribution of classifiers. Then the classifiers used for lo-

cal discrepancy discovery are simply random samples of the

distribution. Modelling classifier distribution gives access

to the infinite number of classifiers, since we can sample an

arbitrary number of classifiers. Importantly, this decouples

the number of classifiers and model parameters, enabling us

to obtain many classifiers whilst keep the overall model size

unchanged thus avoiding the overfitting risk. As the classi-

fiers are independently sampled from the in-training distri-

bution at each iteration, we finally obtain a sufficiently large

number of classifiers. This further eliminates the need to

tune the number of classifiers as an extra hyper-parameter.

Due to the nature of randomness that allows the classifi-

cation behaviour to be analysed statistically, we name the

proposed method as STochastic clAssifieRs (STAR) as il-

lustrated in Figure 2.
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More specifically, we build a multivariate Gaussian dis-

tribution N (µ,Σ), parametrised by a mean vector u and a

diagonal covariance matrix Σ. Whenever we need a number

of classifiers, we can sample fromN (µ,Σ), and the relevant

loss will be back-propagated to the learnable parameters u

and Σ. The choice of multivariate Gaussian for the classi-

fier distribution is twofold: (i) it is reparametrisable [19],

which is crucial for backpropagation; (ii) with diagonal Σ,

the number of trainable parameters is exactly the same as

the two classifier case.

3.4. Instantiation

Since we can sample any number of classifiers and back-

propagate the errors back to the distribution parameters, i.e.,

µ and Σ, the proposed method can be brought into any

problem-specific solutions with a multi-classifier ingredi-

ent. Here we instantiate two types of application – image

classification (based on MCD [45]) and semantic segmen-

tation (based on CLAN [31]).

3.4.1 Image Classification

MCD [45] consists of three modules: (i) the feature ex-

traction network gθ(·), (ii) the first classifier fφ1
(·), (iii)

the second classifier fφ2
(·). The objective for the feature

extraction network is to cooperate with either of the clas-

sifiers for recognition on source domain, and to minimise

the prediction discrepancy of two classifiers on target do-

main. Meanwhile, the objective for having two classifiers

is to recognise the object accurately for the source domain

whilst maximising the discrepancy for the target domain.

More specifically, MCD optimisation is scheduled by al-

ternating,

Step A min
θ,φ1,φ2

ℓ(fφ1
(gθ(xS)), yS) + ℓ(fφ2

(gθ(xS)), yS)

Step B max
φ1,φ2

‖fφ1
(gθ(xT ))− fφ2

(gθ(xT ))‖1

Step C min
θ
‖fφ1

(gθ(xT ))− fφ2
(gθ(xT ))‖1

where {xS , yS} is a mini-batch from source domain, xT
is a mini-batch from target domain, and ℓ(·, ·) is the cross-

entropy loss. Note that, the source domain cross-entropy

loss of both classifiers can be further added to Step B for

stabilising the optimisation process.

To equip MCD with our stochastic classifiers, we can

simply swap {φ1, φ2} with {φ̃1, φ̃2}, where φ̃1 and φ̃2 are

two independent samples drawn from N (µ,Σ).
The sampling process is usually non-differentiable, thus

we adapt the reparametrisation trick, i.e., φ̃1 = µ+ σ ⊙ ǫ1
and φ̃2 = µ + σ ⊙ ǫ2. Here ǫ1 and ǫ2 are two indepen-

dent samples drawn from a standard Gaussian. ⊙ denotes

element-wise product and σ is the diagonal of Σ.

3.4.2 Semantic Segmentation

CLAN [31] is based on adversarial domain adaptation [10].

It consists of four modules: (i) the feature extraction net-

work gθ(·), (ii) the first classifier fφ1
(·), (iii) the second

classifier fφ2
(·), (iv) the domain classifier hψ(·). The core

is a binary classification loss with source domain instances

being positive and target domain instances being negative,

i.e.,

ℓ
(A)
θ,φ1,φ2,ψ

(xS , xT ) = − log(hψ(fφ1
(gθ(xS))))

− log(hψ(fφ2
(gθ(xS))))

−ρ log(1− hψ(fφ1
(gθ(xT ))))

−ρ log(1− hψ(fφ2
(gθ(xT )))) (1)

and the min-max optimisation is built as,

min
ψ

max
θ,φ1,φ2

ℓ
(A)
θ,φ1,φ2,ψ

(xS , xT ) (2)

CLAN has a weighting factor for the last two terms of

Eq. 1, and the factor is computed by the cosine distance of

two classifiers’ predictions, i.e., ρ = 1 − pT
1
p2

‖p1‖‖p2‖
where

p1 = fφ1
(gθ(xT )) and p2 = fφ2

(gθ(xT )). Intuitively,

this downplays the importance of instances that are already

well-aligned.

To enforce divergence of two classifiers, CLAN uses a

loss based on the cosine similarity of their parameters, i.e.,

ℓ
(W)
φ1,φ2

=
φT1 φ2

‖φ1‖‖φ2‖
(3)

The full objective of CLAN is optimised by alternating two

steps,

Step 1 min
θ,φ1,φ2

ℓ(ŷ
(1)
S , yS) + ℓ(ŷ

(2)
S , yS) + ℓ(W) − ℓ(A)(xT )

Step 2 min
ψ

ℓ(A)(xS , xT )

where ℓ(·, ·) is the segmentation loss (multi-class cross-

entropy loss at pixel level), ŷ
(1)
S = fφ1

(gθ(xS)), ŷ
(2)
S =

fφ2
(gθ(xS)) and ℓ(A)(xT ) are the last two terms of Eq. 1.

Similarly, we can equip CLAN with our stochastic clas-

sifiers by setting φ1 ← µ + σ ⊙ ǫ1 and φ2 ← µ + σ ⊙ ǫ2
where ǫ1 and ǫ2 are two independent samples drawn from

standard Gaussian.

In the same manner as the above examples, other ex-

isting methods with two or more classifiers such as co-

training [43] and tri-training [61] can be reformulated by

our STAR method.

3.5. Further Analysis

Toy Problem We run a toy experiment on the well-known

two-moon dataset. For source domain data, we generate an
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Figure 3: Toy experiments on the two-moon 2D dataset.

The blue and red points (the source domain) belong to class

0, 1, respectively, whilst the green points are the target do-

main data. The decision boundary divides different classes

in black and flesh tone colours respectively. (a) Trained with

source only model. (b) MCD [45]. (c) Our STAR.

upper moon and a lower moon, representing two different

classes. By rotating the source domain data, we get target

domain data, as shown in Figure 3. There are 300 samples

per class for both source and target domains. In all exper-

iments, we use a three-layer MLP for the feature generator

and two separate three-layer MLPs for classifiers. For our

method, we replace the final layer in the classifier with a

stochastic layer. We train all the methods for 10, 000 it-

erations to guarantee convergence. We show the decision

boundaries from source only model (Figure 3(a)), MCD

(Figure 3(b)) (the final decision boundary is the mean of

two decision boundaries of two classifiers) and our method

(Figure 3(c)). We can tell that our method has the best deci-

sion boundary that classifies all the target samples correctly,

whilst MCD failed to locate and align some misaligned data

points at the right end of the lower moon for having access

to only two classifiers.

How STAR Works The improved performance is cred-

ited to the variance of distribution Σ. As we can see from

Figure 4, the initial values of Σ are uniformly distributed,

but they become more patterned after training. This ex-

plains how our method works: (i) the classifier distribution

tends to have larger variances for the misaligned features

(data points); (ii) the feature extractor will counter (i) by

alleviating the misalignment identified by those larger vari-

ances; (iii) the classifier will push variance larger for any

existing misaligned features. Finally, this process will ar-

rive at a balance point: the features are aligned as much

as possible, and the large variances remain as there is no

further motivation to reduce them. This results in what we

have observed in Figure 4: the proportion of large variances

increases from epoch 0 to epoch 300.

So why the vanilla MCD is less effective? Indeed, two

classifiers can close the loop of identifying-aligning fea-

tures, but more classifiers leads to better effectiveness. This

is intuitive because it is fairly easy to make two classifies

agree with each, and it becomes harder when more clas-

sifiers join in, as they may focus on different features and

disagree because of those features.
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(b) Epoch 300.

Figure 4: The distribution of the flattened Σ values for (a)

initialisation (b) after convergence of STAR on MNIST to

USPS task.

Method

SVHN SYNSIG MNIST USPS

↓ ↓ ↓ ↓
MNIST GTSRB USPS MNIST

Source only 67.1 85.1 79.4 63.4

DANN [11] 84.2 - 90.4 94.7

ADDA [55] 76.0±1.8 - - 90.1±0.8

CoGAN [27] - - - 89.1 ± 0.8

PixDA [2] - - 95.9 -

ASSC [13] 95.7±1.5 82.8±1.3 - -

UNIT [26] 90.5 - 96.0 93.6

CyCADA [15] 90.4±0.4 - 95.6 ± 0.2 96.5±0.1

GTA [46] 92.4±0.9 - 95.3±0.7 90.8±1.3

DeepJDOT [7] 96.7 - 95.7 96.4

SimNet [38] - - 96.4 95.6

GICT [39] 98.7 - 96.2 96.6

MCD [45] 96.2±0.4 94.4±0.3 96.5±0.3 94.1±0.3

STAR 98.8±0.05 95.8±0.2 97.8±0.1 97.7±0.05

Table 2: The digit and traffic sign classification perfor-

mance. We reported the mean and the standard deviation

of the accuracy obtained over 5 trials.

Testing-stage Prediction Previous methods with multi-

ple classifiers usually resort to the feature/score fusion or

voting by majority [17, 51] for a final decision. With the

classifiers predicting in diverse views, a more robust deci-

sion can be made. Since we use stochastic classifiers, the-

oretically, we can fuse an arbitrary number of predictions.

However, a simple yet effective way is to use the mean value

µ for the final prediction, and we find this works well em-

pirically.

4. Experiment

4.1. Image Classification

4.1.1 Digit and Sign Classification

Datasets In this experiment, we used three digit datasets

(MNIST [21], Street View House Numbers (SVHN) [34]

and USPS [16]), and two sign datasets (Synthetic Traf-

fic Sign (SYNSIGNS) [32] and the German Traffic Signs

Recognition Benchmark (GTSRB) [49]). In terms of do-

main characteristics, MNIST contains grayscale digit im-

ages with the clean background; SVHN [34] consists of

cropped coloured digits from real scenes with extremely

blurred appearance; USPS provides grayscale handwrit-
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Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MMD [28] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

JAN [30] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

ADR [44] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

DEV [58] 81.83 53.48 82.95 71.62 89.16 72.03 89.36 75.73 97.02 55.48 71.19 29.17 72.42

GICT [39] 87.6 60.6 81.6 72.1 87.8 62.9 89.7 68.5 88.8 76.1 83.2 20.0 73.1

LPJT [24] 93.0 80.3 66.5 56.3 95.8 70.3 74.2 83.8 91.7 40.0 78.7 57.6 74.0

BSP (CDAN) [5] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9

DSBN (MSTN) [3] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2

SAFN [57] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

TPN [35] 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4

DTA [23] 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5

MCD [45] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

STAR 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

Table 3: The object classification performance on the VisDA 2017 [37] benchmark. All the methods use the ResNet101

model [14] pretrained on ImageNet as the backbone model.

ten digit images with unconstrained writing styles. Whilst

sharing the same 10 (0∼9) digit classes, the three datasets

present significantly different data distributions, therefore

suitable for UDA evaluation. For sign datasets, SYNSIGNS

gives synthesised traffic signs which appear dramatically

different from the real-world images of GTSRB. So the two

form a good UDA task with 43 object classes. For UDA

test, we adopted four commonly used cross-dataset trans-

fer settings with the standard data split: SVHN⇒ MNIST,

USPS⇒MNIST, MNIST⇒USPS, SYNSIGN⇒GTSRB

[45].

Model instantialisation We adopted MCD [45] as the

UDA framework in this experiment1. For a fair comparison,

we used the same network designs for feature extractor and

classifier as [45]. Note that we only replace the last FC layer

of classifier with a STAR layer whilst sharing other layers.

Training details We used Adam [18] as the optimiser

with the learning rate 2× 10−4 and the batch size 128. We

trained 200 epochs for SVHN⇒MNIST and SYNSIGN⇒
GTSRB, and 300 epochs for USPS⇒MNIST and MNIST

⇒ USPS (due to less training data). We followed the same

hyper-parameter setting as MCD [45] without extra tuning.

Results We evaluated the performance of STAR in com-

parison to a wide range of existing state-of-the-art methods

on the four test settings in Table 2. We made the follow-

ing observations: (1) Directly applying the model trained

on the source domain data yields weak performance, due

to the data distribution gap between source and target do-

mains. (2) Compared with the backbone method MCD [45],

our STAR improves consistently the recognition accuracy

by 2.3% on average over all UDA tasks. This suggests the

dataset-agnostic efficacy of STAR, validating our idea of

exploiting stochastic classifiers enhancing the ability of LA-

based UDA methods to identifying local misalignment. (3)

With such improvement, STAR outperforms all compared

1We did not experiment with SWD [22] since we cannot reproduce the

reported results even with the help of the authors.

methods, often by a large margin with low accuracy vari-

ances. This low variance also suggests that modelling clas-

sifier distribution makes STAR less sensitive to the random

initialisation in different trials.

4.1.2 Object Classification

Datasets We evaluated a more challenging object classi-

fication task which transfers the knowledge of synthetic im-

ages in VisDA [37] to classify real images in COCO [25].

VisDA contains 152,397 synthetic images from 12 classes.

The target test data is a set of 55,388 COCO validation im-

ages from the same classes.

Model instantialisation For a fair comparison with ex-

isting methods, we used the same backbone ResNet101 [14]

pretrained on ImageNet [8], as in [45, 23]. We selected the

MCD [45] as the UDA pipeline. That is, we discarded the

last FC layer in ResNet101 and used the rest as the feature

generator. We then deployed our stochastic classifiers with

3 FC layers.

Training details We used the input image size of 224 ×
224. We adopted the SGD optimiser with the batch size 32,

the learning rate 1.0 × 10−3 for both the feature extractor

and classifiers.

Results We compared the object classification accuracy

of STAR on VisDA with a wide variety of state-of-the-art

UDA methods in Table 3. We have similar observations

as digit/sign classification above, e.g., our STAR achieves

again the best overall performance. A notable difference is

that STAR yields a remarkable 10.8% improvement over the

baseline MCD on this task, which is significantly larger than

that achieved on the simpler digit/sign recognition tasks (av-

eraged 2.3%). This is encouraging as it suggests that our

method is better at solving more challenging recognition

tasks.
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Source Only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

ASN (feature) [54] 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3

ASN (single-level) [54] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

ASN (multi-level) [54] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

GICT [39] 88.6 41.3 76.4 23.3 26.1 24.3 32.8 23.1 82.3 37.4 73.3 62.2 24.8 73.3 29.6 33.9 4.6 33.4 24.3 42.8

CLAN [31] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

CLAN† 87.9 28.6 79.9 24.0 24.0 24.9 33.3 19.4 83.4 31.9 76.1 58.3 27.5 82.8 35.4 42.6 0.7 27.1 27.2 42.9

STAR 88.4 27.9 80.8 27.3 25.6 26.9 31.6 20.8 83.5 34.1 76.6 60.5 27.2 84.2 32.9 38.2 1.0 30.2 31.2 43.6

Table 4: The semantic segmentation performance on GTA5 ⇒ Cityscapes (19 common classes). We reported both per-

category and mean IoU. All methods use ResNet101 as the backbone. ‘†’: Results we obtained using the publicly released

codes by the authors without any change (which is the baseline of our STAR).
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Source Only 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6

ASN (feature) [54] 62.4 21.9 76.3 11.7 11.4 75.3 80.9 53.7 18.5 59.7 13.7 20.6 24.0 40.8

ASN (single-level) [54] 79.2 37.2 78.8 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9

ASN (multi-level) [54] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7

CLAN [31] 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8

CLAN† 77.0 30.8 82.1 8.6 10.8 81.5 80.2 56.9 21.6 71.6 29.2 11.6 36.3 46.0

STAR 82.6 36.2 81.1 12.2 8.7 78.4 82.2 59.0 22.5 76.3 33.6 11.9 40.8 48.1

Table 5: The semantic segmentation performance on Synthia ⇒ Cityscapes (13 common classes). We reported both per-

category and mean IoU. All methods use ResNet101 as the backbone. ‘†’: Results we obtained using the publicly released

codes by the authors without any change (which is the baseline of our STAR).

4.2. Semantic Segmentation

Apart from image classification, we further evaluated

our STAR on the semantic segmentation task which needs

to classify every pixel of an image for understanding fine-

grained details of the image content.

Datasets We used three popular semantic segmentation

benchmarks in this experiment, namely GTA5 [40], Syn-

thia [42] and Cityscapes [6]. Both GTA5 and Synthia are

synthetic image datasets developed for avoiding the high

cost of collecting dense pixel-level semantic annotations.

GTA5 contains 24,966 images synthesised from an open-

world computer game, whilst Synthia has 9,400 images

generated as the random perturbation of virtual worlds.

Cityscapes is a real street scene dataset (see Figure 5), in-

cluding a training set of 2,975 images, a validation set of

500 images, and a testing set of 1,525 images. For a fair

comparison, we used the validation set as the test set as

in [31, 54]. We used one synthetic image dataset (GTA5

or Synthia) as the source domain data, and the real image

dataset (Cityscapes) as the target domain.

Model instantialisation We used the ResNet101 based

DeepLab-v2 [4] as the backbone. We selected the state-of-

the-art CLAN [31] as the UDA framework. We removed

CLAN’s classifier weight discrepancy loss when construct-

ing STAR since it has already been modelled by the vari-

ance of the STAR’s distribution.

Implementation details For feature extractor, we used

the SGD optimiser with a momentum of 0.9, the initial

learning rate 2.5× 10−4 in a polynomial decay with power

of 0.9, and the weight decay 5 × 10−4. For the classifier,

we used the Adam [18] optimiser with β1 = 0.9 and β2 =

0.99, a fixed learning rate 5 × 10−5 and the weight decay

5 × 10−4. We set the max training iterations to 100k. The

input images were cropped to 512 × 1, 024 in training and

up-sampled by a factor of 2 in test.

Results We evaluated the semantic segmentation perfor-

mance of STAR in comparison with that of state-of-the-art

methods in two UDA settings, GTA5 ⇒ Cityscapes (Ta-

ble 4) and Synthia ⇒ Cityscapes (Table 5). All the com-

pared methods use the same ResNet101 backbone. We have

the following observations from the two tables: (1) As in

image classification, the source trained model is inferior

if directly applied to the target domain due to the domain

shift problem. (2) The mIoU margins of STAR over the

reported results of CLAN in [31] seem to be small (0.4%

on GTA5⇒Cityscapes and 0.3% on Synthia⇒Cityscapes).

However, when using the author-released code, we can

never achieve the reported performance. A fairer compari-

son against our results using CLAN ( CLAN†) with exactly

the same hyperparameter setting shows a more substantial

improvement (0.7% on GTA5⇒Cityscapes and 2.1% on

Synthia⇒Cityscapes). (3) STAR achieves the best accuracy

on both UDA settings, suggesting the overall performance

advantage of the proposed method. To qualitatively exam-

ine the efficacy of our model, in Figure 5, we provided four
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Figure 5: Qualitative semantic segmentation examples from the UDA setting of GTA5 [40] ⇒ Cityscapes [6]. Column 1:

Input images, Column 2: Output of the source trained model, Column 3: Output of our STAR, Column 4: Ground truth.

randomly selected segmentation examples to visualise the

performance boost of STAR in comparison to the source-

trained model.

Variance function after convergence As discussed in

Sec. 3.5, the classifier weight distribution (Gaussian) vari-

ances still have certain values when converging. Some

of the variances are larger than others, deciding their spe-

cialised functions. The larger ones tend to render sampled

classifiers diverse due to the wider sampling space, whilst

the small ones guarantee the discrimination of classifiers on

source domain by reducing effects on µ. With a joint ef-

fort from these two, STAR becomes more generalised on

the target domain.

4.3. Ablation Study

The results reported so far suggest clearly that adding

STAR to a local alignment based UDA method brings clear

benefits. Here we examined the performance sensitivity of

STAR against the sampled classifier number (two classifiers

were sampled by default) at each training iteration of STAR.

We did this test on two digit classification tasks (MNIST

⇒ USPS and USPS ⇒ MNIST), using MCD [45] as the

UDA framework. For each specific classifier number, we

repeated five times and reported the mean accuracy along

with the standard deviation. Figure 6 shows that sampling

more classifiers per iteration does not help to improve the

performance, whilst introducing extra computational cost.

This makes sense since at each iteration our STAR samples

randomly independent classifiers, leading to using a large

quantities of classifiers at the end of training. Hence, there

is little incentive to sample more classifiers in a single iter-

ation.
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Figure 6: Performance sensitivity of our STAR against the

classifier number per training iteration. We repeated each

experiment five times and reported the average accuracy

(solid line) with the standard deviation (shadow).

5. Conclusion

In this paper, we proposed STochastic clAssifieRs

(STAR) for modelling diverse classifiers based on the ob-

servation that more classifiers perform better in UDA tasks.

Compared with previous models utilising multiple clas-

sifiers for point-wise estimation, we build a multivariate

Gaussian distribution N (µ,Σ) over weights of classifiers.

With it, naturally, an arbitrary number of diverse classifiers

can be sampled. This enables us to take advantage of in-

finite classifiers without the increase in model size and the

risks of overfitting. To show the general applicability of our

method, we impose it onto two different pipelines for classi-

fication tasks and segmentation tasks respectively. From the

results, STAR brings clear benefits and outperforms many

state-of-the-art methods.
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