
Wavelet Synthesis Net for Disparity Estimation to Synthesize DSLR Calibre

Bokeh Effect on Smartphones

Chenchi Luo∗, Yingmao Li∗, Kaimo Lin∗, George Chen∗,

Seok-Jun Lee∗, Jihwan Choi+, Youngjun Francis Yoo∗, Michael O. Polley∗

∗Samsung Research America
+Samsung Electronics

{eric.luo, timothy.li, kaimo.lin, george.chen}@samsung.com

Figure 1. Example of our disparity map and rendered bokeh: (a) All-in-focus image. (b) Disparity map. (c) Rendered bokeh.

Abstract

Modern smartphone cameras can match traditional dig-

ital single lens reflex (DSLR) cameras in many areas thanks

to the introduction of camera arrays and multi-frame pro-

cessing. Among all types of DSLR effects, the narrow depth

of field (DoF) or so called bokeh probably arouses most in-

terest. Today’s smartphones try to overcome the physical

lens and sensor limitations by introducing computational

methods that utilize a depth map to synthesize the narrow

DoF effect from all-in-focus images. However, a high qual-

ity depth map remains to be the key differentiator between

computational bokeh and DSLR optical bokeh. Empowered

by a novel wavelet synthesis network architecture, we have

narrowed the gap between DSLR and smartphone camera

in terms of bokeh more than ever before. We describe three

key enablers of our bokeh solution: a synthetic graphics

engine to generate training data with precisely prescribed

characteristics that match the real smartphone captures,

a novel wavelet synthesis neural network (WSN) architec-

ture to produce unprecedented high definition disparity map

promptly on smartphones, and a new evaluation metric to

quantify the quality of the disparity map for real images

from the bokeh rendering perspective. Experimental results

show that the disparity map produced from our neural net-

work achieves much better accuracy than the other state-of-

the-art CNN based algorithms. Combining the high resolu-

tion disparity map with our rendering algorithm, we demon-

strate visually superior bokeh pictures compared with exist-

ing top rated flagship smartphones listed on the DXOMARK

mobiles.

1. Introduction

One of the major differences between a smartphone cam-

era and a DSLR camera is the shallow depth of field effect,

which forms the aesthetic blur in the out-of-focus part of

an image. Such an effect can be physically achieved by us-

ing a lens with a large focal length and/or a large aperture

size (e.g., an 85mm f1.8) [1]. Due to the limitations on size

and weight, a smartphone camera cannot generate the same

bokeh as DSLR can do. Most smartphone makers break this

limitation using computational methods to simulate bokeh

using the depth information obtained from either dual pixel

camera or stereo cameras [2, 3, 4]. These kinds of photo

2407



capture modes are typically referred as “Portrait”, “Aper-

ture” or “Live Focus” mode in smartphones. Despite all

the efforts, a high resolution and high quality depth map re-

mains the key bottleneck to synthesize DSLR calibre bokeh

images.

Although time of flight (ToF) or structured light depth

sensors become increasingly more ubiquitous in smart-

phones, they are suffering from either low resolution or

high susceptibility to ambient lighting interferences. On the

other hand, mono camera depth algorithms [5, 6, 7, 8] only

work for specific scenes and are not general enough to han-

dle all scenarios. Stereo depth [9, 10, 11, 12] remains the

most mature solution for smartphones. Despite the hard-

ware and algorithm advances with AI, today’s top ranked

smartphones in the DXOMARK mobiles are still left be-

hind by DSLRs by a large margin due to the inferior depth

quality. The purpose of this paper is to elevate the stereo

disparity estimation to a new level so that smartphones can

be a legitimate challenger to DSLRs in terms of bokeh ef-

fect.

The flowchart of our computational bokeh pipeline can

be seen in Fig. 2. It contains three key blocks shown in

dark blue. The calibration module is responsible for recti-

fying the pair of heterogeneous cameras with different field

of view (FOV), focus, etc. The WSN produces the disparity

map given the calibrated stereo pair. The renderer produces

the final bokeh image given the focus point location and the

disparity map. The input image pair comes from the main

camera which produces the reference frame for bokeh and

the sub camera which has a larger FOV. Typically, tele/wide

lens or wide/ultra wide lens combination on smartphones

constitutes the main/sub camera combination. Fig. 1 shows

an example of our bokeh output.

The scope of this paper is focused on the WSN dis-

parity estimation module as it is the most critical compo-

nent to produce DSLR calibre bokeh image. The calibra-

tion and bokeh rendering modules are standard procedures,

which are not covered in this paper. Due to the smartphone

cameras’ characteristics such as optical imaging stabilizer

(OIS), auto focus, and lens distortion, it is extremely dif-

ficult to achieve perfect calibration. For this reason, we

formulate the disparity estimation problem as a constrained

optical flow problem to better accommodate the smartphone

camera characteristics. We ignore the orthogonal baseline

direction flow and treat the baseline direction flow as the

disparity output.

However, general high performing CNN based optical

flow algorithms [13, 14, 15, 16] represented by the FlowNet

framework are too complex to fit into smartphones. A com-

monality of the family of these networks is that they are

trained on the same existing public datasets such as KITTI,

cityscape, flying chairs/things, and mpiSintel [17, 13, 18].

As a result, none of them is able to produce high quality

disparity map on real images captured by smartphones in

the presence of small baseline and heterogeneous lens/ISP

settings.

Our first contribution is that we create our own synthetic

graphics data engine and the corresponding data generation

methodology to produce high quality training data that can

be tailored for any target mobile device. We propose a novel

3 stage training recipe to bridge the gap between synthetic

image training and real image training with learnable image

augmentation.

Our second contribution is the proposal of an efficient

wavelet synthesis network architecture for disparity esti-

mation. Even though the light weight LiteFlowNet [16]

runs for 35.83ms on nvidia GTX 1080 for a resolution of

1024× 436, it is still very difficult to port it onto the smart-

phone at a even higher resolution of 2048× 1536, which is

required to render DSLR calibre bokeh. By comparison, we

have benchmarked the WSN for 1.8s on Qualcomm Snap-

dragon 855’s mobile GPU at the 2048 × 1536 input/output

resolution.

To further reduce the complexity and improve the train-

ing convergence speed, we introduce two new types of lay-

ers in WSN, i.e., the invertible wavelet layer and the nor-

malized correlation layer. The invertible wavelet layer is

applied to iteratively decompose and synthesize the feature

maps. The normalized correlation layer is introduced for

robust dense feature map matching and is highly coupled

with the smartphone specifications including baseline dis-

tance and calibration accuracy. With the novel network ar-

chitecture and our hybrid synthetic data training methodol-

ogy, we obtain the state-of-the-art disparity map in terms of

quality, resolution, and runtime on smartphone.

Our third contribution is the introduction of a new evalu-

ation metric called max IoU (mxIoU) to quantify the capa-

bility of the disparity map to segment the foreground object

from the background for real images. We compare our neu-

ral network with existing state-of-the-art methods on smart-

phone captured images. The quantitative experiment results

show that our method produces the best disparity map for

smartphone cameras. We also compare our rendered bokeh

images with the those produced by the top ranked flagship

smartphones on the DXOMARK mobiles and our results

are visually superior to all existing solutions.

The rest of this paper is organized as follows. In section

2, we disclose the details of WSN for disparity estimation,

including the two new types of layers. We show details of

our synthetic graphic engine as well as the experimental re-

sults in Section 3 and Section 4. We draw conclusions in

Section 5.

2. Wavelet Synthesis Net

The network topology and layer details can be seen in

Fig. 3. We have a pair of calibrated stereo image inputs L

2408



Figure 2. Bokeh algorithm flow chart. The sub camera is calibrated

to the match the FOV of the main camera. WSN calculates the

disparity with regard to the main camera. The renderer generates

the bokeh image given the chosen focus point.

and R, where L is the reference image from the main cam-

era where the bokeh effect is applied upon and R is the cal-

ibrated image captured from the sub camera. The output

of the network is the optical flow from L to R. In the end,

we ignore the flow in the orthogonal baseline direction and

treat the baseline direction flow as the disparity output.

The network is composed of three major components se-

quentially: the feature encoder that extracts high level fea-

tures from the input image pair, the normalized correlation

layer that calculates the cross-correlation between the left

and right feature maps, and the feature decoder that gradu-

ally complements the details in the output. Compared with

prior arts in the FlowNet framework, the proposed WSN has

two unique layers, i.e., the invertible wavelet layer and the

normalized correlation layer.

All the convolution modules in the network have the

same spatial resolution for their input and output feature

maps. One convolution module contains one or more con-

volutional blocks. Each convolution block follows the

micro-architecture in MobileNet [19, 20].

Before reaching the normalized correlation layer, the

spatial resolution of the feature maps is reduced by a fac-

tor of eight by means of the wavelet layer. The detail fea-

ture maps in early stages are preserved to be synthesized by

means of the inverse wavelet layer with the feature maps in

later stages to restore the spatial resolution of the output. A

detailed layer level topology of the network is available in

the supplementary materials.

2.1. Invertible Wavelet Layer

In convolutional neural networks, pooling layers are

needed to increase the receptive field of the feature extrac-

tor multiplicatively. However, the drawback of the pooling

layer is that it introduces information loss. For example,

for a 2 × 2 pooling layer, 75% of the detail information

is discarded. However, for pixel-to-pixel applications such

as semantic segmentation, disparity or optical flow estima-

tion, the output resolution is typically the same as the input

resolution. In these applications, we need more detail infor-

mation passing through the network. For this reason, UNet

[21, 22, 23, 24] like architectures are widely used to feed

forward low level feature maps through the skip branches.

In this paper, we propose a more elegant way to achieve

both spatial resolution reduction and information preserva-

tion with discrete wavelet and inverse wavelet transforms.

As we know, wavelet transforms are perfectly invertible and

they achieve the same spatial resolution reduction effect as

the pooling layer without any information loss. Fig. 4 (a)

demonstrates the idea of the proposed invertible wavelet

layers. We apply a 2D wavelet transform to decompose a

2D image into four quadrants: LL, HL, LH, HH, where LL

represents the low frequency component or the average in-

formation of the 2D image while, HL, LH, HH represent

the high frequency components or the details in the 2D im-

age. We stack the HL, LH, HH in the channel dimension to

form a new feature map. This basic idea can be extended to

3D feature maps of dimension (H,W,C), the wavelet layer

produces two feature maps of dimension (H/2,W/2,C) and

(H/2,W/2,3C) that represent the average and detail informa-

tion respectively. These two types of feature maps should

be treated differently in the neural network. The network’s

main branch should iteratively process the average feature

maps in order to have a global context understanding of the

image without the interference of local details. At the same

time, the detail feature maps are responsible for restoring

the spatial resolution of the output. Naturally, the way we

restore the spatial resolution of the network is by means

of the inverse wavelet transform, which is also a lossless

process. The invertible discrete wavelet layers have two

main advantages. Firstly, they are linear transformations

with O(NlogN) complexity and are differentiable for end-

to-end training. For discrete Haar wavelet, only addition

and subtraction operations are needed. Secondly, the trans-

forms are invertible so that no detail information is lost in

this layer.

2.2. Normalized Correlation Layer

The correlation layer is introduced in the FlowNet-C ar-

chitecture in [13]. This paper offers several improvements

as shown in Fig. 4 (b) to make it work most effectively for

our application. The original correlation layer is introduced

to solve optical flow problem. Therefore, the search win-

dow size is large and symmetric in all directions. However,

for the calibrated image pair on the smartphone, we under-

stand the error margin of our calibration algorithm, the fo-

cused object range (0.5m-2.5m), and the baseline distance

(1cm). Therefore we can precisely prescribe the asymmet-

ric search window size to reduce the possibility of under-

fitting or over-fitting. Due to the limitation of the smart-

phone camera settings, our search window also needs to

cover a small range in the dx+,dy+,dy- direction, where

dx- is the baseline direction, instead of only doing a lin-

ear search along dx- when the calibration is done perfectly.

For input image size of 2048 × 1536, our search window

2409



Wavelet Layer

Inverse Wavelet Layer

Conv Module

Concat Layer

Normalized Corr Layer

Feature Maps

Wavelet Layer

Inverse Wavelet Layer

Conv Module

Concat Layer

Normalized Corr Layer

Feature Maps

Figure 3. WSN network topology. L stands for the main camera image. R stands for the calibrated sub camera image.

Figure 4. (a) Invertible wavelet layers. The wavelet layer decom-

poses feature map of dimension (H,W,C) into the low frequency

feature map FLow (H/2, W/2, C) and the high frequency feature

map FHigh (H/2, W/2, 3C). The inverse wavelet layer synthesizes

the original feature map from the low and high frequency feature

maps. (b) Normalized correlation layer. FLeft and FRight stand for

the feature map in the main and sub camera image branches re-

spectively. Each channel in the output feature map corresponds to

the normalized correlation between FLeft and a shifted FRight with

direction (u,v) in the search window.

is u ∈ [−20, 4] in baseline direction and v ∈ [−4, 4] in

the orthogonal baseline direction. The second improvement

is the feature maps preprocessing. We apply independent

and random masking or dropout operations to the left and

right feature maps before applying the correlation operation

to simulate the situation that some features in one feature

map are not visible in the other. This enforces the network

to infer the matching based on the context. In our experi-

Figure 5. Normalized correlation layer visualization (a) Calibrated

and overlaid stereo input image pair (b) Final disparity estimation

(c) Stacked view of the normalized correlation layer feature maps

output

ments, we find that better result is achieved when starting

with a high dropout rate to avoid overfitting and reducing

the dropout rate gradually to improve disparity detail re-

finement. The third improvement is the normalization step

to make sure the output feature maps are constrained in [0,1]

to improve training convergence and stability. For a search

direction (u, v) in the search window, we have

F (u,v)
o =

< FL, F
(u,v)
R >c

ǫ+ varc(FL)varc(F
(u,v)
R )

(1)

< FL, F
(u,v)
R >c (i, j) =

∑C−1
k=0 [FL(i, j, k)− FL(i, j, :)]

[FR(i− u, j − v, k)− FR(i− u, j − v, :)]

where F
(u,v)
o is the 2D output feature map, FL and F

(u,v)
R

are the left and shifted right 3D input feature maps, varc(·)

2410



and (·) stands for the variance and the mean of the feature

map over the channel dimension and ǫ = 10−6 is to avoid

the divide by zero operation. We keep the above process for

all the directions (u, v) inside the search window and stack

the 2D feature maps F
(u,v)
o along the channel dimension

to formulate the 3D feature maps output of the proposed

normalized correlation layer.

According to our experiments, the normalized correla-

tion layer significantly improves the numerical stability and

convergence speed of the network during the training pro-

cess. Fig. 5 shows the visualization of the feature maps pro-

duced by the proposed normalized correlation layer. The

3D feature maps are re-stacked in Fig.5 (c) to show their re-

sponses towards different shift (u, v). As the figure shows,

for (u, v) = (0, 0), the network responds to the farthest

background (disparity = 0). As the horizontal shift u in-

creases gradually, the network responds to the background

fence, body and hand orderly. However, the spatial reso-

lution of the feature maps after the normalized correlation

layer is only 1/8 of the input resolution. We still need to

rely on the detail feature maps in early stages to restore the

spatial resolution of the output.

3. Data and Training

3.1. Synthetic Training Data

Getting a pixel-to-pixel ground truth for disparity map is

considered as a hard problem in real world scenario. Ex-

isting depth sensors such as ToF cameras , LiDAR, are not

able to produce a perfect pixel level depth map. The per-

formance of these depth sensors is limited due to ambient

light, occlusion, sensor noise, and reflective materials. An-

other difficulty is that we still need to align the depth ground

truth with the camera images. This adds even more uncer-

tainty to the ground truth.

In this paper we carefully design our synthetic train-

ing data to match the statistics of the smartphone camera

working scenarios. Prior arts [13] use computer graph-

ics software and game engines to generate the synthetic

training data for the virtual stereo cameras. Our litera-

ture search suggests that almost all of the previous works

[13, 14, 15, 16] are trained on similar public datasets such as

flying things, flying chairs, MPISintels, KITTI, etc. How-

ever, when testing on smartphone captured images taken

from daily life using these published works, the perfor-

mance is not as good as what is reported. Our investigation

shows that the root cause is that the disaprity histogram of

real portrait images in our bokeh application is distributed

in [0, 60] pixel range with a probability density function

(PDF) similar to the exponential distribution while the his-

togram of the FlyingThings dataset is distributed in the [0,

150] pixel range with a very different shaped PDF.

To accommodate this issue, we build our own training

Figure 6. Illustration of the difference between the depth based

disparity and the true optical disparity.

data with the Unreal Engine [25]. We setup a virtual 3D

space with simulated depth and cameras with known intrin-

sic and extrinsic parameters. The virtual objects in the 3D

space are randomly placed in certain depth ranges and ren-

dered with randomly generated textures. We generate the

disparity ground truth directly from the depth. Our data

is produced with the guidance of the following methodolo-

gies.

Photo-Realism. Intuitively, people may believe that a

photo realistic synthetic training data should result in a bet-

ter network performance. However, we surprisingly find

out that the network converges much slower and results in

worse performance using photo-realistic training data in-

stead of using the training data with the minimum rendering

quality. It turns out the reflection option in the rendering

engine is the culprit. As illustrated in Fig. 6, the physical

distance between the reflective surface (e.g., a mirror) and

the camera is dm. Thus the disparity of the object’s image

in the mirror is derived from dm in the rendering engine.

However, in the real world, the disparity of the object’s im-

age in the mirror corresponds to the depth of the object’s

image, which is dm + d. With the reflection option turned

on, we are actually teaching the network the wrong dispar-

ity to learn in that case.

Another interesting finding is that the network perfor-

mance is not related to the semantics of the training data,

which is aligned with the observation reported by [13]. The

virtual object in the training data can be anything, even if

it does not have any semantic meanings. For example, a

photo realistic human model is not required for the network

to perform well for human. What the network learns is just

matching using a global context. Therefore, our training

data is rendered without any photo-realistic effect turned on

in the rendering engine to avoid any possible confusion.

Pattern Ambiguity. The capability to customize our

training data enables us to control the response of the net-

work to produce desired results without depth artifacts. Tra-

ditional stereo algorithms struggle at homogeneous regions

such as feature-less planar or repetitive patterns because

they do not have a global context understanding of the im-

age. With the advent of CNNs, we can potentially achieve

a very large receptive field so that they can better match the

dense image features. To take advantage of CNNs’ poten-

tials from this perspective, we introduce a lot of ambiguous

2411



Figure 7. Iterative training recipe of WSN. (a) Stage 1: synthetic

image training with shared feature encoder. (b) Stage 2: real im-

age training to learn the photometric transform between the stereo

image pair. (c) Stage 3: synthetic image training with independent

feature encoders. (d) The inference network structure.

patterns and textures randomly applied to the 3D objects.

3.2. Training Details

Our network is trained on both the synthetic data with

data augmentation and real smartphone captured images.

The data augmentation module needs to reflect both the ge-

ometric calibration imperfection and the photometric map-

ping between the stereo cameras on smartphones. To

achieve this, we use a three stage hybrid training method-

ology as shown in Fig. 7.

The First Stage. In the first stage of training, the WSN

is only trained with our synthetic data. The weights be-

tween the two stereo image encoder branches are shared

during this process. We have generated 100K pairs of syn-

thesized data with 1024×768 resolution, and use 95K pairs

of the images for training, and the rest of them for valida-

tion. We pass the training data through our augmentation

pipeline, as shown in Fig. 8. The augmentation pipeline

contains two modules, i.e., photometric augmentation and

geometric augmentation. The augmentation applies random

perturbation on left and right images independently. The

photometric augmentation module applies random blurri-

ness, chroma, illumination, gamma and noise to the stereo

pair, such that the network is robust against photometric dis-

crepancies of the training images. The geometric augmenta-

tion applies random zoom, rotate, homogeneous distortion,

skew, and crop to the training images.

The training minimizes the l2 end point error (EPE) loss.

The learning rate starts from 1 × 10−3 with the ADAM

solver. We apply dropout [26] layer right before the nor-

malized correlation layer. The initial drop out rate is 0.25
and we reduce the drop out rate by 0.05 every 20 epochs

until 0. During the training, we reduce the learning rate by

a factor of two for every 40 epochs, and the entire training

takes about 400 epochs to achieve a satisfactory result.

The Second Stage. The purpose of this stage is to learn

Figure 8. Data augmentation pipeline and example effects.

the photometric mapping between the two cameras. The

source of the photometric discrepancies originates from the

fact that the smartphone stereo cameras usually have differ-

ent lenses and the ISPs have different settings and tuning

for the two cameras. Our goal is to train a small network

such that the photometric difference between the two het-

erogeneous camera captured images is minimized. As a

result, the performance of WSN can be further optimized

for the specific camera platform. We build a light-weight

three layer fully convolutional network which is called the

“PhotometricNet” as seen in Fig. 7 (b). We use 800 cali-

brated stereo image pairs from our target smartphone as our

training data. We denote the stereo images from left (main)

and right (sub) camera as IL and IR, respectively. During

the training process, the weights of WSN remain locked.

We pass the training data through WSN and warp the image

from the right camera IR using the predicted flow as ÎL,

then we use IL as the input to the PhotometricNet and ÎL

as the label during the training. The training process starts

with the learning rate 1 × 10−5 and minimize the l2 loss

between the network output and ÎL with the ADAM opti-

mizer. The training takes about 30 epochs to converge, and

we lower the learning rate by half every 10 epochs. As a

result, the PhotometricNet learns the photometric mapping

from the main camera IL to the sub camera IR.

The third Stage. As seen in Fig. 7 (c), in the third

training stage, we apply the PhotometricNet to sub cam-

era IR before passing it to WSN. We disable the photo-

metric augmentation and only use geometric augmentation

in our pipeline. In this way, we make sure that the main

and augmented sub camera synthetic images fed into WSN

have the same relative photometric characteristics as the

real main/sub camera images. In this stage, we also disable

the weights sharing between the left and right encoders to

fine tune WSN. As a result, WSN learns to handle the pho-

tometric differences in the real world images in the optimal

way. We train the WSN with our synthetic data, starting

with a learning rate of 1 × 10−5 for 200 epochs, and then

we lower the learning rate by half after every 50 epochs.

Ideally, we should repeat the second and third stages

for multiple iterations to make sure that both the WSN and

2412



Table 1. Quantitative algorithmic comparison on both real and syn-

thetic images.

Algorithm EPE mean mxIoU median mxIoU

LiteFlowNet 3.398 0.86837 0.90511

PWCNet 3.603 0.87884 0.89758

FlowNet2 2.878 0.91155 0.93914

FlowNetCSS 3.329 0.88048 0.92008

FlowNetCS 3.364 0.88648 0.91847

FlowNetC 4.056 0.84481 0.86377

FlowNetS 4.408 0.80402 0.81482

WSN 0.586 0.95221 0.98133

Figure 9. mxIoU calculation example. (a) Reference image. (b)

Ground truth foreground mask. (c) Disparity map from WSN. (d)

The foreground mask that corresponds to the disparity threshold of

d = 7.0. (e) The foreground mask that corresponds to the disparity

threshold of d = 22.0. (f) The foreground mask that corresponds

to the disparity threshold of d = 30.0.

the PhotometricNet are optimal. However, our experiment

shows that one iteration is usually sufficient to reach satis-

factory result. In the inference stage as shown in Fig. 7 (d),

the real world stereo images are passed directly to WSN to

predict the disparity.

4. Experiment Results

To test the performance of WSN, we conduct three types

of evaluation experiments.

Quantitative Evaluation on Synthetic Images. To bet-

ter simulate the disparity statistics from the images captured

with a real smartphone, we conduct a quantitative disparity

evaluation on our own synthetic dataset by calculating the

standard EPE scores. We compare our WSN against the

other state-of-the-art CNN based optical flow estimation al-

gorithms such as LiteFlowNet, PWCNet , FlowNet2, and

FlowNet2-CSS [14, 15, 16], etc. To make a fair compari-

son, we fine-tune the other state-of-the-arts networks using

our synthetic data by following the methodologies stated in

the original paper. We make a dedicated validation synthetic

dataset that is not trained by any algorithm to evaluate the

EPE scores for all the algorithms and the result is summa-

rized in Table. 1. Our WSN produces a significantly lower

EPE against all other methods.

Quantitative Evaluation on Real Images. A lower

EPE on synthetic images does not necessarily indicate a bet-

ter performance of the network on real world images. Gen-

erally speaking, it is very difficult to obtain the ground truth

disparity for each pixel for any given general real world cap-

tured picture. To solve this problem, we introduce a new

metric called max IoU (mxIoU) to quantitatively evaluate

the disparity quality in the sense of the capability to sepa-

rate a given subject from the background.

The metric of intersection of union (IoU) [27] is com-

monly used to evaluate the accuracy of a segmentation

mask. The key step in bokeh image rendering is also to

segment the focused object from the background.

In our work, we borrow the similar idea. For a given

portrait picture, we choose the subject that stands out from

its background, and manually label the subject to create the

ground truth mask Mf as seen in Fig. 9 (b). To evaluate

the disparity map D, we enumerate all the disparity values

within the disparity map, as illustrated in Fig. 9 (d-f). For

each selected disparity d, we place threshold on D to obtain

a foreground mask Md such that all the pixels covered by

the mask have disparities larger than or equivalent to d. At

the same time, we compute the IoU score between Md and

Mf . The mxIoU score is the maximum IoU score we ob-

tain for a given image. In our experiment, we take 200 por-

trait pictures using a Samsung Galaxy Note 10+, and hire

photoshop professionals to manually label the subjects that

clearly stand out from their background as the ground truth

masks. The mean and median mxIoU scores from different

algorithms can be seen in Table. 1. We visualize the dispar-

ity map from each algorithm as seen in Fig. 10. Compared

with the existing state-of-the-arts, the disparity map gener-

ated from our algorithm shows visually superior quality in

addition to a higher mxIoU score. WSN shows significant

advantage in terms of details and ambiguous pattern han-

dling over the other algorithms for real images.

Qualitative Evaluation of Bokeh Artifacts. Further-

more, we apply the WSN in our bokeh pipeline shown

in Fig. 2 and compare our bokeh quality against four top

ranked flagship smartphones listed on the DXOMARK mo-

biles [1], i.e., Huawei Mate30 Pro, Samsung Galaxy Note

10+, iPhone 11 Pro Max, and Google Pixel 4. Due to the

page limit, the sample testing images can be seen in the sup-

plementary materials. We have labeled the depth artifacts in

red in these sample images. Our bokeh images have the best

detail and the least amount of depth artifacts compared with

the existing bokeh solutions in the market.

5. Conclusion

We have introduced a new network architecture, WSN,

for disparity estimation and we have described the de-

tailed methodologies for synthetic training data prepara-

2413



Figure 10. Disparity map comparison examples. (a) Reference image. (b) WSN. (c) PWCNet. (d) LiteFlowNet. (e) FlowNet2.

tion and the multi-stage network training for the heteroge-

neous smartphone stereo camera setups. We have demon-

strated that our method outperforms all existing state-of-

the-art methods by a large margin using both synthetic data

and real world data, quantitatively and visually. With the

superior disparity quality, we have shown that our rendered

bokeh images are much better than top ranked flagship

smartphones in terms of depth artifacts and details so that

smartphones can truely produce DSLR calibre bokeh.

2414



References

[1] W. Hauser, B. Neveu, J.-B. Jourdain, C. Viard, and

F. Guichard, “Image quality benchmark of computational

bokeh,” Electronic Imaging, vol. 2018, no. 12, pp. 340–1,

2018.

[2] H. Lin, C. Chen, S. Bing Kang, and J. Yu, “Depth recovery

from light field using focal stack symmetry,” in Proceedings

of the IEEE International Conference on Computer Vision,

pp. 3451–3459, 2015.

[3] N. Wadhwa, R. Garg, D. E. Jacobs, B. E. Feldman,

N. Kanazawa, R. Carroll, Y. Movshovitz-Attias, J. T. Bar-

ron, Y. Pritch, and M. Levoy, “Synthetic depth-of-field with a

single-camera mobile phone,” ACM Transactions on Graph-

ics (TOG), vol. 37, no. 4, p. 64, 2018.

[4] D. Liu, R. Nicolescu, and R. Klette, “Bokeh effects based

on stereo vision,” in International Conference on Computer

Analysis of Images and Patterns, pp. 198–210, Springer,

2015.

[5] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map pre-

diction from a single image using a multi-scale deep net-

work,” in Advances in neural information processing sys-

tems, pp. 2366–2374, 2014.

[6] N. Wadhwa, R. Garg, D. E. Jacobs, B. E. Feldman,

N. Kanazawa, R. Carroll, Y. Movshovitz-Attias, J. T. Bar-

ron, Y. Pritch, and M. Levoy, “Synthetic depth-of-field with a

single-camera mobile phone,” ACM Transactions on Graph-

ics (TOG), vol. 37, no. 4, p. 64, 2018.

[7] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised

cnn for single view depth estimation: Geometry to the res-

cue,” in European Conference on Computer Vision, pp. 740–

756, Springer, 2016.

[8] B. Liu, S. Gould, and D. Koller, “Single image depth esti-

mation from predicted semantic labels,” in 2010 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition, pp. 1253–1260, IEEE, 2010.

[9] J. Zbontar, Y. LeCun, et al., “Stereo matching by training

a convolutional neural network to compare image patches.,”

Journal of Machine Learning Research, vol. 17, no. 1-32,

p. 2, 2016.

[10] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching net-

work,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 5410–5418, 2018.

[11] M. Poggi, D. Pallotti, F. Tosi, and S. Mattoccia, “Guided

stereo matching,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 979–988,

2019.

[12] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao,

L. Zhou, and J. Zhang, “Learning for disparity estimation

through feature constancy,” 2018.

[13] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox,

“Flownet: Learning optical flow with convolutional net-

works,” in Proceedings of the IEEE international conference

on computer vision, pp. 2758–2766, 2015.

[14] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox, “Flownet 2.0: Evolution of optical flow estimation

with deep networks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2462–2470,

2017.

[15] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene

parsing network,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2881–2890,

2017.

[16] T.-W. Hui, X. Tang, and C. Change Loy, “Liteflownet: A

lightweight convolutional neural network for optical flow es-

timation,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 8981–8989, 2018.

[17] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets

robotics: The kitti dataset,” The International Journal of

Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[18] D. Butler, J. Wulff, G. Stanley, and M. Black, “Mpi-sintel

optical flow benchmark: Supplemental material,” in MPI-IS-

TR-006, MPI for Intelligent Systems (2012, Citeseer, 2012.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations,” arXiv preprint arXiv:1704.04861, 2017.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen, “Mobilenetv2: Inverted residuals and linear bottle-

necks,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4510–4520, 2018.

[21] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-

volutional networks for biomedical image segmentation,”

in International Conference on Medical image computing

and computer-assisted intervention, pp. 234–241, Springer,

2015.

[22] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and

O. Ronneberger, “3d u-net: learning dense volumetric seg-

mentation from sparse annotation,” in International confer-

ence on medical image computing and computer-assisted in-

tervention, pp. 424–432, Springer, 2016.

[23] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep

residual u-net,” IEEE Geoscience and Remote Sensing Let-

ters, vol. 15, no. 5, pp. 749–753, 2018.

[24] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Ku-

mar, and T. Weyde, “Singing voice separation with deep u-

net convolutional networks,” 2017.

[25] W. Qiu and A. Yuille, “Unrealcv: Connecting computer vi-

sion to unreal engine,” in European Conference on Computer

Vision, pp. 909–916, Springer, 2016.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural

networks from overfitting,” The journal of machine learning

research, vol. 15, no. 1, pp. 1929–1958, 2014.

[27] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille, “Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs,” IEEE transactions on pattern analysis and ma-

chine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

2415


