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Abstract

In most studies on learning-based image super-

resolution (SR), the paired training dataset is created by

downscaling high-resolution (HR) images with a predeter-

mined operation (e.g., bicubic). However, these methods

fail to super-resolve real-world low-resolution (LR) images,

for which the degradation process is much more compli-

cated and unknown. In this paper, we propose an unpaired

SR method using a generative adversarial network that does

not require a paired/aligned training dataset. Our network

consists of an unpaired kernel/noise correction network and

a pseudo-paired SR network. The correction network re-

moves noise and adjusts the kernel of the inputted LR im-

age; then, the corrected clean LR image is upscaled by the

SR network. In the training phase, the correction network

also produces a pseudo-clean LR image from the inputted

HR image, and then a mapping from the pseudo-clean LR

image to the inputted HR image is learned by the SR net-

work in a paired manner. Because our SR network is in-

dependent of the correction network, well-studied existing

network architectures and pixel-wise loss functions can be

integrated with the proposed framework. Experiments on

diverse datasets show that the proposed method is superior

to existing solutions to the unpaired SR problem.

1. Introduction

Image super-resolution (SR) is a fundamental ill-posed

problem in low-level vision that reconstructs a high-

resolution (HR) image from its low-resolution (LR) obser-

vation. Recent progress in the on deep learning-based meth-

ods has significantly improved the performance of SR, in-

creasing attention from the practical perspective. However,

in many studies, training image pairs are generated by a pre-

determined downscaling operation (e.g., bicubic) on the HR

images. This method of dataset preparation is not practical

in real-world scenarios because there is usually no HR im-

age corresponding to the given LR one.

Some recent studies have proposed methods to overcome

the absence of HR–LR image pairs, such as blind SR meth-

Figure 1: Unpaired SR results on diverse datasets. From left to

right: ×4 SR result for a synthetically degraded LR image from

DIV2K realistic-wild set [42], ×4 SR result for a real-world LR

face image from Widerface [48], and ×2 SR result for a real-world

LR aerial image from DOTA [47]. Zoom in for better view.

ods [39, 12, 57] and generative adversarial network (GAN)-

based unpaired SR methods [51, 4, 56, 32]. Blind SR aims

to reconstruct HR images from LR ones degraded by arbi-

trary kernels. Although recent studies have achieved “blind-

ness” for limited forms of degradation (e.g., blur), real LR

images are not always represented with such degradation;

thus, they perform poorly on the images degraded by not

expected processes. By contrast, GAN-based unpaired SR

methods can directly learn a mapping from LR to HR im-

ages without assuming any degradation processes.

GANs learn to generate images with the same distri-

bution as the target domain through a minimax game be-

tween a generator and discriminator [11, 37]. GAN-based

unpaired SR methods can be roughly classified according

to whether they start from an LR image (direct approach;

Fig. 2a) or an HR image (indirect approach; Fig. 2b).

Direct approach. In this approach, a generator upscales

source LR images to fool an HR discriminator [51]. The

main drawback of this approach is that the pixel-wise loss

functions cannot be used to train the generator, i.e., SR net-

work. In paired SR methods, the pixel-wise loss between

reconstructed images and HR target images plays a cru-

cial role not only in distortion-oriented methods but also in

perception-oriented methods [28, 2].
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(a) Direct approach.

(b) Indirect approach.

Figure 2: Two distinct approaches to unpaired SR using GANs.

(a) Generator directly upscales LR images. (b) Generator first

downscales HR images and uses the generated LR images to train

SR network U .

Indirect approach. In this approach, a generator down-

scales source HR images to fool an LR discriminator [4,

32]. The generated LR images are then used to train the SR

network in a paired manner. The main drawback of this

approach is that the deviation between the generated LR

distribution and the true LR distribution causes train–test

discrepancy, degrading the test time performance.

Our approach. The main contribution of this work is that

we simultaneously overcome the drawbacks of the above

two approaches by separating the entire network into an un-

paired kernel/noise correction network and a pseudo-paired

SR network (Fig. 3). The correction network is a Cycle-

GAN [58]-based unpaired LR ↔ clean LR translation. The

SR network is a paired clean LR → HR mapping, where the

clean LR images are created by downscaling the HR images

with a predetermined operation. In the training phase, the

correction network also generates pseudo-clean LR images

by first mapping the clean LR images to the true LR domain

and then pulling them back to the clean LR domain. The SR

network is learned to reconstruct the original HR images

from the pseudo-clean LR images in a paired manner. With

the following two merits, our method achieves superior re-

sults to state-of-the-arts ones: (1) Because our correction

network is trained on not only the generated LR images but

also the true LR images through the bi-directional structure,

the deviation between the generated LR distribution and the

true LR distribution does not critically degrade the test time

performance. (2) Any existing SR networks and pixel-wise

loss functions can be integrated because our SR network is

separated to be able to learn in a paired manner.

2. Related Work

The training data, network architecture, and objective

function are three essential elements of a learning deep net-

work. Paired image SR is aimed at optimizing the network

architecture and/or objective function to improve perfor-

mance under the assumption that ideal training data exists.

However, in many practical cases, there is a lack of training

data (i.e., target HR images corresponding to source LR im-

ages). This problem has been addressed by recent studies on

blind and unpaired image SR. As another approach, a few

recent works [7, 54, 5] have built real paired SR datasets

using specialized hardware and data correction processes,

which are difficult to scale.

2.1. Paired Image Super­Resolution

In most SR studies, the paired training dataset is created

by downscaling HR images with a predetermined operation

(e.g., bicubic). Since the first convolutional neural network

(CNN)-based SR network [9], various SR networks have

been proposed to improve LR-to-HR reconstruction perfor-

mance. Early studies [20, 30] found that a deeper network

performs better with residual learning. A proposed resid-

ual channel attention network (RCAN) [55] achieved fur-

ther improved depth and performance. Upscaling strate-

gies have also been studied, such as progressive upscaling

of LapSRN [26] and iterative upscaling and downscaling of

DBPN [13]. In these studies, a simple L1 or L2 distance was

used as the objective function, but it is known that these sim-

ple distances alone result in blurred textures. To improve

the perceptual quality, SRGAN [28] introduced perceptual

loss [18] and adversarial loss [11], realizing more visually

pleasing results. ESRGAN [44], which is an enhanced ver-

sion of SRGAN, is one of the state-of-the-art perception-

oriented models.

2.2. Blind Image Super­Resolution

Relatively less research attention has been paid to blind

image SR despite its importance for practical applications.

Studies on blind SR usually focus on models that are only

blind to the blur kernels [34, 38, 39, 12, 57]. For instance,

ZSSR [39] exploits the recurrence of information inside

a single image to upscale images with different blur ker-

nels, and IKC [12] uses the intermediate outputs to itera-

tively correct the mismatch of blur kernels. Few studies on

blind SR have addressed the combined degradation prob-

lem (i.e., additive noise, compression artifacts, etc.) beyond

the blur blind SR, whereas several blind methods have been

proposed for specific degradation problems, such as denois-

ing [23] and motion deblurring [35, 24].

2.3. Unpaired Image Super­Resolution

A few recent works have addressed the SR problem with-

out using a paired training dataset. Different from the un-
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Figure 3: Data-flow diagram of proposed method. SR network UY↓Y can be learned in a paired manner through Lrec, even if the training

dataset {X,Y } is not paired. The whole network is end-to-end trainable.

paired translation methods, such as CycleGAN [58] and

DualGAN [49], unpaired SR aims to upscale source LR

images while preserving style and local structure. Bulat et

al. [4] and Lugmayr et al. [32] first trained a high-to-low

degradation network and then used the degraded outputs to

train a low-to-high SR network. Yuan et al. [51] proposed

a cycle-in-cycle network to simultaneously learn a degra-

dation network and an SR network. Different from our

method, the degradation network of Yuan et al. is determin-

istic, and the SR network is incorporated with the bi-cycle

network; thus, the usable loss function is limited. Zhao et

al. [56] also jointly stabilized the training of a degradation

network and SR network by utilizing a bi-directional struc-

ture. Similar to Yuan et al., the SR network of Zhao et al.

has a limited degree of freedom to select the loss function.

3. Proposed Method

Our goal is to learn a mapping FXY from an LR source

domain X to an HR target domain Y based on the given

unpaired training samples x (∈ X) and y (∈ Y ). Here,

we define “clean LR,” i.e., HR images downscaled with a

predetermined operation, as y↓ (∈ Y↓). The downscaling

operation Y → Y↓ used is a combination of Gaussian blur

with σ = (scale factor)/2 and bicubic downscaling. The

mapping FXY of our model is a combination of the two

mappings GXY↓
and UY↓Y , where GXY↓

is a mapping from

X to Y↓, and UY↓Y is an upscaling mapping from Y↓ to Y .

Figure 3 illustrates the proposed framework.

Domain transfer in LR. We use a CycleGAN [58]-based

model for the domain transfer in LR. Two generators, GXY↓

and its inverse mapping GY↓X , are simultaneously learned

to enforce cycle consistency, i.e. GXY↓
◦GY↓X(y↓) ≈ y↓

1.

The training of the generator GXY↓
(GY↓X ) requires a dis-

criminator DY↓
(DX ) that aims to detect translated samples

1F ◦G(x) := F (G(x)).

from the real examples y↓ (x).

Mapping from LR to HR. The upscaling mapping UY↓Y is

learned to reconstruct HR image y from a pseudo-clean LR

image GXY↓
◦ GY↓X(y↓) in a paired manner. Thus, any

pixel-wise loss functions can be used to train UY↓Y . Here-

after, we denote GXY↓
◦GY↓X(y↓) as “

◦
y↓”.

Adjustment with HR Discriminator. While
◦
y↓ is used

to train UY↓Y , the actual input at test time is GXY↓
(x).

Accordingly,
◦
y↓ ∼ GXY↓

(x) is required to minimize the

train–test discrepancy. Although this requirement is sat-

isfied to some extent by the normal CycleGAN, we in-

troduce an additional discriminator DX↑
, which takes the

output of UY↓Y as input so that UY↓Y (
◦
y↓) gets closer to

UY↓Y ◦ GXY↓
(x). Here, we define X↑ as a domain con-

sisting of UY↓Y ◦GXY↓
(x). Thus, X↑ is an unfixed domain

that shifts during training. Note that DX↑
updates the pa-

rameters of the two generators, and UY↓Y is simply used as

an amplifier of local image features.

3.1. Loss Functions

Adversarial loss. We impose an adversarial constraint [11]

on both generators GXY↓
and GY↓X . As a specific example,

an adversarial loss for GXY↓
and DY↓

is expressed as

Ladv(GXY↓
, DY↓

, X, Y↓) = Ey↓∼PY↓
[logDY↓

(y↓)]

+ Ex∼PX
[log(1−DY↓

(GXY↓
(x)))],

(1)

where PX (PY↓
) is the data distribution of the do-

main X (Y↓). GXY↓
and DY↓

simultaneously optimized

each other through a mini-max game between them, i.e.,

minGXY↓
maxDY↓

Ladv(GXY↓
, DY↓

, X, Y↓). Similar to the

CycleGAN framework, the inverse mapping GY↓X and

its corresponding discriminator DX are also optimized:

minGY↓X
maxDX

Ladv(GY↓X , DX , Y↓, X).

In our framework, the two generators are also optimized
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through an HR discriminator DX↑
:

Ladv((GXY↓
, GY↓X), DX↑

, Y↓, X↑)

= Ex∼PX
[logDX↑

(UY↓Y ◦GXY↓
(x))]

+ Ey↓∼PY↓
[log(1−DX↑

(UY↓Y (
◦
y↓)))].

(2)

The optimization process of Eq. 2 is expressed as

minGXY↓
,GY↓X

maxDX↑
Ladv((GXY↓

, GY↓X), DX↑
, Y↓, X↑).

Cycle consistency loss. The normal CycleGAN learns one-

to-one mappings because it imposes cycle consistency on

both cycles (i.e., X → Y → X and Y → X → Y ). We

relax this restriction by requiring cycle consistency for only

one side:

Lcyc(GY↓X , GXY↓
) = ‖GXY↓

◦GY↓X(y↓)− y↓‖1. (3)

Under the above one-side cycle consistency, the mapping

GY↓X is allowed to be one-to-many. Consequently, our

framework can deal with various noise types/distributions

of the LR source domain X .

Identity mapping loss. An identity mapping loss was in-

troduced in the original CycleGAN to preserve color com-

position for a task of painting → photo. We also impose the

identity mapping loss for GXY↓
to avoid color variation:

Lidt(GXY↓
) = ‖GXY↓

(y↓)− y↓‖1. (4)

Geometric ensemble loss. Geometric consistency, which

was introduced in a recent work [10], reduces the space

of possible translation to preserve the scene geometry. In-

spired by geometric consistency, we introduce a simple ge-

ometric ensemble loss that requires the flip and rotation for

the input images not to change the result:

Lgeo(GXY↓
) = ‖GXY↓

(x)−
8∑

i=1

T−1

i (GXY↓
(Ti(x)))/8‖1,

(5)

where the operators {Ti}
8

i=1
represent eight distinct pat-

terns of flip and rotation. Note that using Lgeo increases

the total training time by a factor of approximately 3/2.

Full objective. Our full objective for the two generators

and three discriminators is as follows:

Ltrans = Ladv(GXY↓
, DY↓

, X, Y↓)

+ Ladv(GY↓X , DX , Y↓, X)

+ γLadv((GXY↓
, GY↓X), DX↑

, Y↓, X↑)

+ λcycLcyc(GY↓X , GXY↓
)

+ λidtLidt(GXY↓
)

+ λgeoLgeo(GXY↓
),

(6)

where the hyperparameters λcyc, λidt, λgeo, and γ weight

the contributions of each objective.

While the SR network UY↓Y is independent of the gen-

erators and discriminators, it is used as an amplifier of the

Figure 4: Intermediate images of proposed method. x is im-

age “0886” from the DIV2K realistic-wild validation set, and y is

image “0053” from the DIV2K training ground-truth set.

local features of images to be inputted to DX↑
. Thus, we

jointly update the SR network during the training of the cor-

rection network. We use L1 loss to reconstruct an HR image

from a pseudo-clean LR image
◦
y↓:

Lrec = ‖UY↓Y (
◦
y↓)− y‖1. (7)

We again note that any pixel-wise loss (e.g., perceptual loss,

texture loss, and adversarial loss) can be used as Lrec in our

formulation.

3.2. Network Architecture

GXY↓
and UY↓Y

. We utilize an RCAN [55]-based ar-

chitecture as GXY↓
and UY↓Y . The RCAN is a very deep

SR network realized by a residual in residual structure with

short and long skip connections. The RCAN consists of 10

residual groups (RGs), where each RG contains 20 residual

channel attention blocks (RCABs). Our GXY↓
(UY↓Y ) is a

reduced version of the RCAN consisting of five RGs with

10 (20) RCABs. Note that the final upscaling layer included

in the original RCAN is omitted for GXY↓
.

GY↓X
. For the generator GY↓X , we use several residual

blocks with 5×5 filters and several fusion layers with 1×1
filters, where each convolution layer is followed by batch

normalization (BN) [16] and LeakyReLU. The two head

modules, including the one residual block, independently

extract the features of an inputted RGB image and single-

channel random noise N (0, 1) that simulates the random-

ness of distortions. Then, the two extracted features are

concatenated to be inputted to a main module consisting of

six residual blocks and three fusion layers.

DX , DY↓
and DX↑

. For the LR discriminators DX and

DY↓
, we use five convolution layers with strides of 1. The

convolution layers, except for the last layer, are followed by

LeakyReLU without BN. A similar architecture is also used

for the HR discriminator DX↑
but with a different stride

in the initial layers. For the case of scale facter = 2 (4),

strides of 2 are used for the first (and second) layer(s) of

DX↑
. We use PatchGAN [29, 17] for all the discriminators.

294



Method PSNR SSIM

Bicubic (for reference) 19.99 0.4857

Blind denoising/deblurring NC [27] + Bicubic 20.03 0.5049

+ RL-restore [50] + Bicubic 20.18 0.5119

Bicubic upscaling RL-restore [50] + SRN-Deblur [40] + Bicubic 20.13 0.5173

RL-restore [50] + DeblurGAN-v2 [25] + Bicubic 20.21 0.5158

Blind denoising/deblurring DBPN [13] (for reference) 19.82 0.4572

+ non Blind SR method RL-restore [50] + DeblurGAN-v2 [25] + DBPN [13] 20.25 0.5198

ZSSR [39] 19.91 0.4835

ZSSR [39] w/ KernelGAN [1] 19.45 0.4493

Blind denoising/deblurring IKC [12] 19.62 0.4251

+ Blind SR method RL-restore [50] + DeblurGAN-v2 [25] + ZSSR [39] 20.19 0.5217

RL-restore [50] + DeblurGAN-v2 [25] + ZSSR [39] w/ KernelGAN [1] 19.83 0.5137

RL-restore [50] + DeblurGAN-v2 [25] + IKC [12] 20.26 0.5140

Our method 21.32 0.5541

Table 1: Numerical comparison with state-of-the-art blind methods on DIV2K realistic-wild validation set (SR scale ×4). The best

and second-best results are highlighted in red and blue, respectively. We use the officially provided evaluation script2(validation stage

setting). Throughout this paper, the real configuration is used for ZSSR, and the Inception backbone model is used for DeblurGAN-v2.

“0896” and “0842” from
DIV2K realistic-wild
validation set

LR input RL-restore +
DeblurGAN-v2 +
DBPN

ZSSR RL-restore +
DeblurGAN-v2 +
ZSSR

RL-restore +
DeblurGAN-v2 +
IKC

Ours

Figure 5: Qualitative comparison with state-of-the-art blind methods on DIV2K realistic-wild validation set (SR scale ×4). Our

method reconstructs the fine details while removing artifacts, yielding the most visually pleasing results.

4. Experiments

4.1. Network Training

We used the Adam optimizer [21] with β1 = 0.5, β2 =
0.999, and ǫ = 10−8 to train the generators and discrimina-

tors. The SR network UY↓Y was similarly trained but with

a different β1 (= 0.9). The learning rates of all networks

were initialized to 1× 10−4. Then, the learning rates of the

networks other than UY↓Y were halved at 100k, 180k, 240k,

and 280k iterations. We trained our networks for more than

3×105 iterations with a mini-batch size of 16. In each itera-

tion, LR patches of 32× 32 and HR patches of correspond-

ing size were extracted as inputs in an unaligned manner.

Then, data augmentation of random flip and rotation was

performed on each training patch. We used PyTorch [36] to

conduct all the experiments.

4.2. Experiments on Synthetic Distortions

DIV2K realistic-wild dataset. We used the realistic-wild

set (Track 4) of the NTIRE 2018 Super-Resolution Chal-

lenge [42]. The realistic-wild set was generated by degrad-

ing DIV2K [41], consists of 2K resolution images that are

diverse in their content. DIV2K has 800 training images.

The realistic-wild set simulates real “wild” LR images via

×4 downscaling, motion blurring, pixel shifting, and noise

addition. The degradation operations are the same within a

single image but vary from image to image. Four degraded

LR images are generated for each DIV2K training image

(i.e., 3,200 LR training images in total). We trained our

model using the above 3,200 LR and 800 HR paired images

but with “unpaired/unaligned” sampling. We evaluated the

results on the 100 realistic-wild validation images because

the ground truths of the testing images were not provided.

Hyperparameters. We used the loss hyperparameters

λcyc = 1, λidt = 1, λgeo = 1, and γ = 0.1 throughout

the experiments in this subsection. The SR factor was ×4.

Intermediate images. Figure 4 shows visual examples

of the intermediate images of the proposed method. The

degradation network GY↓X degrades the input clean LR im-

age y↓ so that the output GY↓X(y↓) reproduces the noise

distribution of the real degraded image x. The reconstruc-

tion network GXY↓
is effective in removing the noises of
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Username PSNR SSIM

xixihaha 24.12 0.56

yyuan13 24.07 0.56

Hot Milk 23.90 0.56

yifita 23.87 0.56

cskzh 23.55 0.55

JSChoi 23.20 0.53

enoch 23.04 0.52

assafsho 22.93 0.51

hyu ss 22.57 0.49

cr2018 22.52 0.49

Ours 21.32 0.5541

Ours+ 21.35 0.5560

Table 2: Comparison with NTIRE 2018 baselines. Top 10 val-

idation results from NTIRE 2018 realistic-wild challenge website

are compared as pair-trained upper bounds. Ours+ is an enhanced

version of Ours using a standard self-ensemble technique [43].

Method PSNR SSIM

Ours 21.32 0.5541

Ours - w/o DX↑
21.29 0.5532

Ours - trained on y↓ 21.09 0.5312

Ours - trained on GY↓X
(y↓) 20.84 0.5500

Ours - trained on GY↓X
(y↓) - original RCAN 20.78 0.5482

Table 3: Ablation study. Some other variants of our network were

compared to verify the proposed method.

both the real (x) and fake (GY↓X(y↓)) degraded images.

Comparison with state-of-the-art blind methods. Be-

cause the blind SR method for multiple degradations has

not been studied sufficiently, we took a benchmark by com-

bining the SR method with the blind restoration methods

(Tab. 1, Fig. 5). We first explored the state-of-the-art blind

denoising methods: a patch-based method NC [27] and a

CNN-based method RL-restore [50]. RL-restore performed

better than NC. Then, we compared two CNN-based blind

deblurring methods, SRN-Deblur [40] and DeblurGAN-

v2 [25], based on the output of RL-restore. The perfor-

mances of these deblurring methods were almost equiva-

lent, but DeblurGAN-v2 ran faster. Finally, three state-

of-the-art SR methods were combined with RL-restore and

DeblurGAN-v2: a non-blind SR method DBPN [13] and

two blind SR methods ZSSR [39] and IKC [12]. We fur-

ther combined ZSSR with the recently proposed kernel esti-

mation method KernelGAN [1]. Our method outperformed

all of the above methods by a large margin; however, the

comparison was not completely fair because the compared

methods were not trained on the dataset used here.

Comparison with NTIRE 2018 baselines. Table 2 shows

a comparison with NTIRE 2018 baselines from the valida-

tion website3, where the dataset and evaluation script used

were the same as in our experiment. Note that although the

NTIRE 2018 competition provides a paired training dataset,

we trained our network in an unpaired manner. Thus, the

NTIRE 2018 baselines can be regarded as pair-trained upper

2https://data.vision.ee.ethz.ch/cvl/DIV2K/
3https://competitions.codalab.org/competitions/18026

Figure 6: Example image with perception-oriented training.

“0810” from DIV2K realistic-wild validation set is displayed.

bounds. Our result is inferior to the upper bounds in PSNR,

but the result of the more sophisticated indicator SSIM [46]

is comparable to the upper bounds. Because PSNR overes-

timates slight differences in global brightness and/or color

that do not significantly affect the perceptual quality [45],

we believe our method shows practically equivalent perfor-

mance to the pair-trained upper bounds.

Ablation study. To investigate the effectiveness of the

proposed method, we designed some other variants of our

network: (1) Ours - w/o DX↑
, where the HR discrimina-

tor DX↑
is removed (i.e. γ = 0), (2) Ours - trained on

y↓, where the SR network UY↓Y is trained on y↓ instead of
◦
y↓, which is equivalent to a simple combination of a style

translation network and SR network, and (3) Ours - trained

on GY↓X(y↓), where the SR network UY↓Y is trained on

GY↓X(y↓) instead of
◦
y↓ and only UY↓Y is used at testing

time, which is equivalent to the indirect approach illustrated

in Fig. 2b. For completeness, the variant (3) was validated

using the original RCAN model as the SR network, which

is larger than our total testing network UY↓Y ◦GXY↓
. These

variants underperformed compared to the proposed method

(Tab. 3). In particular, our full model outperformed variant

(3), meaning that the proposed pseudo-supervision is effec-

tive at reducing the train–test discrepancy.

Perception-oriented training. We also trained our model

with a perception-oriented reconstruction loss following

ESRGAN [44] to demonstrate the versatility of our method.

We replaced Eq. 7 with a combination of perceptual loss,

relativistic adversarial loss [19], and content loss as in ESR-

GAN, while the other loss functions and training procedure

were unchanged. The perceptually trained model gives a

more visually pleasing result than the normal model trained

with L1 reconstruction loss (Fig. 6).

4.3. Experiments on Realistic Distortions I

Large-scale face image dataset. In this subsection, we

follow the experimental procedure described by Bulat et
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Figure 7: Qualitative comparison with a state-of-the-art GAN-

based unpaired SR method (SR scale ×4). Input LR images are

from the LR test set provided by Bulat et al.

Method FID

SRGAN [28] 104.80

CycleGAN [58] 19.01

DeepDeblur [35] 294.96

Wavelet-SRNet [15] 149.46

FSRNet [8] 157.29

Bulat et al. [4] 14.89

Ours - perceptual 13.57

Table 4: FID-based performance comparison with state-of-the-

art methods. The dataset and evaluation script provided by Bu-

lat et al. were used. Lower scores indicate better results.

al. [4]. We used the dataset and evaluation script they

provided4. They collected 182,866 HR face images from

the Celeb-A [31], AFLW [22], LS3D-W [3], and VG-

GFace2 [6]. They also collected more than 50,000 real-

world LR face images from Widerface [48] that are diverse

in degradation types. 3,000 images were randomly selected

from the LR dataset and kept for testing. Then, all HR and

LR face images were cropped in a consistent manner using

the face detector [53]. The cropped HR and LR training

images were 64× 64 and 16× 16 patches, respectively.

Hyperparameters. For the experiments on realistic distor-

tions, we found that it is better to take x instead of y↓ as an

argument of the identity mapping loss. Thus, we used the

modified identity mapping loss

Lidt(GXY↓
) = ‖GXY↓

(x)− x‖1 (8)

instead of Eq. 4 in the following. We used the loss hyper-

parameters λcyc = 1, λidt = 2, λgeo = 1, and γ = 0.1.

We first upscaled all the 16 × 16 LR patches by a factor of

two using a bicubic method because the original size was

too small. Then, our network was trained on the 32×32 LR

patches and 64× 64 HR patches with an SR factor of ×2.

Comparison with state-of-the-art methods. We numeri-

cally and qualitatively compared our method with the state-

of-the-art GAN-based unpaired method proposed by Bu-

lat et al. [4]. Our method was also numerically compared

4https://github.com/jingyang2017/

Face-and-Image-super-resolution

Figure 8: One-to-many degradation examples. Examples of dif-

ferent LR images generated by our degradation network for differ-

ent random noise input.

with five related state-of-the-art methods: image SR method

SRGAN [28], face SR methods Wavelet-SRNet [15] and

FSRNet [8], unpaired image translation method Cycle-

GAN [58], and deblurring method DeepDeblur [35]. Please

see Ref. [4] for a more detailed explanation of each method.

Table 4 shows a numerical comparison with the related

state-of-the-art methods. We assessed the quality of the

SR results with the Fréchet inception distance (FID) [14]

because there were no corresponding ground-truth images.

CycleGAN, Bulat et al.’s, and our method, which are GAN-

based unpaired approaches, largely outperformed all other

methods. Besides, our method showed better performance

than CycleGAN and Bulat et al.’s. For completeness, we

calculated PSNR between the bicubically upscaled LR test

images and its SR results. The calculated PSNRs for the re-

sults of Bulat et al. and our method were 20.28 dB and 21.09

dB, respectively. These numerical results indicate that our

method produces perceptually better results than Bulat et

al.’s while maintaining the characteristics of the input im-

ages. A qualitative comparison is shown in Fig. 7.

One-to-many degradation examples. Visual examples

expressing the various noise intensities/types learned by our

degradation network GY↓X shown in Fig. 8. The one-sided

cycle consistency allows the mapping GY↓X to become one-

to-many, reproducing the various noise distributions of the

real LR images.

4.4. Experiments on Realistic Distortions II

DOTA and Inria aerial image dataset. We used two

aerial image datasets with different ground sample distances

(GSD) as source and target. We sampled 62 LR source im-

ages with the GSD in the range [55cm, 65cm] from a train-

ing set of DOTA [47] (a large-scale aerial image dataset for

object detection collected from different sensors and plat-

forms). For the HR target, we used the Inria aerial image

labeling dataset [33], which contains scenes from several

different cities but with the same GSD (30 cm). Note that

we used only the images of Vienna city (36 images) so that

the qualities of the target images are constant.

Hyperparameters. We used the loss hyperparameters

λcyc = 1, λidt = 10, λgeo = 100, and γ = 0.1. The

SR factor was ×2. In aerial images, the pixel sizes of ob-

jects such as vehicles and buildings are rather small, thus

we used larger λidt and λgeo than in the other experiments
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“P2331” from DOTA LR input RL-restore + Bicubic RL-restore + DBPN ZSSR Ours

Figure 9: Qualitative comparison with state-of-the-art blind methods on DOTA validation set (SR scale ×2). Zoom in for better view.

LR input w/o Lgeo w/ Lgeo

Figure 10: Effect of geometric ensemble loss. “P2768” from

DOTA validation set is displayed as example.

to maintain the local characteristics of the images. We grad-

ually elevated λgeo in the early stages of training to avoid a

mode where the entire image is uniform.

Comparison with state-of-the-art methods. We only pro-

vide a qualitative comparison in this subsection (Fig. 9) be-

cause there are no ground-truth HR images. The input LR

image was sampled from the DOTA validation set with the

GSD in the range of [55cm, 65cm]. As the benchmark, a

CNN-based blind denoising method RL-restore [50] was

first tested because the input LR images contained vis-

ible artifacts. RL-restore successfully removed the arti-

facts, but the fine details of the inputted images were re-

moved as well. The over-smoothed output of RL-restore is

slightly enhanced by applying a state-of-the-art SR method

DBPN [13]. A state-of-the-art blind SR method ZSSR [39]

was also tested, but the artifacts were not completely re-

moved. Unlike the above methods, our method super-

resolves the fine details while removing the artifacts, yield-

ing the most visually reasonable results.

Effect of geometric ensemble loss. We compared the SR

results with and without the geometric ensemble loss Lgeo

to confirm the effectiveness of Lgeo. Example images for

visual comparison are shown in Fig. 10. It can be seen that

the method without Lgeo produces geometrically inconsis-

tent results. By enforcing geometry consistency through

Lgeo, our method results in more reasonable mapping, pre-

serving geometrical structures of the input LR image.

4.5. Additional Experiment

We conducted an additional experiment on the dataset

provided in the recent AIM 2019 Real-World Super-

Resolution Challenge, where no training HR–LR image

Method PSNR SSIM LPIPS

ZSSR [39] 22.42 0.61 0.5996

ESRGAN [44] 20.69 0.51 0.5604

Lugmayr et al. [32] 21.59 0.55 0.4720

Ours 22.88 0.6612 0.4539

Ours+ 23.01 0.6655 0.4567

Table 5: Additional experiment on AIM 2019 Real-World

Super-Resolution Challenge dataset (Track 2). An officially

provided evaluation script was used for PSNR and SSIM calcu-

lations. A version of the LPIPS script used to evaluate our method

is v0.1 (v0.0 outputs lower LPIPS value). We used the loss hyper-

parameters λcyc = 1, λidt = 5, λgeo = 1, and γ = 0.1.

pairs are available. We focused on Track 2 of the challenge

which is a more general setting than Track 1 (see the compe-

tition website5 for more details). We compared our method

with Lugmayr et al. [32] which is a study of a GAN-based

unpaired SR method (indirect approach; Fig. 2b) recently

published by the organizers of the challenge. As shown

in Tab. 5, our method achieved superior scores in both the

distortion metrics (PSNR, SSIM) and the perception metric

(LPIPS [52]; lower is better). The visual results are pro-

vided in the supplemental material.

5. Conclusion

We investigated the SR problem in an unpaired set-

ting where the aligned HR–LR training set is unavailable.

Our network produces pseudo-clean LR images as the in-

termediate products from ground-truth HR images, which

are then used to train the SR network in a paired man-

ner (referred to as “pseudo-supervision” in this paper). In

this sense, the proposed method bridges the gap between

the well-studied existing SR methods and the real-world

SR problem without paired datasets. The effectiveness of

our method was demonstrated by extensive experiments

on diverse datasets: synthetically degraded natural images

(Sec. 4.2, 4.5), real-world face images (Sec. 4.3), and real-

world aerial images (Sec. 4.4).

While the proposed method is applicable to diverse

datasets, hyperparameter tuning is necessary for each case

to maximize the performance. Making the network more

robust against the hyperparameters will be future work.

5https://competitions.codalab.org/competitions/20164
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