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Abstract

Autonomous vehicles are expected to drive in complex

scenarios with several independent non cooperating agents.

Path planning for safely navigating in such environments

can not just rely on perceiving present location and mo-

tion of other agents. It requires instead to predict such

variables in a far enough future. In this paper we address

the problem of multimodal trajectory prediction exploiting

a Memory Augmented Neural Network. Our method learns

past and future trajectory embeddings using recurrent neu-

ral networks and exploits an associative external memory to

store and retrieve such embeddings. Trajectory prediction

is then performed by decoding in-memory future encodings

conditioned with the observed past. We incorporate scene

knowledge in the decoding state by learning a CNN on top

of semantic scene maps. Memory growth is limited by learn-

ing a writing controller based on the predictive capability

of existing embeddings. We show that our method is able

to natively perform multi-modal trajectory prediction ob-

taining state-of-the art results on three datasets. Moreover,

thanks to the non-parametric nature of the memory mod-

ule, we show how once trained our system can continuously

improve by ingesting novel patterns.

1. Introduction

What makes humans capable of succeeding in a large

variety of tasks is the capacity to learn from experience, re-

calling past events and generalizing to new ones. Learning

to drive is a clear example of this ability. In recent years

a lot of effort has been made to imitate this skill and to

develop autonomous vehicles that are able to safely drive

among other agents, either autonomous or driven by hu-

mans. Whereas remarkable progress has been made for au-

tomotive [2, 8, 38], current approaches still lack the ability

to explicitly remember specific instances from experience

when trying to infer possible future states of surrounding

agents. This is particularly important for predicting future

locations of moving agents, so to take appropriate deci-

sions and avoid collisions or potentially dangerous situa-

tions. Predicting future trajectories of such agents is intrin-
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Figure 1. MANTRA addresses multimodal trajectory prediction.

We obtain multiple future predictions given an observed past rely-

ing on a Memory Augmented Neural Network.

sically multimodal: vehicle dynamics give rise to a set of

similarly likely outcomes for an external observer (Fig. 1).

While humans can address this task by implicit learn-

ing, i.e. exploiting procedural memory (knowing how to do

things) from similar scenarios of previous experience, with-

out explicit and conscious awareness, for machines this task

has proven to be extremely hard. Common machine learn-

ing models, such as Recurrent Neural Networks, fail to ad-

dress it. They are capable to store past information into an

internal state, updated at every time step, and make predic-

tions based on long term patterns. But in such networks,

memory is a single hidden representation and is only ad-

dressable as a whole. State to state transition is unstructured

and global. Instead, an element-wise addressable memory

would be useful to selectively access only relevant pieces of

information. This would allow to peak into likely futures to

guide predictions.

In this paper we present MANTRA: Memory Aug-

mented Neural TRAjectory predictor. MANTRA is a novel

approach implementing a persistent Memory Augmented

Neural Network (MANN) for vehicle trajectory prediction.

In our model, an external associative memory is trained to

write pairs of past and future trajectories and keep in mem-
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ory only the most meaningful and non-redundant samples.

The model incrementally creates a knowledge base that

is used as experience to perform meaningful predictions.

This mimics the way in which implicit human memory

works. Since the knowledge base is built from trajectory

samples, it can also include instances observed while the

system is running, after it has been trained. In this way the

system gains experience online increasing its accuracy and

capability to generalise at no training cost.

To memorize samples, past and future trajectories are

stored in the memory in an encoded form, separately. In

fact, this permits to use the encoding of an observed trajec-

tory as a memory key to read an encoded future and decode

them jointly to generate a prediction. Therefore, the actual

coordinates are obtained decoding a future read from mem-

ory, conditioning it with the observed past. In this way, the

output is not a simple copy of previously seen examples, but

is instead a newly generated trajectory obtained both from

the system experience (i.e. its memory) and the instance

observed so far. By reading multiple futures from memory,

diverse meaningful predictions can be obtained. The main

contributions of this paper are the following:

• We propose a novel architecture for multiple trajectory

prediction based on Memory Augmented Neural Net-

works. To the best of our knowledge we are the first to

adopt MANNs for trajectory prediction.

• Our formulation, exploiting an encoder-decoder pipeline

augmented with an associative memory, is easier to in-

spect and provides naturally multimodal predictions, ob-

taining state-of-the-art results on three traffic datasets.

• Our model is able to improve incrementally, after it has

been trained, when observing new examples online. This

trait is important for industrial automotive applications

and is currently lacking in other state of the art predictors.

2. Related Work

Trajectory Prediction Significant effort has been made

in the past years regarding trajectory prediction. Sev-

eral researchers have focused on trajectories of pedestri-

ans [1, 13, 14, 27, 31], either regarded as individuals or

crowds, also exploiting social behaviors and interactivity

between individuals [1, 13, 14, 21, 27]. While relevant for

pedestrians, social behaviors are much less relevant for ve-

hicles [20]. In this context, focus shifts instead on the

observation of motion of the individual agents (their past

trajectory) and the understanding of the surrounding envi-

ronment [20, 33]. Traffic dynamics likely reduce to sim-

pler scenarios where movement is limited and constrained

by the environment. A notable exception is estimating lane

changes on highways [10, 18]. A few efforts have been

made to understand and predict vehicle trajectories in ur-

ban scenarios [20, 23, 33, 41]. Among them, DESIRE [20]

uses a Variational Autoencoder for estimating a distribu-

tion from which future trajectories can be sampled. The

method though is not able to generate confidence scores

to provide a ranked set of trajectories. A large number of

predictions is needed to cover all the search space and In-

verse Optimal Control is then used to extract a final ranked

subset. INFER [33] instead exploits a fully convolutional

model that takes into account intermediate semantic repre-

sentations and generates multimodal heatmaps of possible

future locations, then looking for peaks of the distribution.

In our work we address prediction of multiple vehicle

trajectories in urban scenes. Examples of contexts where

such multiple predictions may be necessary are roundabouts

and crossroads where vehicles might take different equally

possible paths. Differently from DESIRE [20] our approach

is able to directly estimate a small set of ranked trajectories

which already exhibit sufficient diversity to cover multiple

futures. Differently from INFER [33] we directly work with

coordinates instead of heatmaps, providing a better spatial

resolution and more precise predictions. Differently from

both DESIRE and INFER, we train a Memory Augmented

Neural Network model to generate multimodal trajectories,

which to the best of our knowledge has never been used

with this purpose. The usage of MANNs has two main ad-

vantages: (i) multiple futures can be read from memory for

a given trajectory observation, making the model capable

to predict multiple outcomes, complying to the multimodal

nature of the problem; (ii) by retrieving a likely future from

memory we can rely on an oracle that suggests what is go-

ing to happen in the near future.

A conceptually similar research direction to ours is the

one of intention-based methods [4, 7, 30]. Here, some an-

chor information (such as trajectories, actions or locations)

are predefined and then used to guide predictions after esti-

mating a probability distribution over each candidate. In

[30], predictions are conditioned by the state of a robot

agent, for which a goal is given or estimated. The authors

of [7] propose a model for intersections that generates a

likelihood over 5 fixed map zones, entailing different mo-

tion patterns. In [4], anchor trajectories are created with

k-means and random sampling over training data. To some

extent, our memory entries can be interpreted as anchors

encoding futures instead of intentions. However, we do not

choose a reference agent to condition predictions or restrict

the applicability to constrained scenarios.

In order to obtain meaningful predictions we also take

context into account and its physical constraints. Accord-

ing to this, the set of trajectory proposals obtained by the

MANN is refined by integrating knowledge of the surround-

ing environment using semantic maps. Finally, differently

for prior work, our trajectory prediction model is also capa-

ble of growing online, improving incrementally its perfor-

mance from new observations after it has been trained.
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Figure 2. Architecture of MANTRA. The encoding of an observed past trajectory is used as key to read likely future encodings from

memory. A multimodal prediction is obtained by decoding each future encoding, conditioned by the observed past. The surrounding

context is processed by a CNN and fed to the Refinement Module to adjust predictions.

Memory Networks Neural networks with memory capa-

bilities have been introduced to solve several machine learn-

ing problems which require to model a temporal dimension.

The most common models are Recurrent Neural Networks

(RNN) and their variants such as Long-Short Term Mem-

ories (LSTM) [15] and Gated Recurrent Units (GRU) [6].

However, in these models memory is a single hidden state

vector that encodes all the temporal information. So mem-

ory is addressable as a whole and they lack the ability to

address individual elements of knowledge, necessary to ap-

ply algorithmic manipulation and rapid inference. More-

over, state to state transition is unstructured and global. Be-

ing the state updated at each time-step, eventually it fails to

model very long term dependencies. Finally, the number of

parameters is tied to the size of the hidden state. So adding

knowledge from the external environment necessarily im-

plies increasing the size of the state. These characteristics

prevent to use these models to effectively solve classes of

problems like the one we address in this paper.

Recent works [3,12,16,19,22,28,29,32,34,35,37,39,40]

have proposed Memory Augmented Neural Networks, or

simply Memory Networks, to overcome the limitations of

RNNs. The principal characteristic of this model is the us-

age of a controller network with an external element-wise

addressable memory. This is used to store explicit infor-

mation and access selectively relevant items. The memory

controller is trained to dynamically managed memory con-

tent optimizing predictions. Differently from RNNs, state to

state transitions are obtained through read/write operations

and a set of independent states is maintained. An impor-

tant consideration is that in Memory Networks the number

of parameters is not tied to the size of the memory, i.e. in-

creasing the memory slots will not increase the number of

parameters.

While introduced recently, a number of applications of

this model have already appeared in literature. The first em-

bodiment of a Memory Network was proposed in Neural

Turing Machines (NTM) [12] to perform algorithmic tasks,

such as sorting or copying, which require sequential manip-

ulation steps. Thanks to a fully differentiable controller, the

model interacts with the memory through read/write opera-

tions. The architecture was later extended to perform one-

shot learning in [32]. Differently from NTM they trained

the MANN to implement a Least Recently Used memory

access strategy to write into rarely used locations.

In [37] MANNs have been proved to be able to effec-

tively address Question Answering tasks, where the model

has to answer questions related to a series of sentences.

In [34] the same problem is solved with an End-to-End

Memory Network with attention weights to shift importance

from one sentence to another. Recent approaches have pro-

posed a MANN to address the more complex problem of

Visual Question Answering [19, 22], training the MANN

to learn uncommon question-answer pairs. Online learn-

ing has also been tackled using Memory Networks. Rebuffi

et al. [29] learn a classifier adding classes incrementally.

MANNs for object tracking have been proposed where the

model is trained to memorize templates, which are updated

as the object is tracked [40].

All these MANNs rely on episodic memories. The sys-

tem learns to write and read from memory but the stored

data is limited only to the current set of observations (such

as a list of numbers to be sorted in [12] or a collection

of sentences for question answering in [37]). Differently

from prior work, we build a MANN with a memory that

is not episodic. Instead, it acts like a persistent memory

which stores an experience of relevant data to perform ac-

curate predictions for any observation and not just for a

restricted episode or set of samples. The rationale behind

this approach is that instead of solving simple algorithmic

tasks as a Neural Turing Machine, we learn how to create a

pool of samples to be used for future trajectory predictions.
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The proposed model learns to store in memory only what is

strictly needed to perform accurate predictions. Our usage

of MANN si close to [26], but differs substantially. While

they exploit the decoupling of embeddings to better fit data,

we leverage the disjoint representation to create multiple

outputs from a single input, leading to a fully multimodal

predictive capability of the overall system.

3. Model

We formulate the task of vehicle trajectory prediction as

the problem of estimating P (x̂F |xP , c), where x̂F is the pre-

dicted future trajectory, xP is the observed trajectory (or

past) and c is a representation of the context (e.g. roads,

sidewalks). We consider vehicle trajectories as a sequence

of 2-dimensional spatial coordinates. The past xP is given

by its positions observed up to some reference point identi-

fied as present. Similarly, the future xF is the sequence of

positions in which it will find itself at the next time steps.

3.1. Memory Based Trajectory Prediction

Given a sample trajectory xi = [xi
P , xi

F ], let πi = Π(xi
P )

and φi = Φ(xiF ) be two encoding functions that map the 2D

coordinates of past and future trajectories into two separate

latent representations. Similarly, let Ψ(πi, φi) be a function

that decodes a pair of past-future encodings into the coordi-

nates of the future sub-trajectory xi
F , as shown in Fig. 2.

We define M = {πi, φi} as an associative key-value

memory containing |M | pairs of past-future encodings.

When a new trajectory xkP is observed, its encoding πk

is used as key to retrieve meaningful samples from mem-

ory. Note that observed trajectories are all considered to

be past trajectories, since the future counterpart is yet to

be observed and is what we want to predict. The memory

addressing mechanism is implemented as a cosine distance

between past encodings, which produces similarity scores

{si} over all memory locations:

si =
πkπi

‖πk‖‖πi‖
i = 0, ..., |M | (1)

According to the similarity scores, the future encodings

of the top-K elements φj are separately combined with the

encoding of the observed past πk. The novel pairs of encod-

ings are transformed into 2D coordinates using the decoding

function Ψ: x̂
j
F = Ψ(πk, φj), with j = 1, ...,K. Note that

πk is fixed while φj varies depending on the sample read

from memory. Future encodings φj act as an oracle which

suggests possible outcomes based on the past observation.

This strategy allows the model to look ahead into likely fu-

tures in order to predict the correct one. Since multiple φj

can be used independently, we can decode multiple futures

and obtain a multimodal prediction in case of uncertainty

(e.g. a bifurcation in the road).

ENCODER

DECODER

ENCODERENCODER

Future trajectory

Past trajectory

Future trajectory reconstructionENCODER

Figure 3. Representation learning: past and future trajectories are

encoded separately; a decoder reconstructs future trajectory only.

3.2. Feature Representation Learning

The encoding-decoding functions Π,Φ,Ψ are trained

jointly as an autoencoder, as shown in Fig. 3. The encoders

learn to map past and future points into a meaningful rep-

resentation and the decoder learns to reproduce the future.

Instead of using just the future as input, we condition the re-

construction process also with an encoding of the past. This

is useful for two aspects. First, we are able to train two dif-

ferent encoders for past and future. The two encoders are

used to obtain separate representations for both keys (past)

and values (future) in memory. Second, we obtain recon-

structions of the future that is compatible with the past. This

is of crucial importance for prediction since at test time we

synthesize trajectory encodings by combining past and fu-

ture parts taken from different examples. This also allows

to generate trajectories that differ from the ones in memory

and are not just a simple copy of already observed samples.

3.3. Memory controller

Traditional Memory Augmented Neural Networks [12,

34, 37] are designed to observe collections of data, usually

referred to as episodes. The models are equipped with a

working memory to store relevant information about the

episode in order to generate a meaningful output for the

episode. Yet memory is cleared for each episode and what is

trained is the controller that decides what to read/write. The

supervision for training stems from the cost function at the

end of the episode, tracing gradients back to the controller.

As in standard memories, we train a controller to emit

a write probability P (w) every time that a sample is ob-

served but, differently from these approaches, we train it to

build a compact and expressive permanent memory. Train-

ing such a controller might result challenging since P (w)
does not depend only on the intrinsic importance of the ob-

served sample but also on the current state of the memory.

To solve this issue, we do not rely on the prediction loss for

supervision. We instead feed the reconstruction error e to

the controller, which decides if the network was sufficiently

close to the ground truth. To enforce this behavior we define

the controller loss Lc as:

Lc = e · (1− P (w)) + (1− e) · P (w) (2)
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where e is assumed to have values in [0, 1]. When the error

is low, i.e. e → 0, then

Lc ≈ P (w) (3)

therefore the write probability is minimized.

Conversely, when e → 1, then

Lc ≈ 1− P (w) (4)

and the controller maximizes the write probability.

What the controller is learning is an adaptive threshold

on the reconstruction error, that allows to store in memory

only what is useful to predict accurately, limiting redun-

dancy. If the model exhibits a large prediction error, the

controller writes the current sample with its ground truth

future encoding in memory. When this happens, it indicates

that the memory lacks samples to accurately reconstruct the

future. Hence, by writing the sample in memory, the model

will improve its prediction capabilities.

To satisfy the assumption of a bounded error function

with values in [0, 1] for the controller loss of Eq. 2, we in-

troduce an adaptive miss rate error function with a threshold

depending on the timestep:

e = 1−
1

N

N∑

i=1

✶i(x̂F , xF ) (5)

where ✶i(x̂F , xF ) is an indicator function equal to 1 if

the i-th point of the prediction x̂F lays within a threshold th

from the ground truth and 0 otherwise. We use a different

threshold for each timestep, allowing a given uncertainty

for the farthest point (4 seconds) and linearly decreasing

towards 0. In our experiments we use th4s = 2m.

3.4. Iterative Refinement Module

To ensure compatibility with the environment, we refine

predictions with an iterative procedure. Similarly to DE-

SIRE [20], we adopt a feature pooling strategy: first, a CNN

extracts a feature map γk from the context c; then, predic-

tions are overlapped with the feature map and, for each time

step coordinates, we extract the correspondent feature val-

ues (one per channel); finally, the resulting vector is fed to

a GRU and a fully connected that output trajectory offsets.

The CNN is: 8× (k3, s2, p1); 16× (k3, s1, p1), where k

is kernel size, s stride, p padding. Both layers have Batch-

Norm and ReLU. The GRU has a hidden state size of 48.

We do 4 iterations and we observed that increasing them

does not introduce substantial changes.

3.5. Training

We train our model to observe 2 seconds trajectories and

predict 4 seconds in the future. To achieve translation and

rotation invariance, each trajectory is normalized by shifting

the present in the origin and rotating the trajectory in order

to make it tangent with the Y-axis in the origin. In this way

all futures start from (0, 0) in an upward direction.

First, a pretraining of both the encoders and the decoder

is done jointly as an autoencoder. To do so, we feed pairs of

past and future trajectories belonging to the same samples,

reconstructing only the future coordinates. We then train the

memory controller, exploiting the learned past encoder and

future decoder and resetting memory after every epoch. As

controller we use a linear layer with sigmoid activation. The

trained controller allows the memory to be filled with use-

ful and non-redundant training samples by iterating over the

training set and measuring their reconstruction error. While

in principle the order in which samples are presented to the

memory for writing may result in different final content, in

our experiments we found that this does not affect the final

prediction result. As a last step, we jointly train the refine-

ment module and finetune the decoder. Here we feed the

decoder with past and future encodings belonging to differ-

ent samples, since the future is read from memory.

The two encoders and the decoder are implemented as

Gated Recurrent Units with a 48-dimensional hidden state

for each encoder and 96-dimensional for the decoder. The

GRU in the refinement module is initialized with the past

embedding and takes as input the predicted coordinates.

This provides the module with complete information about

the whole trajectory. We optimize Lc defined in Eq. 2 to

train the controller and a Mean Squared Error loss for de-

coder and refinement. All components are trained with the

Adam optimizer using a learning rate of 0.0001.

4. Experiments

4.1. Datasets

KITTI [11] The dataset includes many annotations such

as Velodyne LiDAR 3D scans, object bounding boxes and

tracks, calibration, depth and IMU. Not all data is present

for every video so we used the ones categorized as KITTI

Raw Data, following the split of DESIRE [20]. Although

the split is known, how to divide trajectories in data chunks

is not. To obtain samples we collect 6 seconds chunks (2

seconds for past and 4 for future) in a sliding window fash-

ion from all trajectories in the dataset, including the ego-

vehicle. We obtain 8613 top-view trajectories for training

and 2907 for testing. Note that these numbers are different

from the original DESIRE split since they claim to gather

2509 trajectories in total. To favor reproducibility and fu-

ture comparison we will publicly release our version of the

dataset upon publication. Since top-view maps are not pro-

vided by KITTI, we project semantic labels of static cate-

gories obtained with DeepLab-v3+ [5] from all frames in a

common top-view map using the Velodyne 3D point cloud

and IMU. The resulting maps have a spatial resolution of

0.5 meters, and will be released along with the trajectories.
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ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s

Kalman 0.51 1.14 1.99 3.03 0.97 2.54 4.71 7.41

Linear 0.20 0.49 0.96 1.64 0.40 1.18 2.56 4.73

MLP 0.20 0.49 0.93 1.53 0.40 1.17 2.39 4.12

MANTRA (top 1) 0.24 0.57 1.08 1.78 0.44 1.34 2.79 4.83

MANTRA (top 5) 0.17 0.36 0.61 0.94 0.30 0.75 1.43 2.48

MANTRA (top 10) 0.16 0.30 0.48 0.73 0.26 0.59 1.07 1.88

MANTRA (top 20) 0.16 0.27 0.40 0.59 0.25 0.49 0.83 1.49

DESIRE (top 1) [20] - - - - 0.51 1.44 2.76 4.45

DESIRE (top 5) [20]) - - - - 0.28 0.67 1.22 2.06

DESIRE (top 20) [20]) - - - - - - - 2.04

Table 1. Results on the KITTI dataset. Results obtained by DE-

SIRE are given as reference even if not comparable, due to the

data collection process.

Another smaller version of KITTI for trajectory predic-

tion has been recently proposed by [33] and is publicly

available. The authors propose 5 different train/test splits

and average results over all runs, so we follow this evalu-

ation protocol. We report experiments on both variants of

KITTI. In the following we will refer to KITTI as our split

obtained following DESIRE, unless stated otherwise.

Oxford RobotCar [25] & Cityscapes [9] The two

datasets RobotCar and Cityscapes have been adapted for

trajectory prediction in [33] to show zero-shot transfer ca-

pabilities on different domains. Of particular interest is the

ability to transfer to RobotCar since the sequences are ac-

quired in the UK where cars drive on the left-side of the

road. RobotCar has 6 seconds trajectories divided into 2

seconds for past and 4 for future. Cityscapes instead has

shorter videos and predictions are made only up to one sec-

ond in the future, as done in [33].

4.2. Evaluation metrics and Baselines

We report results in two common metrics for vehicle tra-

jectory prediction: Average Displacement Error (ADE) and

Final Displacement Error (FDE), where ADE is the average

L2 error between all future timesteps and FDE (sometimes

referred to as Horizon error) is the error at a given timestep.

As in [20, 33] we take the best out of K predictions to ac-

count for the intrinsic multimodality of the task. We com-

pare our approach with several baselines: a linear coordi-

nate regressor (Linear); a Multi-Layer Perceptron with two

layers trained as a coordinate regressor (MPL); a Kalman

filter [17], with a constant speed model used to propagate

the estimate without incorporating measures (Kalman). We

implemented and tested the baselines on the KITTI dataset

to show comparable results. When available we also report

existing baselines from the literature.

4.3. Results

Table 1 shows the results on the KITTI dataset. Simply

propagating the trajectory with a Kalman filter proves to

be insufficient to accurately predict future positions, espe-

cially over long time spans, with a FDE@4s higher than 7m.

ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s

Kalman 0.33 0.54 0.93 1.4 0.46 1.18 2.18 3.32

Linear 0.31 0.56 0.89 1.28 0.47 1.13 1.94 2.87

MLP 0.30 0.54 0.88 1.28 0.46 1.12 1.94 2.88

RNN Enc-Dec [36] 0.68 1.94 3.20 4.46 - - - -

Markov [33] 0.70 1.41 2.12 2.99 - - - -

Conv-LSTM (top 5) [33] 0.76 1.23 1.60 1.96 - - - -

INFER (top 1) [33] 0.75 0.95 1.13 1.42 1.01 1.26 1.76 2.67

INFER (top 5) [33] 0.56 0.75 0.93 1.22 0.81 1.08 1.55 2.46

MANTRA (top 1) 0.37 0.67 1.07 1.55 0.60 1.33 2.32 3.50

MANTRA (top 5) 0.33 0.48 0.66 0.90 0.45 0.78 1.22 2.03

MANTRA (top 10) 0.31 0.43 0.57 0.78 0.43 0.67 1.04 1.78

MANTRA (top 20) 0.29 0.41 0.55 0.74 0.41 0.64 1.00 1.68

Table 2. Results on the KITTI dataset (INFER split).

Learning based baselines all perform better than Kalman

filter, with the Multi-Layer Perceptron performing slightly

better than the linear regressor.

Models that generate a single prediction fail to address

the multimodality of the task, since they are trained to lower

the error with a single output even when there might be mul-

tiple equally likely desired outcomes. What may happen is

that in front of a bifurcation, the model predicts an average

of the two possible trajectories, trying to satisfy both sce-

narios. Examples of this behavior are shown in Fig. 4. Each

prediction of MANTRA instead follows a specific path, ig-

noring the others. This leads to high errors on some exam-

ples when generating only one future, since the model may

decide to follow a different likely path. On the other hand

as soon as we generate K multiple predictions, the top-K

error drastically decreases since we are able to cover diverse

future paths. We also report results from DESIRE [20] vary-

ing K. Even though these results are not directly compara-

ble as explained in Section 4.1, it is interesting to observe

how DESIRE quickly saturates when increasing K, while

our method keeps lowering the error significantly. This sug-

gests that MANTRA samples a higher diversity of futures

both at a coarse level (i.e. taking one road or another) and

at a fine level (i.e. different behaviors on the same road).

Some qualitative results on KITTI are shown in Fig 4, com-

paring them with the baselines.

Additionally, we evaluate MANTRA on the KITTI split

proposed in [33], as shown in Table 2. Here we also report

some available baselines from the state of the art, both for

single and multimodal predictions. With K = 1 our method

performs better or on par with INFER [33] at low timesteps,

yet losing some precision at 4s. Increasing K instead we are

able to largely outperform INFER over all timesteps.

Following [33], we showcase the ability of our model to

zero-shot transfer to other datasets. On Oxford RobotCar

(Tab. 3) MANTRA is still able to provide satisfactory re-

sults, consistently outperforming INFER across timesteps

for multimodal predictions. Analogously, on Cityscapes

(Tab. 4) the model obtains a lower error than the other meth-

ods. Here we report only errors at 1s in the future, which is

the maximum length of the trajectories in the dataset.
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(a) Linear (b) Kalman (c) MANTRA
Figure 4. MANTRA compared to Linear regression (a) and Kalman filter (b). Methods (a),(b) lack multi-modal capability. Past trajectories

are depicted in blue, ground truth in green and future predictions are cyan (a), purple (b) and red (c). In (c) highly ranked are darker.

ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s

INFER (top 1) [33] 1.06 1.35 1.48 1.68 1.31 1.71 1.70 2.56

INFER (top 5) [33] 0.85 1.14 1.29 1.50 1.18 1.58 1.58 2.41

MANTRA (top 1) 0.55 0.77 1.01 1.30 0.60 1.15 1.82 2.63

MANTRA (top 5) 0.55 0.68 0.82 1.03 0.58 0.88 1.37 2.07

MANTRA (top 10) 0.44 0.56 0.72 0.94 0.48 0.73 1.33 1.98

MANTRA (top 20) 0.31 0.43 0.59 0.83 0.35 0.61 1.24 1.96

Table 3. Results on the Oxford RobotCar dataset.

Method ADE FDE

Conv-LSTM (top 1) [33] 1.50 -

Conv-LSTM (top 3) [33] 1.36 -

Conv-LSTM (top 5) [33] 1.28 -

INFER (top 1) [33] 1.11 1.59

INFER (top 3) [33] 0.99 1.45

INFER (top 5) [33] 0.91 1.38

MANTRA (top 1) 0.81 1.42

MANTRA (top 3) 0.66 1.15

MANTRA (top 5) 0.60 1.00

MANTRA (top 10) 0.54 0.86

MANTRA (top 20) 0.49 0.79

Table 4. Results on the Cityscapes dataset at 1s in the future.

4.4. Incremental setting

Differently from prior work on trajectory prediction,

MANTRA is able to improve its capabilities online, i.e. ob-

serving other agents’ behaviors while driving. We simulate

an online scenario on KITTI, iteratively removing a small

set of 50 trajectories from the test set, presenting them to

the memory controller. The controller incorporates novel

patterns according to P (w). At each iteration we test the

predictor on the remaining test set. In Fig. 5 memory growth

and test error are shown for MANTRA with K=5 multiple

futures. Similar behaviors can be observed varying K. In-

terestingly, the memory size slowly grows while the error

keeps decreasing. Note that the memory stores only the

16% of the newly seen examples. To cope with the error

variance increase when the remaining set of samples de-

creases in size we average results over 100 runs.
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Figure 5. Online setting. Mean and variance of memory growth

(left) and error rate (right) averaged over 100 runs, increasing the

observed samples.

5. Model Analysis

In the following we perform ablation studies aimed at

highlighting the importance of components in our model.

We thoroughly investigate how the model organizes mem-

ory by checking what gets written and how it gets decoded.

Ablation Studies We investigate modifications of

MANTRA reporting results in Tab. 5 on KITTI. We test

the following: (i) without refinement; (ii) without decoder,

i.e. reading from memory using encodings but just copying

the correspondent future coordinates; (iii) without rotation

invariance, i.e. using trajectories with random rotations;

(iv) without memory controller, i.e. adding all training

samples in memory; (v) without encoder-decoder, i.e.

a Nearest Neighbor between past trajectory coordinates

copying the future of the closest sample in coordinate

space. On the one hand, when the memory is filled with all

training samples instead of selecting them with a controller,

the error drastically increases; on the other hand even worse

results are obtained when the samples are not encoded and

decoded with the recurrent GRU layers. Even removing

just the decoder lowers the precision of predictions con-

siderably. This should not come as a surprise, since the

decoder has the important role of adapting the suggested

future from memory to the current sample, making it

coherent with its past. Surprisingly enough instead, the
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ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s Memory Size

MANTRA (top 5) 0.17 0.36 0.61 0.94 0.30 0.75 1.43 2.48 190 (2.2 %)

MANTRA w/o ref. 0.18 0.39 0.67 1.04 0.33 0.85 1.59 2.65 190 (2.2 %)

MANTRA w/o dec. 0.25 0.46 0.76 1.18 0.42 0.91 1.75 3.12 190 (2.2 %)

MANTRA w/o rot. inv. 0.25 0.51 0.88 1.38 0.45 1.09 2.10 3.58 2170 (25.2 %)

MANTRA w/o ctrl. 0.20 0.45 0.82 1.34 0.37 1.02 2.07 3.64 8613 (100 %)

MANTRA w/o enc-dec. 0.24 0.58 1.08 1.75 0.47 1.36 2.74 4.68 8613 (100 %)

Table 5. Ablation study of the full method against variants with-

out specific components: decoder, refinement, rotation invariance,

trained controller, encoder-decoder. Errors are at K=5. Memory

size is shown as number of samples and % of the training set.

Figure 6. Decoded trajectories from memory.

refinement module does not play a very important role in

the reconstruction, suggesting that the originally generated

trajectories are already precise. Rotation invariance proves

to be very relevant in moderating memory size and improv-

ing accuracy. By adding rotation invariance to training we

lower the memory size from the 25.2% to the 2.2% of the

observed training set.

Memory inspection To understand what the model is

learning, we inspect what the controller stores in memory.

We take each sample and plot its decoded future to depict

a snapshot of every sample in memory. Fig. 6 shows all

samples from a memory filled for K=5 predictions.

In Fig. 7 we plot T-SNE projections [24] of past and fu-

ture encodings in memory, as points. On the left we plot

past embeddings, while on the right we report future em-

beddings. For each projected sample we show future tra-

jectories generated by the decoder, displayed starting from

T-SNE points. All trajectories in the image have an up-

ward trend due to the rotation invariance we introduce for

storing samples. Similar trajectories are clustered together,

indicating that the encoders are learning a manifold where

similar patterns are close. Observing the T-SNE of past en-

codings, the multimodal nature of the problem emerges. In

fact, the space appears to be organized mostly by trajectory

speed and for each point several possible future directions

are present. When trajectories have lower speed, futures are

free to span over many possible directions, while when tra-

jectories have higher speed, the futures vary more in length

rather than curvature.

Decoder Analysis We inspect the behavior of the decoder

and the influence that different pasts have on future recon-

structions. Encoder and decoder are jointly trained, but dif-

ferently from standard autoencoders, only part of the input

Figure 7. T-SNE representations of past (left) and future (right)

encodings stored in memory. Each point in the embedding space

is shown along with the decoded trajectory. Trajectories are color

coded by orientation (green tones) and speed (red tones).
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Figure 8. Influence of past in the decoder. (a) observed past; (b)

slower past; (c) faster past; (d) past embedding zeroed; (e) mul-

tiple randomized past embeddings. Blue: past trajectory used for

decoding. Red: future reconstruction. Green: original future.

is reconstructed, i.e. the future. The past has the important

role of conditioning the reconstruction so that we can gener-

alize to unseen examples. In Fig. 8 we show several recon-

structions of the same future, changing only the past encod-

ing and keeping fixed the future one. The reconstructions of

the original past yields a precise reconstruction. By chang-

ing the past by shortening it or stretching it, i.e. changing

the velocity, the reconstruction gets accelerated or deceler-

ated, affecting curvature. As a control experiment we also

use a vector of zeros or a random embedding. In both cases

the generated trajectories are very imprecise but still follow

approximately the original trend. These tests justify using

the decoder feeding a combination of encodings belonging

to different samples, as we do at test time. In fact the gener-

ated trajectories are new compared to the samples in mem-

ory and they adapt to the current observation.

6. Conclusions

We propose MANTRA, the first Memory Augmented

Neural TRAjectory prediction framework. Our method,

based on an associative memory, can natively grasp the in-

herently multi-modal nature of the future trajectory predic-

tion problem, yielding state of the art results on three traffic

datasets. Moreover, we show that the memory is able to

ingest novel samples lowering the error on unseen data.
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