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Figure 1: Given a face image, our network anonymizes the face based on the desired identity. In the figure, it can be seen the

variability of the generated faces, controlled from a given label. In each triplet, the first image is the real image, while the

other two images are different anonymized versions of the real image.

Abstract

The unprecedented increase in the usage of computer vi-

sion technology in society goes hand in hand with an in-

creased concern in data privacy. In many real-world sce-

narios like people tracking or action recognition, it is im-

portant to be able to process the data while taking care-

ful consideration in protecting people’s identity. We pro-

pose and develop CIAGAN, a model for image and video

anonymization based on conditional generative adversar-

ial networks. Our model is able to remove the identifying

characteristics of faces and bodies while producing high-

quality images and videos that can be used for any computer

vision task, such as detection or tracking. Unlike previ-

ous methods, we have full control over the de-identification

(anonymization) procedure, ensuring both anonymization

as well as diversity. We compare our method to several

baselines and achieve state-of-the-art results. To facilitate

further research, we make available the code and the mod-

els at https://github.com/dvl-tum/ciagan.

“All human beings have three lives: public, private,

and secret.”

Gabriel Garcı́a Márquez, [24]

* Authors contributed equally.

1. Introduction

The ubiquitous usage of computer vision technology in

society implies the automatic processing of large-scale vi-

sual data containing, more often than not, personal data.

While we are eager to take advantage of technology for

house monitoring, video conferencing and surveillance, we

are not willing to do so by giving away our personal privacy.

In fact, data privacy is an increasing concern, and entities

such as the European Union have already passed laws such

as the General Data Protection Regulations (GDPR)[1], to

guarantee data privacy. For computer vision researchers,

the creation of high-quality datasets which include peo-

ple is becoming extremely challenging, as every person in

the dataset needs to consent for the usage of his or her

image data. Recently, a popular dataset for person re-

identification, the Duke MTMC dataset [10], was taken of-

fline for privacy reasons.

Our key observation is that many computer vision tasks

such as person detection, multiple people tracking, or ac-

tion recognition, do not need to identify the people on the

videos, they just need to detect them. Classic anonymiza-

tion techniques, such as face blurring, significantly alter the

image and consequently result in a large detection perfor-

mance drop.

We propose a model to anonymize (or de-identify) im-

ages and videos by removing the identification character-

istics of people, while still keeping necessary features to
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allow face and body detectors to work. Importantly, the

images should still look realistic to a human observer, but

people on them should not be identifiable. Our proposed ap-

proach can be used to anonymize computer vision datasets

while retaining necessary information for tasks such as

detection, recognition or tracking. We leverage the gen-

erative power of Conditional Generative Adversarial Net-

works (CGAN) [25, 15] to generate anonymized images and

videos that look realistic. In existing GAN-based methods,

the image generation process is typically controlled by a

random noise vector to generate diverse outputs. Such a

random process is not suitable for anonymization purposes,

where we need to have guarantees that the identity has actu-

ally changed from input to output. To tackle this issue, we

propose a novel identity control discriminator. Our CIA-

GAN model fulfills the following important properties that

an anonymization system should have:

(i) Anonymization: the produced output must hide the

identity of the person in the original image. Essen-

tially, we are generating a new fake identity out of the

input image.

(ii) Control: the fake identity of the generated images is

governed by a control vector, so we have full control

over the real person-fake identity mapping.

(iii) New identities: the generated images must contain

only new identities not present in the training set.

(iv) Realistic: output images must look realistic in order

to be used by state-of-the-art detection and recognition

systems.

(v) Temporal consistency: temporal consistency and

pose preservation in videos should be ensured for tasks

like people tracking or action recognition.

By satisfying the aforementioned five properties, we en-

sure the anonymization of images and videos and the pro-

tection of data privacy. At the same time, our method guar-

antees that detectors will be able to use the anonymized

data, as our experiments demonstrate.

Our contribution in this work is four-fold:

• We propose a general framework that is suitable for the

anonymization of people in images and video streams.

• We show that images anonymized by our method can

be used by existing detection and recognition systems.

• We demonstrate state-of-the-art results in several

datasets, while at the same time qualitatively demon-

strate diversity and control over the generated images.

• We perform a comprehensive ablation study, showing

the importance of each building block of our model.

2. Related Work

Face Generation Since the advent of Generative Adver-

sarial Networks [8, 28], generation of realistic faces has

been an active research area [20, 16, 17]. Current state-

of-the-art models [17] are able to generate high-resolution

face images by progressively training large convolutional

neural networks. Diversity in appearance, race, hair and

eye color is achieved by adaptive instance normalization

[13]. Despite their impressive quality, by conditioning on

random noise and having no information about the origi-

nal face, those methods do not have control over the pose

of the generated face. Thus the blending of the face with

the other parts of the body is challenging and remains an

open research problem. Consequently, their usability in

anonymization applications is limited.

Image-to-Image and Video-to-Video Translation

Pix2Pix networks [15] and their unsupervised variant [40]

have shown impressive results on cross-domain image

translation, e.g., from winter to summer. Nevertheless,

it is not clear how suitable they are on making subtle

but important changes in images coming from the same

domain, such as faces or bodies. Closely related, there

has been recent work on ensuring temporal consistency

across videos for the task of face translation [38]. To ensure

temporal consistency, [38] condition the generator on both

the previous real and generated frames, in addition to the

estimated optical flow between the frames. While the work

demonstrates smooth temporal consistency, generated faces

usually resemble closely the original identities, and are not

suitable for the anonymization task.

Face Anonymization Until recently, face anonymization

has been achieved by pixelization, blurring or masking the

faces. Alternatively, [32] proposes to use segmentation-

based methods. Being based on heuristics rather than being

learned, there is no guarantee that these operations are opti-

mal for the task of de-identification. Critically, these meth-

ods often make faces undetectable and therefore unusable

in standard computer vision pipelines. We advocate the us-

age of machine learning to achieve anonymization that pre-

serves important features that are necessary for computer

vision tasks such as detection and tracking. This was pre-

viously explored in [29, 34, 14, 35, 7]. However, all these

works come with important limitations. The faces gener-

ated by [14] are still, in general, identifiable by humans.

[29] exhibits a similar issue and, furthermore, the method

has no control over the generation process, with every iden-

tity being mapped to the same fake identity. The work of

[34] focuses on altering facial landmarks which can lead to

unnatural looking results. Furthermore, their method does

not have explicit control over generated appearance. The

results of [35] are visually appealing, but due to an opti-

mization procedure for face alignment, the method is not
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Figure 2: Our CIAGAN model takes as input the image, its landmark, the masked face and the desired identity. The generator is an

encoder-decoder model where the encoder embeds the image information into a low dimensional space. The identity given as a one-hot

label is encoded via a transposed convolutional neural network and is fed in the bottleneck of the generator. Then the decoder decodes

the combined information of source images and the identities into a generated image. The generator plays an adversarial game with a

discriminator in a standard GAN-setting. Finally, we introduce an identity discriminator network, whose goal is to provide a guiding signal

to the generator about the desired identity of the generated face.

computationally efficient. Additionally, the method is de-

signed to work only with faces since it is based on a para-

metric face model, so it is not straightforward to extend it to

other domains such as full human bodies.

The state-of-the-art method is that of [7], where au-

thors show good qualitative results and an unprecedented

de-identification rate. However, while the generated im-

ages can fool recognition systems, in general, humans can

recognize the identity of the presented faces. More criti-

cally, none of these methods except for [14] and [7] make

any attempt at working with videos. [14] shows limited

experiments in video processing, but the temporal consis-

tency is not well-preserved. [7] shows very good tempo-

ral consistency, but as in the case of images, some identi-

ties are clearly not anonymized and easy to be spotted by

a human eye. Additionally, they lack control and diversity

to show differently anonymized outputs for the same input

face. Our CIAGAN model provides a general framework

in anonymizing both images and videos. By providing the

labels for the desired generated identities and mixing styles

of different identities, we have direct control over the de-

identification process. This results in not only high-quality

generated images but also with a much higher variability

between the images of the same identity (see Fig. 1).

3. CIAGAN

In this section, we detail our methodology to anonymize

images and videos. Our proposed Conditional Iden-

tity Anonymization Generative Adversarial Network (CIA-

GAN) leverages the power of generative adversarial net-

works to produce realistic images. In order to have con-

trol over the identity generation process and guarantee

anonymization, we propose a novel identity discriminator

to train CIAGAN. For the remainder of the section, we will

specifically refer to face anonymization, even though the

method is directly applicable to full bodies.

3.1. Method overview

We show a full diagram of CIAGAN in Fig. 2. The main

components of our method are the following:

Pose preservation and temporal consistency. We propose

using a landmark-based representation of the input face (or

body). This has two advantages: it ensures pose preserva-

tion which is especially useful for, e.g., tracking; it provides

a simple but efficient way to maintain temporal consistency

when working with videos.

Conditional GAN. We exploit the generative power of

GANs to produce realistic-looking results. It is important

that standard detection and tracking systems can be applied

to generated images without accuracy loss. Naturally, the

realistic-looking generated faces are easily detectable. We

achieve pose preservation by conditioning on the landmark

representation. We train the conditional GAN in an adver-

sarial game-theoretical way, where the discriminator judges

the realism of the images generated by the generator.

Identity guidance discriminator. We propose a novel

module that controls the identifying characteristics that the

generator injects to create the new image. The identity

discriminator and the generator play a collaboration game

where they work together to achieve their common goal

of generating realistic anonymized images. We now pro-

vide a more detailed description of the three modules of our

method.

3.2. Pose preservation and temporal consistency

Several de-identification methods [29, 7] take as input

the RGB image of the face to be anonymized. It is not sur-

prising that there typically is some leakage of face infor-
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mation to the generated image. Thus, while those methods

produce high-quality images, the identity of the generated

faces is not fully anonymized and can be often identified by

a human.

Landmark image. To make sure our generated faces can

not be linked to the original identity, we propose to work

with an abstraction of faces. More precisely, we use face

landmark images. This has two advantages: (i) the land-

mark image contains a sparse representation of the face

with little identity information left, avoiding identity leak-

age, and (ii) the generator is conditioned on the face shape,

allowing us to preserve the input pose in the output. This is

especially important as we intend to use the generated im-

ages and videos as inputs to computer vision algorithms. In

many vision applications, e.g. tracking, methods typically

leverage the pose of the face or the body. Thereby, assur-

ing the method will not change the pose of the anonymized

face or body is extremely useful. To hide as much identity

information as possible but still preserve the pose, instead

of using all 68 landmarks [18], we use only the face silhou-

ette, the mouth, and the bridge of the nose (see Fig. 2). This

allows the network the freedom of choosing several facial

characteristics, such as eye distance or eye shape, while at

the same time, preserving expressions that are dependent on

the mouth region, e.g. smiling or laughing, and the global

pose is given by the nose position. The landmarks are rep-

resented as a binary image which is fed as input to the gen-

erator.

Masked background image. Our goal is to generate only

the face region of an image and inpainting it to the original

image background. This allows our algorithm to focus the

learning power to the generation of faces (and not that of

background), and at the same time guarantees that we do not

have background changes that could interfere with the de-

tection or tracking algorithms. To achieve this, we provide

the generative model with the masked background image to-

gether with the landmark image. The masked background

image still contains the forehead region of the head. Once

the generator has access to this information, it can learn to

match the skin appearance of the generated face to the fore-

head skin color. This leads to overall better quality of visual

results. In cases there are multiple faces in the same image,

we detect each face on the image and sequentially apply our

anonymization framework.

Our pipeline can be additionally used for full-body

anonymization by simply replacing the mask image with a

segmentation mask representing the silhouette of the body.

In our case, we do not use body joints as a replacement for

the landmark image, as the silhouette of a person suffices as

a pose prior.

Temporal consistency. In order to work on videos, any

de-anonymization pipeline must ensure the temporal con-

sistency of generated images on the video sequence. The

state-of-the-art video translation model [38] ensures tempo-

ral consistency by using a discriminator that is conditioned

on the optical flow between corresponding frames. The op-

tical flow is computed via an external neural network [6],

which makes the framework both complex and computa-

tionally expensive. In our work, due to the nature of our in-

put representation, we obtain temporal consistency for free.

The landmarks of every frame are smoothed using a spline

interpolation over neighboring frames. Therefore, we pro-

vide the same framework for both images and videos, with

the only difference being the computationally cheap inter-

polation done at inference time.

3.3. Conditional generative adversarial networks

GAN framework. In simple terms, GANs combine two

neural networks: a generator G whose goal is to gener-

ate realistic-looking samples, and a discriminator D whose

goal is to differentiate between the real samples and the

generated ones. The networks are trained in an adversarial

manner with D being trained to maximize the probability of

assigning the correct label to both training and generated ex-

amples, and G being trained to minimize the probability of

D predicting the correct labels for the generated samples. In

other words, D learns to separate the real samples from the

generated ones, while G learns to fool D into classifying the

generated samples as real ones. It is well-known that GAN

training is hard and requires many tricks [23, 9, 4]. In this

work, we choose to train CIAGAN with the LSGAN loss

function [23]. The idea of using least-squares loss function

for GAN training is simple yet powerful: the least-squares

loss function is able to move the fake samples toward the

decision boundary, as it penalizes also samples that are cor-

rectly classified but still lie far away from real samples. This

is opposed to the cross-entropy loss that mostly penalizes

wrongly classified samples. Based on this property, LS-

GANs are able to generate samples that are closer to real

data.

The objective function of the discriminator in the LS-

GAN setting is defined as follows:

min
D

VLSGAN (D) =
1

2
Ex ∼ pdata(x)[(D(x)− b)2]+

1

2
Ez ∼ pz(z)[(D(G(z))− a)2],

(1)

where a and b are the labels for the fake and the real data.

The loss of the generator is defined as:

min
G

VLSGAN (G) =
1

2
Ez ∼ pz(z)[(D(G(z))− b)2], (2)

Without loss of generality, LSGAN can be replaced with

any of the other common loss functions used for GAN train-

ing [9, 4].
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Conditional GAN. In the classic GAN training setting, a

vector of random noise is given as input to the generator

in order to provide variability to the generated images. In

our case, it is necessary for the generated faces to be aligned

with the landmarks from the input image, for pose preserva-

tion and temporal consistency. Furthermore, we also need

to blend the generated faces seamlessly with a background.

To this end, we use the conditional GAN framework [15],

where we condition the generator with a landmark and a

masked image (background), as explained in Section 3.2.

The generator uses an encoder-decoder architecture [22].

The encoder brings the landmark and the masked image

to a low-dimensional representation (bottleneck), where it

is combined with identity representation while the decoder

takes combined representation and upsamples it to generate

the anonymized RGB image.

3.4. Identity guidance

With the two modules explained above, our model learns

to generate faces that look realistic and preserve the pose of

original images. However, if the entire variability in im-

age generation is provided by the landmark input, the net-

work quickly overfits on the training set, effectively doing

only image reconstruction. By doing so, it generates faces

that are very similar to those in the training dataset, forfeit-

ing the final anonymization goal. To solve this problem,

we introduce a novel identity guidance discriminator. More

precisely, for every given real image, we randomly choose

the desired identity of its corresponding generated image.

This identity – represented as on one hot-vector – is given

as input to a transposed convolutional neural network. The

network produces a parametrized version of the identity and

feeds it into the bottleneck of the generator. In this way, the

generator learns to generate a face with some of the charac-

teristics of the desired identity while keeping the pose of the

real image. In other words, the generated image is a compo-

sition of both the landmark identity and the desired identity.

The identity of the generated image must not be the same as

any of the real identities in order for the generated image to

be not recognizable.

The identity discriminator is designed as a siamese neu-

ral network pretrained using Proxy-NCA loss [26]. Pre-

training is done using real images, where the discrimina-

tor is trained to bring together features coming from the

images that belong to the same identity. During the GAN

training, we finetune the siamese network using contrastive

loss [2]. During this fine-tuning step, we allow the siamese

network to bring together the ID representation of the fake

images and the real images. The identity discriminator and

the generator are trained jointly in a collaborative manner.

The identity discriminator’s goal is to provide a guidance

signal to the generator to guide it towards creating images

whose representational features are similar to those of a par-

ticular identity.

The case for multiple object tracking. Of particular in-

terest is the control on the fake identity generation. We need

to be able to keep the same real person-fake identity map-

ping within a sequence taken from a camera e.g., multiple

object tracking, but at the same time change the mapping

for different cameras to avoid long-term tracking and po-

tential misuse of the data. To do so, when a person moves

from one camera to another, we replace its control vector

with a new one, in turn giving the person a new identity.

This is a simple yet powerful way of doing multiple object

tracking within the frames taken from a camera, without the

undesirable consequence of doing long-term tracking.

4. Experiments

In this section, we compare CIAGAN with several

classic and learning-based methods commonly used for

identity anonymization. Our method achieves state-of-the-

art qualitative and quantitative results in different image

and video datasets. We also present a set of comprehensive

ablation studies to demonstrate the effect of our design

choices. We first introduce the datasets, evaluation metrics

and baselines used throughout this section.

Datasets. We perform experiments on 3 public datasets:

• CelebA [21] The dataset consists of 202, 599 face im-

ages of 10, 177 unique identities. We use the aligned

version where each image is centered on a point in-

between person’s eyes, and then padded and resized to

have 178× 218 resolution, while maintaining original

face proportions. Each identity contains up to 35 pho-

tos. We use HOG [5] to construct face landmarks for

each face.
• MOTS [37] Our method can also be adapted to work

in other domains such as full-body anonymization. In-

stead of using face landmarks we use body segmen-

tation masks. The dataset consist of 3, 425 videos of

1, 595 different people.
• Labeled Faces in the Wild (LFW) [12] The dataset

consists of 6, 000 pair images, split in 10 different

splits, where half of the pairs contains images of same

identity, and the remaining pairs consist of images that

have different identities.

Baselines. We compare to standard anonymization methods

as well as learning-based methods.

• Simple Anonymization methods. We use pixeliza-

tion, blur and masking of faces and compare them with

our method.
• Image Translation methods. We use the popular

pix2pix [15] and CycleGAN [40] methods. We use

the official code given by the authors, and we present

the results in the supplementary material.
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• Face Replacement methods. We compare the re-

sults in de-identification with the state-of-the-art re-

sults given by [7].

4.1. Implementation details

We generate the landmarks and the masks using Dlib-ml

library [18]. We train our network on 128× 128 resolution

images, and use an encoder-decoder U-Net [31] architec-

ture for the generator. The identity vector is parametrized

by a transposed convolutional neural network containing a

fully connected layer followed by multiple transposed con-

volutional layers. The features coming from the landmark

and the identity branches are concatenated in the genera-

tor’s bottleneck. For the discriminator, we use a standard

convolutional neural network that has the same architecture

as the identity guidance network. We train our model for 60
epochs using the ADAM optimizer [19] with 1e−5 learning

rate. We set the beta hyperparameters β1, β2 to 0.5 and 0.9.

The total training time for the model is one day in a single

GPU. In the supplementary material, we give the remaining

implementation details and the network architectures.

4.2. Evaluation metrics

We evaluate all models in face detection and re-

identification metrics. We perform detection using HOG

[5] and SSH Detector [27]. To evaluate the performance

of the detectors, we use the percentage of detected faces.

For re-identification, we train a siamese neural network us-

ing Proxy-NCA [26]. Additionally, we use a pre-trained

FaceNet model [33] based on Inception-Resnet backbone

[36]. We use the standard Recall@1 evaluation metric for

re-identification. It measures the ratio of samples whose

nearest neighbor is from the same class. The metric can

take values from 0 to 100 with 0 showing perfect de-

identification rate and 100 showing perfect identification

rate. Note that in a balanced dataset, a random classifier

will produce (on average) a Recall@1 of 1/|C| where C is

the number of classes. Finally, we evaluate the visual qual-

ity of the generated images quantitatively using the Fréchet

Inception Distance (FID) [11], a metric that compares the

statistics of generated samples to those of real samples. The

lower the FID, the better, corresponding to more similar real

and generated samples.

4.3. Ablation Study

In this section, we perform an ablation study of our

method in order to demonstrate the value of our design

choices. In Table 1, we show several variants of our model.

Siamese indicates our full model, with a siamese identity

discriminator, and using landmarks as input. Classification

indicates replacing the siamese identity discriminator by a

classification network. As we can see, the results of the de-

tection drop more than 35 percentage points (pp). We also

Models Detection (↑) Recall@1 (↓) FID (↓)

Siamese 99.9 1.3 2.1

Classification 64.6 0.4 63.2

Faces 98.3 1.1 6.5

Table 1: Ablation study of our model. First row presents the result

of our model, second row shows the result of the model where the

siamese identity guidance network is replaced with a classification

network, while the third row shows the result of the model where

the generator accepts full face images instead of landmarks.

Models
Detection (↑) Identification (↓)

Dlib SSH PNCA FaceNet

Original 100 100 70.7 65.1

Pixelization 16 by 16 0.0 0.0 0.3 0.3

Pixelization 8 by 8 0.0 0.0 0.4 0.3

Blur 9 by 9 90.6 38.6 16.9 57.2

Blur 17 by 17 68.4 0.3 1.9 0.5

Ours 99.9 98.7 1.3 1.0

Table 2: Results of common existing detection and recognition

pre-trained methods. Lower (↓) results imply a better anonymiza-

tion. Upper (↑) results imply a better detection.

show what happens if instead of landmarks, entire face im-

ages are provided as input. In these cases, the detection rate

drops 1.6pp, and the FID score increases, showing that the

faces are both more difficult to be detected, and have lower

visual quality.

4.4. Quantitative results

Detection and Recognition. The first experiment eval-

uates two important capabilities that an anonymization

method should have: high detection rate and low identifi-

cation rate. That is, we do not want a trained system to be

able to find the identity of the newly generated face, but at

the same time, we still want a face detector to have a high

detection rate.

In Table 2, we show the detection and identification

results of our method compared to the other methods on

the CelebA dataset [21]. The detection rate of classical

HOG [5] and deep learning-based SSH [27] detectors in our

anonymized images is at almost 100%. Blurring methods

have a much lower detection rate in the images, while faces

in the pixelized images are not detectable at all.

The identification performance drops from more than

70% recall on the original dataset to 1− 1.5% recall on our

anonymized images. The CIAGAN generated images are

almost unrecognizable by any of the two identification sys-

tems. Note, pixelization methods reach 0.3% recall, equiva-

lent to random guessing, but that comes at the cost of delet-

ing all content from the image, making both detection and

identification impossible. In a setup where we want to fur-

ther use computer vision algorithms on anonymized data,

neither pixelization nor blurring is an option.
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De-ID method VGGFace2 (↓) CASIA (↓)
Original 0.986 ±0.010 0.965 ±0.016
Gafni et al. [7] 0.038 ±0.015 0.035 ±0.011
Ours 0.034± 0.016 0.019± 0.008

Table 3: Comparisons with SOTA in LWF dataset. Lower (↓)

identification rates imply better anonymization.

Recognition based on landmarks. Given that the input to

our generator is a landmark image, and not the actual image

we want to de-anonymize, one might argue that an identifi-

cation method that focuses on image pixels is easily fooled

by our method, as we saw in Table 2. What happens if CIA-

GAN is attacked by an identification method trained only

on landmarks? Will it still maintain its anonymization ca-

pabilities? We perform this experiment by training a similar

identification method [26] as before, but with landmarks as

the only input. We evaluate that by only using landmarks,

we can identify up to 30.5% compared to 70.7% when using

full images. However, when the same identifier is evaluated

on the landmarks extracted from our anonymized faces, the

performance drops to 1.9% recall. Even if the original land-

marks are used as input to our generation model, CIAGAN

uses them only as prior information to fuse it with the infor-

mation coming from the embedder network.

Are we just doing face swapping? In Section 3.3, we in-

troduced a novel identity guidance network that guides the

generator to produce images with similar features to those

of a given identity. One might argue that by doing so, the

generator is learning to only do face swapping, replacing the

face of the chosen identity into the landmarks of the source

image. We show that this is not the case, by evaluating the

identification rate of our generated images on the training

set of the real images. We set the label of the generated im-

ages to the labels of their desired identity. If the generator is

learning to do only face swapping, then a recognizer would

be able to identify correctly all generated images. How-

ever, we show that this is not the case. Neither FaceNet [33]

nor our model trained in P-NCA [26] are able to achieve a

higher recognition rate than a random guesser. Additionally,

in Fig. 3 we present a qualitative experiment, where the first

image of each row contains the source images while the first

image in each column is a randomly chosen image from the

desired identities. The other images are generated. We see

that the generated images take high-level characteristics of

their given identities (such as race or sex), but differ greatly

from the real images of those identities.

4.4.1 Comparison to SOTA in de-identification

In this section, we compare the de-identification

(anonymization) power of our model compared to

state-of-the-art [7]. We follow their evaluation protocol on

the LFW dataset [12]. The dataset consists of 10 different

Source

Id
e

n
ti

ty

Figure 3: Generated faces of our model, where a source image is

anonymized based on different identities.

splits, where each contains 600 pairs. A pair is defined as

positive if both elements share the same identity, otherwise

as negative. In every split, the first 300 pairs are positive,

and the remaining 300 pairs are negative. As in [7], we

anonymize the second image in every pair.

We use FaceNet [33] identification model, pre-trained on

two public datasets: VGGFace2 [3] and CASIA-Webface

[39]. The main evaluation metric is the true acceptance

rate: the ratio of true positives for a maximum 0.001 ra-

tio of false positives. We present the results in Table 3.

The network evaluated in real faces reaches a score of al-

most 0.99, nearly perfect identification. [7] achieves an im-

pressive anonymization performance by obtaining a score

of less than 0.04 using the networks trained in both datasets.

CIAGAN improves on this result and lowers the identifi-

cation rate to 0.034 using the network trained in [3] and

0.019 using the network trained in [39], thus improving

anonymization. On average, CIAGAN shows a 10.5% bet-

ter de-identification rate on the first dataset, and a 45.7%
better de-identification rate on the second dataset, while

keeping a high detection rate of 99.13%. The average per-

formance of 2.65% true positive rate shows that even a near-

flawless system would completely fail to find the true iden-

tities in our CIAGAN-processed data, showing the strength

of our method in achieving image anonymization.

4.5. Visual quality of the results

As can be seen in Table 1, our method reaches an FID

score of 2.08. Simple baselines such as blurring and image

translation methods reach a significantly higher (worse) FID

score. The FID score comparison and qualitative results of

the baselines can be found in the supplementary material.

We show a series of qualitative results. In Fig. 1, we

show the diversity of the generated images, when the con-
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Figure 4: Qualitative comparison with [7]. The image in the first

column is the source image. In the first row, we show the generated

images from the framework of [7], while in the second image, we

show the generated images from CIAGAN.

Source Faces as input Landmarks as input Gafni et al.

Figure 5: Qualitative comparison with [7] on temporal consis-

tency. From left to right: original frames; faces generated by our

model using faces as input; faces generated by our model using

landmarks as input, faces generated by [7].

trol vector of the identity discriminator changes. We see

that the generated images take high-level characteristics of

the desired identity (such as eye shape, race or sex) while

generating realistically looking images.

In Fig. 4, we qualitatively compare our results with

those of [7]. We see that our method not only provides im-

ages which are more dissimilar to the source image, but by

changing the control vector, our network is able to provide

much more diverse images than those of [7] where the au-

thors gradually change their control parameter λ (we can

still recognize N. Cage).

In Fig. 5, we demonstrate the temporal consistency of

our method and compare the results with those of [7]. We

see that the pose is preserved in all cases, yielding excellent

temporal consistency. At the same time, we see that the

CIAGAN version which works with landmarks produces

better looking images than the version trained on full faces.

Finally, in Fig. 6, we show an experiment on full-

body anonymization. The first image in each row is the

Source Anonymizations

Figure 6: The full-body anonymization results of our framework

in MOTS dataset.

source image, while the other images are the generated

anonymized images. In each case, we see that the generated

images keep the same posture as the source image coun-

terpart, but the clothes, colors and other parts of the body

are changed. To the best of our knowledge, this is the first

time that the same framework has been successfully used to

perform both face and body de-identification.

5. Conclusions and Future Work

Data privacy in images and videos is a serious prob-

lem. As computer vision researchers, we aim to do our part

from the technological side. In this paper, we proposed a

framework for face and body anonymization in images and

videos. Our novel CIAGAN model is based on conditional

generative adversarial networks, and faces are anonymized

based on a guiding identity signal provided by a siamese

network. We have shown that our method outperforms the

state-of-the-art in de-identification while showing large di-

versity in the generated images.

A weakness of all current de-identification methods

[30, 34, 7] is that they need the original faces to be initially

detected before they can be anonymized. Consequently,

any face that has not been detected can not be anonymized.

Therefore, these methods are not deployable in systems

where anonymization must be guaranteed. Our method suf-

fers from a similar issue as it is dependent on landmark de-

tection. As future work, we plan on working on full image

anonymization and further eliminate the need for landmark

detection in order to be able to handle extreme poses.
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