This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Can We Learn Heuristics For Graphical Model Inference Using Reinforcement
Learning?

Safa Messaoud, Maghav Kumar, Alexander G. Schwing
University of Illinois at Urbana-Champaign

{messaou2, mkumarlQ,

Abstract

Combinatorial optimization is frequently used in com-
puter vision. For instance, in applications like semantic
segmentation, human pose estimation and action recogni-
tion, programs are formulated for solving inference in Condi-
tional Random Fields (CRFs) to produce a structured output
that is consistent with visual features of the image. However,
solving inference in CRFs is in general intractable, and ap-
proximation methods are computationally demanding and
limited to unary, pairwise and hand-crafted forms of higher
order potentials. In this paper, we show that we can learn
program heuristics, i.e., policies, for solving inference in
higher order CRFs for the task of semantic segmentation,
using reinforcement learning. Our method solves inference
tasks efficiently without imposing any constraints on the form
of the potentials. We show compelling results on the Pascal
VOC and MOTS datasets.

1. Introduction

Graphical model inference is an important combinatorial
optimization task for robotics and autonomous systems. De-
spite significant progress in recent years due to increasingly
accurate deep net models, challenges such as inconsistent
bounding box detection, segmentation or image classifica-
tion remain. Those inconsistencies can be addressed with
Conditional Random Fields (CRFs), albeit requiring to solve
an inference task which is of combinatorial complexity.

Classical algorithms to address combinatorial problems
come in three paradigms: exact, approximate and heuristic.
Exact algorithms are often based on solving an Integer Linear
Program (ILP) using a combination of a Linear Program-
ming (LP) relaxation and a branch-and-bound framework.
Particularly for large problems, repeated solving of linear
programs is computationally expensive and therefore pro-
hibitive. Approximation algorithms address this concern,
however, often at the expense of weak optimality guarantees.
Moreover, approximation algorithms often involve manual
construction for each problem. Seemingly easier to develop
are heuristics which are generally computationally fast but

aschwing}@illinois.edu

guarantees are hardly provided. In addition, tuning of hyper-
parameters for a particular problem instance may be required.
A fourth paradigm has been considered since the early 2000s
and gained popularity again recently [93, 6, 85, 5, 27, 18]:
learned algorithms. This fourth paradigm is based on the
intuition that data governs the properties of the combinato-
rial algorithm. For instance, semantic image segmentation
always deals with similarly sized problem structures or se-
mantic patterns. It is therefore conceivable that learning
to solve the problem on a given dataset uncovers strategies
which are close to optimal but hard to find manually, since
it is much more effective for a learning algorithm to sift
through large amounts of sample problems. To achieve this,
in a series of work, reinforcement learning techniques were
developed [93, 6, 85, 5, 27, 18] and shown to perform well
on a variety of combinatorial tasks from the traveling sales-
man problem and the knapsack formulation to maximum cut
and minimum vertex cover.

While the aforementioned learning based techniques have
been shown to perform extremely well on classical bench-
marks, we are not aware of results for inference algorithms in
CRFs for semantic segmentation. We hence wonder whether
we can learn heuristics to address graphical model inference
in semantic segmentation problems? To study this we de-
velop a new framework for higher order CRF inference for
the task of semantic segmentation using a Markov Decision
Process (MDP). To solve the MDP, we assess two reinforce-
ment learning algorithms: a Deep Q-Net (DQN) [58] and a
deep net guided Monte Carlo Tree Search (MCTS) [82].

The proposed approach has two main advantages: (1)
Unlike traditional approaches, it does not impose any con-
straints on the form of the CRF terms to facilitate effective
inference. We demonstrate our claim by designing detection
based higher order potentials that result in computationally
intractable classical inference approaches. (2) Our method
is more efficient than traditional approaches as inference
complexity is linear in arbitrary potential orders while clas-
sical methods have exponential dependence on the largest
clique size in general. This is due to the fact that semantic
segmentation is reduced to sequentially inferring the labels

7589

Unaries f; (PSPNet)
Sec. 3.6

—

Binarics f; (Hypercolumns VGG16)
Sec. 3.6

Superpixel Pool

Node Embedding

GNN Policy Network

ling

CRF Energy
Sec. 3.2

EG) = T, fi00) + e [ii0is) + Teee Sel0)

!

Reward
Sec. 3.4

Output Groud Truth

Sec 3.3

Higher Order Potentials fe
(Bounding Boxes YoloV2)
Sec 3.6

AN
>

Figure 1: Pipeline of the proposed approach. Inference in a higher order CRF is solved using reinforcement learning for the task of

semantic segmentation. For Pascal VOC, unaries are obtained from PSPNet [

from VGGI16 [
graph embedding network [

of every variable based on a learned policy, without use of
any iterative or search procedure.

We evaluate the proposed approach on two benchmarks:
(1) the Pascal VOC semantic segmentation dataset [19],
and (2) the MOTS multi-object tracking and segmentation
dataset [860]. We demonstrate that our method outperforms
traditional inference algorithms while being more efficient.

2. Related Work

We first review work on semantic segmentation before
discussing learning of combinatorial optimizers.
Semantic Segmentation: In early 2000, classifiers were
locally applied to images to generate segmentations [42]
which resulted in a noisy output. To address this concern, as
early as 2004, He et al. [33] applied Conditional Random
Fields (CRFs) [43] and multi-layer perceptron features. For
inference, Gibbs sampling was used, since MAP inference
is NP-hard due to the combinatorial nature of the program.
Progress in combinatorial optimization for flow-based prob-
lems in the 1990s and early 2000s [21, 23, 26,9, 7, 8, 10, 40]
showed that min-cut solvers can find the MAP solution of
sub-modular energy functions of graphical models for bi-
nary segmentation. Approximation algorithms like swap-
moves and a-expansion [10] were developed to extend
applicability of min-cut solvers to more than two labels.
Semantic segmentation was further popularized by com-
bining random forests with CRFs [81]. Recently, the
performance on standard semantic segmentation bench-
marks like Pascal VOC 2012 [19] has been dramatically
boosted by convolutional networks. Both deeper [48] and
wider [61, 71, 92] network architectures have been proposed.
Advances like spatial pyramid pooling [94] and atrous spa-
tial pyramid pooling [15] emerged to remedy limited recep-
tive fields. Other approaches jointly train deep nets with

] and higher order potentials are based on detection bounding boxes from YoloV2 [

], pairwise potentials are computed using hypercolumns
]. The policy network is modeled as a

] following the CRF graph structure. It sequentially produces the labeling of every node (superpixel).

CRFs [16, 78, 28,79, 52, 14, 96] to better capture the rich
structure present in natural scenes.
CREF Inference: Algorithmically, to find the MAP configu-
ration, LP relaxations have been extensively studied in the
2000s [74, 13,41, 39, 22, 88, 34, 83, 35, 68, 89, 54, 53, 36,
, 76,77, 55, 56]. Also, CRF inference was studied as a
differentiable module within a deep net [95, 51, 57, 24, 25].
However, both directions remain computationally demand-
ing, particularly if high order potentials are involved. We
therefore wonder whether recent progress in learning based
combinatorial optimization yields effective algorithms for
high order CRF inference in semantic segmentation.
Learning-based Combinatorial Optimization: Decades
of research on combinatorial optimization, often also re-
ferred to as discrete optimization, uncovered a large amount
of valuable exact, approximation and heuristic algorithms.
Already in the early 2000s, but more prominently re-
cently [93, 6, 85, 5, 27, 18], learning based algorithms have
been suggested for combinatorial optimization. They are
based on the intuition that instances of similar problems
are often solved repeatedly. While humans have uncov-
ered impressive heuristics, data driven techniques are likely
to uncover even more compelling mechanisms. It is be-
yond the scope of this paper to review the vast literature
on combinatorial optimization. Instead, we subsequently
focus on learning based methods. Among the first is work
by Boyan and Moore [6], discussing how to learn to pre-
dict the outcome of a local search algorithm in order to
bias future search trajectories. Around the same time, rein-
forcement learning techniques were used to solve resource-
constrained scheduling tasks [93]. Reinforcement learning
is also the technique of choice for recent approaches address-
ing NP-hard tasks [5, 27, 18, 45] like the traveling salesman,
knapsack, maximum cut, and minimum vertex cover prob-
lems. Similarly, promising results exist for structured predic-

7590

2. Graph Embedding 3. Action Selection

(K iterations "\ NxiE|
€R
Input Graph i EE ails)
¢ i [0
—> —> —>
<
z Selected action
aj = (1, yi)
1. Initial State
sp=0 4. State Update
\ J 32:(([”’(")”“))

0

Figure 2: Illustration of one iteration of reinforcement learning
for the inference task. The policy network samples an action
a1 = (i1, y;) from the learned distribution 7(a1s1) € RN *I£]
at iteration ¢ = 1.

tion problems like dialog generation [46, 90, 31], program
synthesis [12, 50, 65], semantic parsing [49], architecture
search [97], chunking and parsing [80], machine transla-
tion [67, 62, 4], summarization [63], image captioning [70],
knowledge graph reasoning [91], query rewriting [60, 11]
and information extraction [59, 66]. Instead of directly learn-
ing to solve a given program, machine learning techniques
have also been applied to parts of combinatorial solvers, e.g.,
to speed up branch-and-bound rules [44, 73, 32, 38]. We
also want to highlight recent work on learning to optimize
for continuous problems [47, 2].

Given those impressive results on challenging real-world
problems, we wonder: can we learn programs for solving
higher order CRFs for semantic image segmentation? Since
CREF inference is typically formulated as a combinatorial op-
timization problem, we want to know how recent advances in
learning based combinatorial optimization can be leveraged.

3. Approach

We first present an overview of our approach before we
discuss the individual components in greater detail.

3.1. Overview

Graphical models factorize a global energy function as
a sum of local functions of two types: (1) local evidence;
and (2) co-occurrence information. Both cues are typically
obtained from deep net classifiers which are combined in
a joint energy formulation. Finding the optimal semantic
segmentation configuration, i.e., finding the minimizing ar-
gument of the energy, generally involves solving an NP-hard
combinatorial optimization problem. Notable exceptions
include energies with sub-modular co-occurrence terms.

Instead of using classical directions, i.e., heuristics, ex-
haustive search, or relaxations, here, we assess suitability of
learning based combinatorial optimization. Intuitively, we
argue that CRF inference for the task of semantic segmenta-
tion exhibits an inherent similarity which can be exploited by

learning based algorithms. In spirit, this mimics the design
of heuristic rules. However, different from hand-crafting
those rules, we use a learning based approach. To the best
of our knowledge, this is the first work to successfully apply
learning based combinatorial optimization to CRF inference
for semantic segmentation. We therefore first provide an
overview of the developed approach, outlined in Fig. 1.

Just like classical approaches, we also use local evidence
and co-occurrence information, obtained from deep nets.
This information is consequently used to form an energy
function defined over a Conditional Random Field (CRF).
An example of a CRF with variables corresponding to super-
pixels (circles), pairwise potentials (edges) and higher order
potentials obtained from object detections (fully connected
cliques) is illustrated in Fig. 1. However, different from clas-
sical methods, we find the minimizing configuration of the
energy by repeatedly applying a learned policy network. In
every iteration, the policy network selects a random variable,
i.e., the pixel and its label by computing a probability dis-
tribution over all currently unlabeled pixels and their labels.
Specifically, the pixel and label are determined by choos-
ing the highest scoring entry in a matrix where the number
of rows and columns correspond to the currently unlabeled
pixels and the available labels respectively, as illustrated in
Fig. 2.

3.2. Problem Formulation

Formally, given an image x, we are interested in pre-
dicting the semantic segmentation y = (y1,...,yn) €
Y. Hereby, N denotes the total number of pixels or su-
perpixels, and the semantic segmentation of a superpixel
i € {l,...,N}isreferred to viay; € L = {1,...,|L|},
which can be assigned one out of |£| possible discrete la-
bels from the set of possible labels £. The output space is
denoted Y = LV,

Classical techniques obtain local evidence f;(y;) for ev-
ery pixel or superpixel, and co-occurrence information in
the form of pairwise potentials f;;(y;, y,) and higher order
potentials f.(y.). The latter assigns an energy to a clique
¢ C{1,...,N} of variables y. = (y;);cc. For readability,
we drop the dependence of the energies f;, f;; and f. on the
image x and the parameters of the employed deep nets. The
goal of energy based semantic segmentation is to find the
configuration y* which has the lowest energy E(y), i.e.,

N

y*=argmin E(y) £ " fi(y) + > fijWirvi) + Y Le(ye)-

vey i=1 (i,§) €€ cec
(1)

Hereby, the sets £ and C subsume respectively the captured
set of pairwise and higher order co-occurrence patterns. De-
tails about the potentials are presented in Sec. 3.6.

Solving the combinatorial program given in Eq. (1), i.e.,
inferring the optimal configuration y* is generally NP-hard.

7591

Algorithm 1: Inference Procedure
sy =0
2: fort =1to N do
3: af =argmaxg,ca, T(at|st)
4 (if,yi;) < af
5: St+1 = St @ (sz, yl:)
6
7

. end for
: Return: g < sy

Different from existing methods, we develop a learning
based combinatorial optimization heuristic for semantic seg-
mentation with the intention to better capture the intricacies
of energy minimization than can be done by hand-crafting
rules. The developed heuristic sequentially labels one vari-
able y;, i € {1,..., N}, at a time.

Formally, selection of one superpixel at a time can be
formulated in a reinforcement learning context, as shown
in Fig. 2. Specifically, an agent operates int € {1,..., N}
time-steps according to a policy m(a¢|s:) which encodes
a probability distribution over actions a; € A; given
the current state s;. The current state subsumes in se-
lection order the indices of all currently labeled variables
I, C{1,...,N} as well as their labels y;, = (v:)ic1,, i-€-,
st € {(It,y1,) : I; € {1,...,N},yr, € L]}, We start
with s; = (). The set of possible actions Ay is the concatena-
tion of the label spaces L for all currently unlabeled pixels
JEe{L .. NI\ ie, Ay =@jeqr, nypg, £ Weem-
phasize the difference between the concatenation operator
and the product operator used to obtain the semantic segmen-
tation output space Y = LV, i.e., the proposed approach
does not operate in the product space.

As mentioned before, the policy m(a¢|s;) results in a
probability distribution over actions a; € A; from which we
greedily select the most probable action

ay = arg Jmax m(at|st)-
t t

The most probable action a; can be decomposed into the
index for the selected variable, i.e., iy and its state Yir €
L. We obtain the subsequent state s;; by combining the
extracted variable index ¢; and its labeling with the previous
state s;. Specifically, we obtain s;41 = sy B (ij,yi;) by
slightly abusing the ®-operator to mean concatenation to a
set and a list maintained within a state.

Formally, we summarize the developed reinforcement
learning based semantic segmentation algorithm used for
inferring a labeling ¢ in Alg. 1. In the following, we describe
the policy function 7 (a+|s:), which we found to work well
for semantic segmentation, and different variants to learn its
parameters 6.

3.3. Policy Function

We model the policy function 7g(a;|s;) using a graph
embedding network [17]. The input to the network is a

weighted graph G(V, £, w), where nodes V = {1,..., N},
correspond to variables, i.e., in our case superpixels, & is a set
of edges connecting neighboring superpixels, as illustrated
in Fig. | and w : £ — R is the edge weight function. The
weights {w(i, j)}1;:(i,5)ee) on the edges between a given
node 7 and its neighbors {j : (i,j) € £} form a distribu-
tion, obtained by normalizing the dot product between the
hypercolumns [30] g; and g; via a softmax across neighbors.
At every iteration, the state s; is encoded in the graph G by
tagging node ¢ € V with a scalar h; = 1 if the node is part
of the already labeled set I, i.e., if ¢ € I; and O otherwise.
Moreover, a one-hot encoding 7; € {0, 1}!*! encodes the
selected label of nodes i € I;. We set y; to equal the all
zeros vector if node ¢ has not been selected yet.

Every node ¢« € V is represented by a p-dimensional
embedding, where p is a hyperparameter. The embedding is
composed of §;, h; as well as superpixel features b; € RY’
which encode appearance and bounding box characteristics
that we discuss in detail in Sec. 4.

The output of the network is a |£|-dimensional vector
m; for each node i € V, representing the scores of the |L]
different labels for variable ¢.

The network iteratively generates a new representation
png) for every node ¢ € V by aggregating the current

embeddings ,ugk) according to the graph structure £ starting

from ,ul(.o) = 0, Vi € V. After K steps, the embedding
captures long range interactions between the graph features
as well as the graph properties necessary to minimize the

energy function E. Formally, the update rule for node ¢ is

Y Relu | 07 i +085:+ 0564058 S w(i,)l
ji(i,5)€E

2

where ng) € Rp, ng) € RpxI£lL Hék) € RP*F and Gflk) €

RP*P are trainable parameters. After K steps, m; for every
unlabeled node i € {1,..., N} \ I, is obtained via

mo= 05t Vi€ {1,... NI\ 1, 3)
where 05 € RI£1*? is another trainable model parameter. We
illustrate the policy function 7y (a¢|s:) and one iteration of
inference in Fig. 2.

3.4. Reward Function:

To train the policy, ideally, the reward function (s, a;)
is designed such that the cumulative reward coincides ex-
actly with the objective function that we aim at maximizing,
ie., Zf;l ri(s¢,ar) = —FE(§), where ¢ is extracted from
sny+1. Hence, at step ¢, we define the reward as the dif-
ference between the value of the negative new energy F
and the negative energy from the previous step F;_1, i.e.,
ri(st,a¢) = Fy_1(yr,_,) — F+(y1,), where Ey = 0. Poten-

7592

)

Table 1: Tllustration of the energy reward computation following the two proposed reward schemes on a fully connected graph with 3 nodes.

t i E; re = —(Ey — Er—1) re = +1 Graph

0 — 0 _ _ 0010,
11 f1(y1) —f1(y1) 142 LBy (v1)<B(91))V01} S
2 2 f1(y1)+f2(y2)+ f12(y1, y2) —f2(y2) — f12(y1, 92) “1+2- 1By (y1,v2) < Bt (v1,92)) 92} C@@

fr(y1)+f2(y2) + f3(y3) +fi2(y1, y2)

—f3(y3) — f23(y2, y3)

OXRO)

—1+2- ﬂ'{(Et(?ll ,¥2,Y3)<E¢(y1,v2.93))Vy3}

+f23(y2, y3) +f13(y1, ¥3)+ fi1,2,31 (W1, v2,¥3) —f13(y1,y3) — f{1,2,33 (1, Y2, ¥3)

tials depending on variables that are not labeled at time ¢ are
not incorporated in the evaluation of E;(yy,).

We also study a second scheme, where the reward is
truncated to +1 or —1, i.e., 7¢(s¢,a¢) € {—1, 1}. For every
selected node i, with label y;,, we compare the energy
function E}(y;,) with the one obtained when using all other
labels §;, € L\ y;,. If the chosen label y;, results in the
lowest energy, the obtained reward is +1, otherwise it is —1.

Note that the unary potentials result in a reward for ev-
ery time step. Pairwise and high order potentials result in
a sparse reward as their value is only available once all the
superpixels forming the pair or clique are labeled. We il-
lustrate the energy and reward computation on a graph with
three fully connected nodes in Tab. 1.

3.5. Learning Policy Parameters

To learn the parameters 6 of the policy function 7y (a|s;),
a plethora of reinforcement learning algorithms are appli-
cable. To provide a careful assessment of the developed
approach, we study two different techniques, Q-learning and
Monte-Carlo Tree Search, both of which we describe next.
Q-learning: In the context of Q-learning, we interpret the
| £|-dimensional policy network output vector corresponding
to a currently unlabeled node ¢ € {1,...,N} \ I; as the
Q-values Q(s:, a;; 6) associated to the action a; of selecting
node 7 and assigning label y; € L. Since we only consider
actions to label currently unlabeled nodes we obtain a total
of | A;| different Q-values.

We perform standard Q-learning and minimize the
squared loss (z — Q(s¢, ar; 0))?, where we use target z =
ymaxy Q(st41,0a’;0) + r(st, ay) for a non-terminal state.
The reward is denoted r; and detailed above. The terminal
state is reached when all the nodes are labeled.

Instead of updating the Q-function based on the current
sample (s, as, m4(S¢,at), S¢+1), wWe use a replay memory
populated with samples (graphs) from previous episodes. In
every iteration, we select a batch of samples and perform
stochastic gradient descent on the squared loss.

During the exploration phase, beyond random actions,
we encourage the following three different sets of actions
to generate more informative rewards for training: (1) Mj:
Choosing nodes that are adjacent to the already selected ones
in the graph. Otherwise, the reward will only be based on
the unary terms as the pairwise term is only evaluated if the

neighbors are labeled (¢ = 2 in Tab. 1); (2) Ms: Selecting
nodes with the lowest unary distribution entropy. The low
entropy indicates a high confidence of the unary deep net.
Hence, the labels of the corresponding nodes are more likely
to be correct and provide useful information to neighbors
with higher entropy in the upcoming iterations. (3) Ms:
Assigning the same label to nodes forming the same higher
order potential. Further details are in Appendix B.

Monte-Carlo Tree Search: While DQN tries to learn a
policy from looking at samples representing one action at
a time, MCTS has the inherent ability to update its policy
after looking multiple steps ahead via a tree search proce-
dure. At training time, through extensive simulations, MCTS
builds a statistics tree, reflecting an empirical distribution
7MCTS (4|s;). Specifically, for a given image, a node in the
search tree corresponds to the state s; in our formulation and
an edge corresponds to a possible action a;. The root node
is initialized to s; = (). The statistics stored at every node
correspond to (1) N(s;): the number of times state s; has
been reached, (2) N(a|s;): the number of times action a;
was chosen in state s; in all previous simulations, as well
as (3) 7¢(s¢, a): the averaged reward across all simulations
starting at s; and taking action a;. The MCTS policy is
defined as €15 (q,s;) = N]E[a(;lf)t)

an exploration-exploitation procedure modeled by a vari-
ant of the Probabilistic Upper Confidence Bound (PUCB)

[821: Ulay, s) = Rened o

Nasy T To(a]st) 775 5y During
exploration, we additionally encourage the same action sets
M1, My and M3 used for DQN. Also, similarly to DQN,
the generated experiences (s, 7CTS) are stored in a replay
buffer. The policy network is then trained through a cross
entropy loss

L(0) = =) Y m™TS(als) log my(als).

. The simulations follow

“)

to mach the empirically constructed distribution. Here, the
second sum is over all valid actions from a state s sampled
from the replay buffer and 7CTS (a|s) is the corresponding
empirically estimated distribution.

A more detailed description of the MCTS search process,
including pseudo-code is available in Appendix B. At infer-
ence time, we use a low budget of simulations. Final actions
are taken according to the constructed 7MCTS (a|s;).

7593

Table 2: Performance results for the minimizing the energy function E; under reward scheme 1 (R} = —(E¢ — E¢—_1)) and reward scheme 2 (Rf = =+1).

| | o | Unary | Unary + Pairwise | Unary + Pairwise + HOP1 | Unary + Pairwise + HOP1 + HOP2
g g 3
12l 5 | % |®r R} R? | BP TBP DD LFlip o-Exp R} R? | BP TBP DD LFlp a-Exp R} R? | R} R?
= 2
| | H | DQN MCTS DQN MCTS | DQN MCTS DQN MCTS | DQN MCTS DQN MCTS|DQN MCTS DQN MCTS
< | ToU (sp)| 85.21|88.59 88.04 8319 88.59 $8.59 [88.73 88.73 88.73 88.73 8872 4331 6651 8791 88.73 |89.26 89.27 8927 8927 8858 5743 7337 89.55 89.66 5834 7385 90.05 90.09
%] ToU (p) |69.05|72.56 7077 71.99 7256 72.56 |72.43 72.43 7243 7243 7243 3854 3875 7216 7243 |72.50 7259 7259 7260 7235 5188 5371 7283 72.85 5053 5171 7294 7295
o
S || 10U (sp) | 83.54|88.01 87.29 §8.01 88.01 88.01 |88.10 88.10 88.10 88.10 88.10 88.06 88.22 88.56 88.52 |88.54 88.53 88.55 8854 88.07 60.60 64.82 88.94 8891 [82.19 81.89 89.30 89.57
7 || 10U (p) |75.88]80.64 80.47 B80.64 80.64 B80.64 |80.68 80.68 80.68 80.68 80.68 80.54 80.86 80.84 80.75 [80.91 80.91 80.93 8091 80.65 57.36 59.73 8107 81.05 |74.94 7477 8123 8133
g
2
£ |2 10U (sp) | 84.91|87.39 87.34 87.39 87.39 87.39 |87.55 87.55 87.56 87.55 87.55 8223 83.67 87.80 87.84 |87.95 87.96 87.96 8795 87.54 37.80 57.66 8873 88.69 [43.99 4567 8843 8821
T ToU (p) |77.93|8235 8220 8235 8235 8235 8248 8248 8248 8247 8247 77.36 79.14 82.64 8270 |82.72 8272 8272 8271 8247 3665 5273 83.05 8295 |41.74 4244 8279 8267
Z [10U (sp) | 8249 82.64 80.98 82.64 82.64 82.64 |82.64 82.64 82.64 8264 8264 8030 8264 B82.65 82.64 |83.17 83.17 8317 83.17 8316 83.14 8330 8327 8328 [83.13 83.10 8329 8329
S |&] 10U (p) [79.01]79.23 7385 79.82 79.85 79.85 |79.86 79.86 79.86 79.86 79.86 78.08 78.85 79.88 79.86 [81.21 8121 81.21 8121 8117 80.61 81.92 82.68 8269 [80.61 80.63 8277 8277

The replay-memory for both DQN and MCTS is divided
into two chunks. The first chunk corresponds to the unary
potential, while the second chunk corresponds to the overall
energy function. A node is assigned to the second chunk if
its associated reward is higher than the one obtained from its
unary labeling. This ensures positive rewards from all the
potentials during training. Every chunk is further divided
into | L] categories corresponding to the |£| classes of the
selected node. This guarantees a balanced sampling of the
label classes in every batch during training. Beyond DQN
and MCTS, we experimented with policy gradients but could
not get it to work as it is an on-policy algorithm. Reusing
experiences for the structured replay buffer was crucial for
success of the learning algorithm.

3.6. Energy Function

Finally we provide details on the energy function E' given
in Eq. (1). The unary potentials f;(y;) € RI“! are obtained
from a semantic segmentation deep net. The pairwise poten-
tial encodes smoothness and is computed as follows:

fii (Wi ys) = V(Wi v5) - ap - Ligrg, <, o)

where ¢ (y;, y;) is the label compatibility function describing
the co-occurrence of two classes in adjacent locations and is
given by the Potts model:

1 ify #y;
0 otherwise

Y(yi,y;) = (6)

Moreover, |gF g;| is the above defined unnormalized weight
w(i,j) for the edge connecting the i™ and j™ nodes, i.e.,
superpixels. Intuitively, if the dot product between the hy-
percolumns g; and g; is smaller than a threshold 3, and the
two superpixels are labeled differently, a penalty of value),
incurs.

While the pairwise term mitigates boundary errors, we
address recognition errors with two detection-based higher
order potentials [3]. For this purpose, we use the YoloV2
bounding box object detector [69] as it ensures a good trade-
off between speed and accuracy. Every bounding box b is
presented by a tuple (I, ¢y, I,), where [, is the class label of
the detected object, c;, is the confidence score of the detection

and I, C {1,..., N} is the set of superpixels that belong to
the foreground detection obtained via Grab-Cut [72].

The first higher order potential (HOP1) encourages su-
perpixels within a bounding box to take the bounding box
label, while enabling recovery from false detections that do
not agree with other energy types. For this purpose, we add
an auxiliary variable z; for every bounding box b. We use
zp = 1, if the bounding box is inferred to be valid, otherwise
zp = 0. Formally,

Wy " Cp * Zielb]]‘y'i:lb if 2y = 0
Wy - Cp * Zielb]]-yi;élb if Zp — 1

fyn,, z) = (D

where, wp € R is a weight parameter. This potential can
be simplified into a sum of pairwise potentials between z;

and each Yi with i € Iy, i.e., f(y[b,zb) = Zielb fi,b(ym Zb),
where:

ibe =0
ifzy =1

W« Cy - Ly, =y,

Jip(yi, z) = (®)

wy - Ly,
This simplification enables solving the higher order potential
using traditional techniques like mean field inference [3].
To show the merit of the RL framework, we introduce
another higher order potential (HOP2) that can not be seam-
lessly reduced to a pairwise one:

f(ylb) =N]l(zielb yi=l)<%, ©)

with A\, and C' being scalar parameters. This potential is
evaluated for bounding boxes with special characteristics to
encourage the superpixels in the bounding box to be of label
l. Intuitively, if the number of superpixels ¢ € I having
label [is less than a threshold |I—Cb|, a penalty) incurs. For
Pascal VOC, we evaluate the potential on bounding boxes
b included in larger bounding boxes, as we noticed that the
unaries frequently miss small objects overlapping with other
larger objects in the image (I = [). For MOTS, we evaluate
this potential on bounding boxes of type ‘pedestrians’ over-
lapping with bounding boxes of type ‘bicycle.” As cyclists
should not be labeled as pedestrians, we set [to be the back-
ground class. Transforming this term into a pairwise one
to enable using traditional inference techniques requires an
exponential number of auxiliary variables.

7594

PSPNet

PSPNet

Figure 3: Success cases.

4. Experiments

In the following, we evaluate our learning based infer-
ence algorithm on Pascal VOC [19] and MOTS [19] datasets.
The original Pascal VOC dataset contains 1464 training and
1449 validation images. In addition to this data, we make
use of the annotations provided by [29], resulting in a total
of 10582 training instances. The number of classes is 21.
MOTS is a multi-object tracking and segmentation dataset
for cars and pedestrians (2 classes). It consists of 12 train-
ing sequences (5027 frames) and 9 validation ones (2981
frames). In this work, we perform semantic segmentation at
the level of superpixels, generated using SLIC [84]. Every
superpixel corresponds to a node ¢ in the graph as illustrated
in Fig. 1. The unary potentials at the pixel level are obtained
from PSPNet [94] for Pascal VOC and TrackR-CNN [86]
for MOTS. The superpixels’ unaries are the average of the
unaries of all the pixels that belong to that superpixel. The
higher order potential is based on the YoloV2 [69] bounding
box detector. Additional training and implementation details
are described in Appendix A.

Evaluation Metrics: As evaluation metrics, we use inter-
section over union (IoU) computed at the level of both super-
pixels (sp) and pixels (p). IoU (p) is obtained after mapping
the superpixel level labels to the corresponding set of pixels.
Baselines: We compare our results to the segmentations ob-
tained by five different solvers from three categories: (1) mes-
sage passing algorithms, i.e., Belief propagation (BP) [64]
and Tree-reweighted Belief Propagation (TBP) [87], (2) a
Lagrangian relaxation method, i.e., Dual Decomposition
Subgradient (DD) [37], and (3) move making algorithms,
i.e., Lazy Flipper (LFlip) [1] and a-expansion as imple-
mented in [20]. Note that these solvers can not optimize our
HOP2 potential. Besides, we train a supervised model that
predicts the node label from the provided node features.

Performance Evaluation: We show the results of solving
the program given in Eq. (1) in Tab. 2, for unary (Col. 5),
unary plus pairwise (Col. 6), unary plus pairwise plus HOP1
(Col. 7) and unary plus pairwise plus HOP1 and HOP2
(Col. 8) potentials. For every potential type, we report re-
sults on graphs with superpixel numbers 50, 250 and 500 for

Pascal VOC and 2000 for MOTS, obtained from DQN and
MCTS, trained each with the two reward schemes discussed
in Sec. 3.5. Since MOTS has small objects, we opt for a
higher number of superpixels. It is remarkable to observe
that DQN and MCTS are able to learn heuristics which out-
perform the baselines. Interestingly, the policy has learned
to produce better semantic segmentations than the ones ob-
tained via MRF energy minimization. Guided by a reward de-
rived just from the energy function, the graph neural network
(the policy) learns characteristic node embeddings for every
semantic class by leveraging the hypercolumn and bounding
box features as well as the neighborhood characteristics. The
supervised baseline shows low performance, which proves
the merit of the learned policies. Overall MCTS perfor-
mance is comparable to the DQN one. This is mainly due
to the learned policies being somewhat local and focusing
on object boundaries, not necessitating a large multi-step
look-ahead, as we will show in the following.

In Fig. 3, we report success cases of the RL algorithms.
Smoothness modeled by our energy fixed the bottle segmen-
tation in the first image. Furthermore, our model detects
missing parts of the table in the second image in the first row
and a car in the image in the second row, that were missed
by the unaries. Also, we show that we fix a mis-labeling of
a truck as a car in the image in the third row.

Flexibility of Potentials: In Fig. 4, we show examples of
improved segmentations when using the pairwise, HOP1
and HOP2 potentials respectively. The motorcycle driver
segmentation improved incrementally with every potential
(first image) and the cyclist is not detected anymore as a
pedestrian (second image).

Generalization and scalability: The graph embedding net-
work enables training and testing on graphs with different
number of nodes, since the same parameters are used. We
investigate how models trained on graphs with few nodes
perform on larger graphs. As shown in Tab. 3, compelling
accuracy and IoU values for generalization to graphs with up
to 500, 1000, 2000, and 10000 nodes are observed when us-
ing a policy trained on graphs of 250 nodes for Pascal VOC,
and to graphs with up to 5000 and 10000 nodes when using

7595

PSPNet

Pairwise HOP1 HOP2

Unaries

Figure 4: Output of our method for different potentials.

Table 3: Generalization of the learned policy.

| PSPNet | 500 | 1000 | 2000 | 10000

\ | DOQN MCTS | DQN MCTS | DQN MCTS | DQN MCTS

scal VOC

84.67
83.82

86.36
83.74

86.39
83.78

10000

84.66
83.80

88.74
83.06

88.73
83.01

5000

87.58
83.71

87.61
83.73

ToU (sp) —
ToU (p) 82.61

Pa:

| TrackR-CNN |

ToU (sp) — ‘

DQN DQN MCTS

76.73
84.69

76.69
84.63

79.80
83.46

\

MCTS |
79.81
8349

4
2| wup 84.98

Table 4: Run-time during inference in seconds for Pascal VOC dataset.

U+P+HOP1 U+P+HOP1

+HOP2

U+P

Nodes

|BP TBP DD L-Flip o-Exp DQN MCTS|BP TBP DD L-Flip o-Exp DQN MCTS|DQN MCTS
50 [0.14 0.52 028 0.2 001 004 020 |0.15 0.62 031 0.187 0.01 004 023 [0.04 024
250 [1.56 2.13 126 053 0.04 022 222 [1.70 277 1.65 059 007 022 289 022 3.01
500 [326 476 282 107 012 052 727 [337 537 370 097 022 053 917 |0.52 9.69
1000 [6.63 9.65 6.84 1.80 030 078 185 [7.22 104 747 225 036 078 21.6 [0.78 228
2000 (123 199 148 357 070 170 383 [127 239 151 447 072 170 432 |172 462
10000[72.8 1309 143.7 226 4.81 823 202.1 [88.7 140.1 1069 235 472 825 209.7 [8.20 2103

a policy trained on 2000 nodes for MOTS. Here, we consider
the energy consisting of the combined potentials (unary, pair-
wise, HOP1 and HOP2). Note that we outperform PSPNet
at the pixel level for Pascal VOC.

Runtime efficiency: In Tab. 4, we show the inference run-
time for respectively the baselines, DQN and MCTS. The
runtime scales linearly with the number of nodes and does
not even depend on the potential type/order in case of DQN,
as inference is reduced to a forward pass of the policy net-
work at every iteration (Fig. 2). DQN is faster than all the
solvers apart from a-exp. However, performance-wise, a-
expansion has worse results (Tab. 2). MCTS is slower as it
performs multiple simulations per node and requires compu-
tation of the reward at every step.

Learned Policies: In Fig. 5, we show the probability map
across consecutive time steps. The selected nodes are col-
ored in white. The darker the superpixel, the smaller the
probability of selecting it next. We found that the heuristic
learns a notion of smoothness, choosing nodes that are in
close proximity and of the same label as the selected ones.
Also, the policy learns to start labeling the nodes with low
unary distribution entropy first, then decides on the ones
with higher entropy.

Limitations: Our method is based on super-pixels, hence
datasets with small objects require a large number of nodes
and a longer run-time (MOTS vs. Pascal VOC). Also, our
method is sensitive to bounding box class errors, as illus-
trated in Fig. 6 (first example), and to the parameters calibra-

Figure 5: Visualization of the learned policy.
SLIC PSPNet

Image

Figure 6: Failure cases.

tion of the energy function, as shown in the second example
of the same figure. We plan to address the latter concern
in future work via end-to-end training. Furthermore, lit-
tle is know about deep reinforcement learning convergence.
Nevertheless, it has been successfully applied to solve com-
binatorial programs by leveraging the structure in the data.
We show that in our case as well, it converges to reasonable
policies.

5. Conclusion

We study how to solve higher order CRF inference for
semantic segmentation with reinforcement learning. The
approach is able to deal with potentials that are too expensive
to optimize using conventional techniques and outperforms
traditional approaches while being more efficient. Hence,
the proposed approach offers more flexibility for energy
functions while scaling linearly with the number of nodes
and the potential order. To answer our question: can we learn
heuristics for graphical model inference? We think we can
but we also want to note that a lot of manual work is required
to find suitable features and graph structures. For this reason
we think more research is needed to truly automate learning
of heuristics for graphical model inference. We hope the
research community will join us in this quest.
Acknowledgements: This work is supported in part by NSF
under Grant No. 1718221 and MRI #1725729, UIUC, Sam-
sung, 3M, and Cisco Systems Inc. (Gift Award CG 1377144).
We thank Cisco for access to the Arcetri cluster and Iou-Jen
Liu for initial discussions.

7596

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

B. Andres, J. H. Kappes, T. Beier, U. Kothe, and F. A. Ham-
precht. The lazy flipper: Efficient depth-limited exhaustive
search in discrete graphical models. In ECCV, 2012. 7

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D.
Pfau, T. Schaul, B. Shillingford, and N. De Freitas. Learning
to learn by gradient descent by gradient descent. In Proc.
NeurlIPS, 2016. 3

A. Arnab, S. Jayasumana, S. Zheng, and P. Torr. Higher order
conditional random fields in deep neural networks. In Proc.
ECCV, 2016. 6

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau,
A. Courville, and Y. Bengio. An actor-critic algorithm for
sequence prediction. In Proc. ICLR, 2017. 3

L. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neu-
ral Combinatorial Optimization with Reinforcement Learning.
In https://arxiv.org/abs/1611.09940, 2016. 1, 2

J. Boyan and A. W. Moore. Learning evaluation functions to
improve optimization by local search. JMLR, 2000. 1, 2

Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.
In Proc. ICCV, 2001. 2

Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. In Proc. EMMCVPR, 2001. 2

Y. Boykov, O. Veksler, and R. Zabih. Markov Random Fields
with Efficient Approximations. In Proc. CVPR, 1998. 2

Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate
Energy Minimization via Graph Cuts. PAMI, 2001. 2

C. Buck, J. Bulian, M. Ciaramita, W. Gajewski, A. Gesmundo,
N. Houlsby, and W. Wang. Ask the right questions: Active
question reformulation with reinforcement learning. In Proc.
ICLR, 2018. 3

R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli.
Leveraging grammar and reinforcement learning for neural
program synthesis. In Proc. ICLR, 2018. 3

C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approximation
algorithms for the metric labeling problem via a new linear
programming formulation. In Proc. SODA, 2001. 2

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic Image Segmentation with Deep Con-
volutional Nets and Fully Connected CRFs. In Proc. ICLR,
2015. 2

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmentation.
arXiv preprint arXiv:1706.05587, 2017. 2

L. C. Chen, A. G. Schwing, A. Yuille, and R. Urtasun. Learn-
ing Deep Structured Models. In Proc. ICML, 2015. * equal
contribution. 2

H. Dai, B. Dai, and L. Song. Discriminative embeddings of
latent variable models for structured data. In Proc. ICML,
2016. 2,4

H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learn-
ing Combinatorial Optimization Algorithms over Graphs. In
Proc. NeurIPS, 2017. 1,2

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

7597

M. Everingham, L. van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC)
Challenge. 1JCV, 2010. 2,7

A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut
algorithm for higher-order markov random fields. In /CCV,
2011. 7

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962. 2

A. Globerson and T. Jaakkola. Fixing max-product: Conver-
gent message passing algorithms for MAP LP-relaxations. In
Proc. NeurIPS, 2007. 2

A. Goldberg and R. Tarjan. A new approach to the maximum
flow problem. JACM, 1988. 2

C. Graber, O. Meshi, and A. G. Schwing. Deep structured
prediction with nonlinear output transformations. In NeurIPS,
2018. 2

C. Graber and A. G. Schwing. Graph structured prediction
energy networks. In NeurlPS, 2019. 2

D. Greig, B. Porteous, and A. Seheult. Exact maximum
a posteriori estimation for binary images. J. of the Royal
Statistical Society, 1989. 2

S. Gu, T. Lillicrap, Z. Ghahramani, R E. Turner, and S. Levine.
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy
Critic. In Proc. ICLR, 2017. 1,2

A. Guisti, D. Ciresan, J. Masci, L. Gambardella, and J.
Schmidhuber. Fast image scanning with deep max-pooling
convolutional neural networks. In Proc. ICIP, 2013. 2

B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.
Semantic Contours from Inverse Detectors. In Proc. ICCV,
2011. 7

B. Hariharan, P. Arbeldez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localization.
In Proc. CVPR, 2015. 2,4

D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y.
Ma. Dual learning for machine translation. In Proc. NeurIPS,
2016. 3

H. He, H. Daume, and J. M. Eisner. Learning to search in
branch and bound algorithms. In Proc. NeurIPS, 2014. 3

X. He, R. S. Zemel, and M. A. Carreira-Perpifian. Multiscale
Conditional Random Fields for Image Labeling. In Proc.
CVPR, 2004. 2

J. K. Johnson. Convex relaxation methods for graphical
models: Lagrangian and maximum entropy approaches. PhD
thesis, MIT, 2008. 2

V. Jojic, S. Gould, and D. Koller. Accelerated dual decompo-
sition for MAP inference. In Proc. ICML, 2010. 2

J. H. Kappes, B. Savchynskyy, and C. Schnoérr. A Bundle
Approach To Efficient MAP-Inference by Lagrangian Relax-
ation. In Proc. CVPR, 2012. 2

J. H. Kappes, B. Savchynskyy, and C. Schnorr. A bundle
approach to efficient map-inference by lagrangian relaxation.
In CVPR, 2012. 7

E. B. Khalil, P. Le Bodic, L. Song, G. L. Nemhauser, and B. N.
Dilkina. Learning to branch in mixed integer programming.
In Proc. AAAI 2016. 3

V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. PAMI, 2006. 2

[40]

[41]

(42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

V. Kolmogorov and R. Zabih. What Energy Functions Can
Be Minimized via Graph Cuts? PAMI, 2004. 2

V. N. Kolmogorov and M. J. Wainwright. On the optimality
of tree-rewegihted max-product message-passing. In Proc.
UAI, 2005. 2

S. Konishi and A. L. Yuille. Statistical cues for domain
specific image segmentation with performance analysis. In
Proc. CVPR, 2000. 2

J. Lafferty, A. McCallum, and F. Pereira. Conditional Random
Fields: Probabilistic Models for segmenting and labeling
sequence data. In Proc. ICML, 2001. 2

M. G. Lagoudakis and M. L. Littman. Learning to select
branching rules in the dpll procedure for satisfiability. ENDM,
2001. 3

A. Laterre, Y. Fu, M. K. Jabri, A.-S. Cohen, D. Kas, K.Hajjar,
T. S. Dahl, A. Kerkeni, and K. Beguir. Ranked reward: En-
abling self-play reinforcement learning for combinatorial op-
timization. In Proc. Deep RL Workshop NeurlIPS, 2018. 2

J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky.
Deep reinforcement learning for dialogue generation. In Proc.
EMNLP, 2016. 3

K. Li and J. Malik. Learning to Optimize. In Proc. ICLR,
2017. 3

X. Li, Z. Liu, P. Luo, C. Change, and X. Tang. Not all pixels
are equal: Difficulty-aware semantic segmentation via deep
layer cascade. In CVPR, 2017. 2

C. Liang, J. Berant, Q. Le, K.D. Forbus, and N. Lao. Neural
symbolic machines: Learning semantic parsers on freebase
with weak supervision. In Proc. ACL, 2016. 3

C. Liang, M. Norouzi, J. Berant, Q. Le, and N. Lao. Memory
augmented policy optimization for program synthesis with
generalization. In Proc. NeurIPS, 2017. 3

Z.Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image
segmentation via deep parsing network. In ICCV, 2015. 2

J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. In Proc. CVPR, 2015.
2

A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A.
Smith, and E. P. Xing. An Augmented Lagrangian Approach
to Constrained MAP Inference. In Proc. ICML, 2011. 2

0. Meshi and A. Globerson. An Alternating Direction Method
for Dual MAP LP Relaxation. In Proc. ECML PKDD, 2011.
2

0. Meshi, M. Mahdavi, and A. Schwing. Smooth and Strong:
MAP Inference with Linear Convergence. In Proc. NIPS,
2015. 2

O. Meshi and A. G. Schwing. Asynchronous Parallel Coordi-
nate Minimization for MAP Inference. In Proc. NIPS, 2017.
2

S. Messaoud, D. Forsyth, and A. Schwing. Structural consis-
tency and controllability for diverse colorization. In ECCV,
2018. 2

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidje-
land, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 2015. 1

[59]

(60]
[61]

[62]

(63]

[64]

[65]

(66]

(67]

[68]

[69]

(70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

7598

K. Narasimhan, A. Yala, and R. Barzilay. Improving informa-
tion extraction by acquiring external evidence with reinforce-
ment learning. In Proc. EMNLP, 2016. 3

R. Nogueira and K. Cho. Task-oriented query reformulation
with reinforcement learning. In Proc. EMNLP, 2017. 3

H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In /CCV, 2015. 2

M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D.
Schuurmans, et al. Reward augmented maximum likelihood
for neural structured prediction. In Proc. NeurIPS, 2016. 3
R. Paulus, C. Xiong, and R. Socher. A deep reinforced model
for abstractive summarization. In Proc. ICLR, 2018. 3

J. Pearl. Reverend bayes on inference engines: a distributed
hierarchical approach. In Proc. AAAI, 1982. 7

T. Pierrot, G. Ligner, S. E. Reed, O. Sigaud, N. Perrin, A.
Laterre, D. Kas, K. Beguir, and N. Freitas. Learning com-
positional neural programs with recursive tree search and
planning. NeurIPS, 2019. 3

P. Qin, W. Xu, and W. Y. Wang. Robust distant supervision
relation extraction via deep reinforcement learning. In Proc.
ACL,2018. 3

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence
level training with recurrent neural networks. In Proc. ICLR,
2016. 3

P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-
passing for graph-structured linear programs: Proximal meth-
ods and rounding schemes. JMLR, 2010. 2

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Proc.
CVPR, 2016. 2,6, 7

S.J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel.
Self-critical sequence training for image captioning. In Proc.
CVPR, 2017. 3

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 2015. 2

C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive
foreground extraction using iterated graph cuts. In Proc. TOG,
2004. 6

H. Samulowitz and R. Memisevic. Learning to solve QBF. In
Proc. AAAI 2007. 3

M. L. Schlesinger. Sintaksicheskiy analiz dvumernykh zritel-
nikh signalov v usloviyakh pomekh (Syntactic analysis of
two-dimensional visual signals in noisy conditions). Kiber-
netika, 1976. 2

A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Dis-
tributed Message Passing for Large Scale Graphical Models.
In Proc. CVPR, 2011. 2

A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun.
Globally Convergent Dual MAP LP Relaxation Solvers using
Fenchel-Young Margins. In Proc. NeurIPS, 2012. 2

A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Glob-
ally Convergent Parallel MAP LP Relaxation Solver using
the Frank-Wolfe Algorithm. In Proc. ICML, 2014. 2

A. G. Schwing and R. Urtasun. Fully Connected Deep Struc-
tured Networks. In https://arxiv.org/abs/1503.02351, 2015.
2

[79]

[80]

(81]

(82]

[83]

[84]
[85]

[86]

[87]

(88]

(89]

(90]

[91]

(92]

(93]

[94]

[95]

[96]

[97]

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun. OverFeat: Integrated Recognition, Localization
and Detection using Convolutional Networks. In Proc. ICLR,
2014. 2

A. Sharaf and H. Daumé III. Structured prediction via learn-
ing to search under bandit feedback. In Proc. Workshop on
Structured Prediction for NLP ACL, 2017. 3

J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost:
Joint Appearance, Shape and Context Modeling for Multi-
Class Object Recognition and Segmentation. In Proc. ECCV,
2006. 2

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 2016. 1, 5
D. Sontag, T. Meltzer, A. Globerson, and T. Jaakkola. Tight-
ening LP Relaxations for MAP using Message Passing. In
Proc. NeurIPS, 2008. 2

SLIC Superpixels Compared to State-of-the Art Super-
pixel Methods. Slic superpixels. TPAMI, 2012. 7

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In
Proc. NeurIPS, 2015. 1, 2

P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar,
A. Geiger, and B. Leibe. Mots: Multi-object tracking and
segmentation. In CVPR, 2019. 2,7

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-
reweighted belief propagation algorithms and approximate ml
estimation by pseudo-moment matching. In AISTATS, 2003.
7

T. Werner. A Linear Programming Approach to Max-sum
Problem: A Review. PAMI, 2007. 2

T. Werner. Revisiting the linear programming relaxation ap-
proach to Gibbs energy minimization and weighted constraint
satisfaction. PAMI, 2010. 2

J.D. Williams, K. Asadi, and G. Zweig. Hybrid code net-
works: practical and efficient end-to-end dialog control with
supervised and reinforcement learning. In Proc. ACL, 2017.
3

W. Xiong, T. Hoang, and W. Y. Wang. Deeppath: A rein-
forcement learning method for knowledge graph reasoning.
In Proc. EMNLP, 2017. 3

F. Yu and V. Koltun. Multi-scale context aggregation by
dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
2

W. Zhang and T. G. Dietterich. Solving combinatorial opti-
mization tasks by reinforcement learning: A general method-
ology applied to resource-constrained scheduling. JAIR, 2000.
1,2

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017. 2,7

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z.
Su, D. Du, C. Huang, and P. Torr. Conditional random fields
as recurrent neural networks. In /CCV, 2015. 2

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z.
Su, D. Du, C. Huang, and P. H. S. Torr. Conditional Random
Fields as Recurrent Neural Networks. In Proc. ICCV, 2015. 2
B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning. In Proc. ICLR, 2017. 3

7599

