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Figure 1: Our model Pix2Surf allows to digitally map the texture of online retail store clothing images to the 3D surface of

virtual garment items enabling 3D virtual try-on in real-time.

Abstract

In this paper, we present a simple yet effective method to

automatically transfer textures of clothing images (front and

back) to 3D garments worn on top SMPL [42], in real time.

We first automatically compute training pairs of images with

aligned 3D garments using a custom non-rigid 3D to 2D

registration method, which is accurate but slow. Using these

pairs, we learn a mapping from pixels to the 3D garment

surface. Our idea is to learn dense correspondences from

garment image silhouettes to a 2D-UV map of a 3D garment

surface using shape information alone, completely ignor-

ing texture, which allows us to generalize to the wide range

of web images. Several experiments demonstrate that our

model is more accurate than widely used baselines such as

thin-plate-spline warping and image-to-image translation

networks while being orders of magnitude faster. Our model

opens the door for applications such as virtual try-on, and

allows for generation of 3D humans with varied textures

which is necessary for learning. Code will be available at

https://virtualhumans.mpi-inf.mpg.de/pix2surf/.

1. Introduction

Our goal is to learn a model capable of transferring tex-

ture from two photographs (front and back) of a garment

to the 3D geometry of a garment template, automatically

and in real time. Such a model can be extremely useful

for photo-realistic rendering of humans, varied generation

of synthetic data for learning, virtual try-on, art and design.

Despite the many applications, automatic transfer of cloth-

ing texture to 3D garments has received very little attention.

The vast majority of recent methods work in image space

directly. Most works focus on either image based person

re-posing [82, 43, 44, 56, 63, 21, 10, 64], or virtual try-on

[57, 78, 28, 69, 77, 22, 83]. Re-posing methods learn to

synthesize image pixels to produce novel poses of a person,

whereas virtual try-on methods learn to morph an image of

a clothing item to drape it on a target person. The advan-

tage of these methods is that they can be trained on large-

scale datasets. The critical disadvantage is that they operate

in pixel-space instead of 3D, they can not synthesize dif-

ficult poses, and struggle to produce temporally consistent

results. Another line of work extracts texture by fitting 3D
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Figure 2. Given regular online retail store images, our method can

automatically produce textures for pre-defined garment templates,

that can be used to virtually dress SMPL [42] in 3D.

human models (SMPL [42]) to images [15, 6, 4], but texture

quality quickly deteriorates for complex poses. Other works

map texture to 3D meshes [68, 24, 40, 53] by 3D scanning

people, but the number and variety of clothing textures is

limited because 3D scanning is time consuming. To break

the lack of 3D data barrier, our idea is to learn a dense map-

ping from images of clothing items, which are ubiquitous

on the internet, to the 3D surface of a parametric garment

template directly [15]. However, accurate texture transfer is

far from trivial: web images vary in texture, garment size

and style, pose, and background. Nonetheless, in compari-

son to clothing worn by humans, web-store images have less

variation, which we exploit for learning our model. Instead

of manually annotating garment landmarks [85, 8], our idea

is to collect training pairs by non-rigidly aligning a para-

metric 3D garment template to images. We leverage the

parameterized garment models of MGN [15], non-rigidly

fit their surface to image silhouettes. While our alignment

usually produces good results, it is slow ( 5 − 15 minutes

per image), and fails in 5% of the cases. Consequently,

using only the successful fits, we learn a direct mapping

from image pixels which runs in milliseconds, and is more

robust than the optimization based approach. Our key hy-

pothesis is that the mapping is determined by the image sil-

houette shape alone, and not by appearance. Hence, we

train a CNN to predict correspondences from a UV map of

the garment surface to pixel locations, given the silhouette

shape alone as input. Since the model learns in-variances

to shape and pose as opposed to appearance, it generalizes

to a wide variety of garment images of varied textures. We

refer to the correspondence predictor as Pix2Surf. Pix2Surf

allows to digitally map the texture of a clothing image to

the 3D surface of a garment in real time, see Fig. 1. Once

the texture is mapped to 3D, we generalize to novel views,

shapes and pose by applying 3D transformations to the 3D

geometry [15] as illustrated in Fig. 2. Pix2Surf enables, for

the first time, virtual try-on from images in 3D directly and

in real time, enabling applications such as VR/AR, gaming,

and 3D content production.

To stimulate further research in this direction, we will

make Pix2Surf publicly available for research purposes.

This will allow researchers and users to add texture to the

SMPL+Garments model [15], generate synthetic humans,

and visualize garment images in 3D directly.

2. Related Work

Synthesizing images of people in realistic clothing is a

long-studied problem in the Computer Graphics commu-

nity. Early works enable to represent and parametrize fabric

virtually in 3D [72, 50], later realistic draping and anima-

tion has been achieved [12, 30]. While these works require

artist-designed garments, careful parameter selection, and

computational expensive physics-based simulation, fully-

automated and faster methods have been introduced more

recently. In contrast, these methods process sensor data

such as images, depth maps, or 3D point clouds, and pro-

duce 3D reconstructions or photorealistic images with min-

imal interaction or even fully automatically.

2D image synthesis methods produce images of people

holding a given pose or wearing a desired outfit. These

works utilize recent advances in conditional image-to-

image translation using generative adversarial networks

(GANs) [25, 32]. E.g. [39] presents a method to pro-

duce full-body images of people in clothing from semantic

segmentation of the body and clothing. However, the pro-

duced subject and outfit are not controllable. The method in

[82] produces novel views of given fashion images. While

the subject and outfit remain untouched, the pose can be

constrained with a sparse set of camera angles. To gain

more control over the output, a large number of works

deal with synthesizing person images under a desired pose

[43, 44, 56, 63, 21, 10, 64, 62]. For the same purpose, in

[26], the authors learn warpings between images and the

SMPL texture. Predicting correspondences instead of color

values helps the network to generalize due to much lower

variation in the warps than in the color-space. In Pix2Surf

we also infer correspondences [61, 54, 8, 48] but focus on

garments rather than on full bodies. In similar works, [48]

utilizes DensePose [8] to warp image pixels into the SMPL

texture, but inpainting is performed before warping into the

target pose. More related to our work, recent methods fo-

cus on exchanging the a subject’s outfit while preserving

[57, 78] or changing [28, 69, 77, 22, 83] his or her pose. Ad-

ditionally, special case methods for text-based fashion im-

age manipulation [84] and image-based outfit improvement

[31] have been presented. In contrast to our method, all

these virtual try-on methods work in the image-space and

thus perform no explicit reasoning about the underlying 3D
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scene. This means they are not guaranteed to produce con-

sistent output under varying poses and camera angles. This

is approached in [23] via image warping and subsequent re-

finement of a previously generated image. While 2D warp-

ing improves the quality of synthesized videos, limitations

of 2D methods are still present.

3D reconstruction methods focus on recovering the actual

3D shape of a captured garment alone, the body shape of a

subject wearing the garment, or both simultaneously. Meth-

ods utilizing controlled RGB [35] and RGB-D images [17]

have been presented, that select and refine 3D garment tem-

plates based on image observations. While [35] utilizes a

tailor’s dummy, [17] expects the subject to hold a certain

pose. Other methods focus on recovering the shape and de-

tailed garment wrinkles of clothing item in less controlled

settings [55, 20, 13, 36, 38]. While these methods can pro-

duce detailed geometry, none of these methods focuses on

the appearance of the item. Another branch of research

aims at 3D reconstructing the whole human including cloth-

ing. This can be achieved by optimization-based [6, 5, 73]

or learning-based methods [4, 40] that utilize silhouettes

or semantic segmentation of a short monocular video clip

or recently even from single images [46, 7, 59, 24] and

point-clouds [18]. Other methods utilize Kinect-fusion like

approaches [33, 49] to scan people using RGB-D sensors

[60, 41, 79, 19]. Having a 3D reconstruction of body and

clothing, it can be used to non-rigidly track the subject

[74, 27]. All these methods fuse body and clothing in a

single template. Virtual try-on applications, however, of-

ten require separate meshes [29]. Therefore, methods that

reconstruct the naked body shape or both body shape and

clothing have been developed. The naked body shape alone

has been estimated using several RGB images [11] or more

accurately using a sequence of clothed scans [80]. Body

shape and garments have been reconstructed simultaneously

and fully-automatically from a series of scans [53], RGB-D

images [66], and recently even from a small set of RGB im-

ages [15]. In [76] the authors present garment and body-

shape recovery from a single image but heavily rely on

physical priors and human interaction. In order to enable

dynamic virtual try-on and clothing re-targeting, joint mod-

els of clothing and the human body have been developed

[47, 75, 52, 45]. Again, all these works focus mainly or

exclusively on the geometry of the garment, not on their

appearance. Other works also learn to predict correspon-

dences from depth maps to surfaces [67, 54, 71], image to

surfaces [37, 8, 26], but they all address different problems.

Automatic texturing of 3D models from photos has been

presented too, but the shape has to be first aligned with the

input image [51, 70]. This alignment is expensive and error-

prone as silhouette and feature cues may be ambiguous. The

most related work here is [16], which maps texture from

clothing items to the 3D SCAPE [9] body model. Their

focus is not photo-realistic mapping, but rather to generate

synthetic training data with texture variation to learn dis-

criminative detectors. Their core texture mapping is based

on 2D image warping – unfortunately, the code for this spe-

cific part is not available, and therefore comparison is not

possible. However, qualitatively, our results look signif-

icantly more realistic, and we compare to a very similar

baseline based on shape context (SC) matching and Thin

Plate Spline (TPS) warping. Furthermore, our approach

runs in real time. In contrast to all previous work, our

method creates textured 3D garments fully automatically,

without requiring prior alignment at test-time, which allows

virtual try-on and novel view synthesis in real-time.

3. Method

Our key idea is to learn a mapping from images to the

UV map of the garment, without using texture information,

but silhouette shape alone. We first explain the parametric

3D garment models (Sec. 3.1) we use to regularize an auto-

matic mesh to image silhouette fitting procedure (Sec. 3.2).

Since fitting is expensive and error-prone, we learn an effi-

cient neural mapping (Pix2Surf), which transfers the image

texture onto the mesh in real time (Sec. 3.3).

3.1. Preliminary: Parametric Garment Model

We leverage publicly available 3D garments tem-

plates [15] parameterized as displacements from the SMPL

body model [42]. For every garment category (T-shirt,

short pants, long pants), we define a garment template

TG ∈ R
m×3 as a sub-mesh of the SMPL body template

T ∈ R
n×3. An indicator matrix I ∈ Z

m×n evaluates to

Ii,j = 1 if a garment vertex i ∈ {1 . . .m} is associated with

a body shape vertex j ∈ {1 . . . n}. This correspondence al-

lows representing garments as displacements D ∈ R
m×3

from the unposed SMPL body. Given shape β and pose θ,

we can articulate a garment using SMPL:

TG(β,θ,D) = I T (β,θ) +D (1)

G(β,θ,D) = W (TG(β,θ,D), J(β),θ,W), (2)

with joints J(β) and linear blend-skinning W (·) with

weights W. Since in this work we keep D fixed, we de-

note the garment model as G(θ,β). After the texture has

been transferred to the surface, the geometry can be still be

changed with D.

3.2. Non­Rigid Garment Fitting to Retail Images

To find a correspondence map between retail images in

the web and 3D garments, we could non-rigidly deform its

3D surface to fit the image foreground. This is, however, not

robust enough as different retailers photograph garments in

different poses, backgrounds, and clothing itself varies in
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Figure 3. Overview of method: We build a large paired dataset of 3D garments and online retail store images by non-rigidly aligning

3D garment templates with automatically computed image segmentations (I). This allows us to train our model Pix2Surf (II) to predict

correspondences from the UV map of the garment surfaces to image pixel locations.

shape. Hence, we first automatically segment images, and

then leverage the parametric garment model G(θ,β) de-

fined in Sec. 3.1 to regularize the fitting process.

3.2.1 Automatic segmentation

We use an automated version of GrabCut [58]. Since gar-

ments are typically photographed over simple backgrounds,

we obtain an approximate foreground mask using thresh-

olding. We then run a closing operation to fill the holes on

this mask, and erode it to obtain a prior for ”absolute fore-

ground”. The difference region between the mask and its

eroded version is marked as ”probable foreground”. Anal-

ogously, we obtain ”absolute background”, and ”probable

background” using dilation. Using these prior maps to

initialize GrabCut, we obtain accurate silhouettes without

manual annotation.

3.2.2 Garment fitting

We fit the garment surface to silhouettes in two stages. In

the first stage, we minimize the following objective

E1(β,θ, t) = wsEs + wβEβ + wθEθ, (3)

w.r.t. garment pose, shape and camera translation t ∈ R
3.

The objective in Eq. (3) consists of a silhouette Es, a shape

regularization term Eβ and a pose prior term Eθ , which we

explain in the following. The different terms are balanced

using weights w∗.

Silhouette term: It is defined as:

Es(β,θ, t) = Φ(wiΨ(Ir(G(θ,β), t))

+woΨ̂(1− Ir(G(θ,β), t))). (4)

Here, Ψ and Ψ̂ are the distance transform, and the inverse

distance transform, respectively, of the silhouette image, Φ
is a Gaussian pyramid function, and Ir(G(θ,β), t)) is the

binary garment silhouette image obtained with a differen-

tiable renderer. Consequently, the objective in Eq. (4) max-

imizes overlap between the garment image and the rendered

mesh, and penalizes model leackage into the background.

Shape regularization: In order to regularize the fitting pro-

cess in Eq. 3, we use a Mahalanobis prior

Eβ(β) = βTΣ−1
β β (5)

on the shape parameters, where Σ−1
β is the diagonal covari-

ance matrix from the SMPL dataset.

Pose prior: The term penalizes deviations of the pose from

an A-pose θA

Eθ(θ) = ‖θ − θA‖
2 (6)

To minimize Eq. (3), we initialize the pose θ with an A-

pose, as this approximates the pose of most garment im-

ages on the web. Additionally, we use scheduling: for shirts

we first optimize shape and translation holding pose fixed

and optimize all variables jointly afterwards. For pants and

shorts the scheduling order is reversed. Stage 1 provides us

with a coarse match to the silhouette of the garment, but the

final mesh is restricted by the parametric model G(θ,β, t).
To perfectly match silhouette boundaries, we non-rigidly
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deform free form vertices G ∈ R
m×3 of a mesh initialized

with the optimized garment result of the first stage G(θ,β).
Specifically, we optimize a more sophisticated version of

Eq. 3:

E2(G,θ,β) = w′
sE

′
s+w′

cE
′
c+w′

lE
′
l+w′

eE
′
e+w′

bE
′
b. (7)

E′
s is the same as in Eq. (4), but now we optimize the

free form vertices G instead of the latent parameters of

the model G(θ,β). and E′
c, E′

l , E
′
e and E′

b′ are coupling,

laplacian, edge constraint, and boundary smoothing terms,

which we explain next.

Coupling term: It penalizes deviations of the free form

vertices G from the parametric garment model G(θ,β):

Ec(G,β,θ) = ‖G−G(θ,β)‖2 (8)

Edge Constraint Term: The belt or waistline in shorts and

pants retail images forms an almost perfect horizontal line.

We exploit this by matching the top ring (waistline) of pants

and shorts 3D meshes to this horizontal line in image space.

Let Gi ∈ R denote the set of top ring vertices, π(Gi)y
denote the y coordinate of vertex Gi after projection π(·)
onto the image, and let ymax denote the y coordinate of the

horizontal line in the image. We incorporate the following

penalty:

Ee(G) =
∑

Gi∈R

‖π(Gi)y − ymax‖
2 (9)

Laplacian Term: In order enforce garment smoothness

and minimize distortion, we include a Laplacian term [65].

Given a mesh with adjacency matrix A ∈ R
m×m , the graph

Laplacian L ∈ R
m×m is obtained as L = I−K

−1
A where

K is a diagonal matrix such that Kii stores the number of

neighbors of vertex i. We minimize the mesh Laplacian:

El(G) = ||LG||2F (10)

Boundary Smoothing Term: To ensure that the boundaries

remain smooth, we penalize high second order derivatives

along the boundary rings, similar to [53].

The output of the fitting are 3D garment vertices G, which

together with their faces F define a deformed mesh G =
{G,F} accurately aligned with image silhouette.

3.3. Learning Automatic Texture Transfer

The fitting of the previous section is accurate, but slow,

and fails sometimes. Hence, we run the fitting method on

internet images, and manually remove the unsuccessful fits.

From this data, we train an efficient neural model, referred

to as Pix2Surf. Pix2Surf directly transfers texture from im-

ages to the 3D model surface, based on the silhouette shape

alone. Next, we explain the key components of Pix2Surf,

namely, input output representation, and losses used during

training.

3.3.1 Pix2Surf: Input and Output Representation

The curated fits of Sec. 3.2 provide dense correspondences

from image pixels (i, j) to the 3D garment surface G ⊂ R
3.

Learning a mapping to the surface G embedded in R
3 is

hard, and does not allow leveraging fully 2D convolutional

neural neutworks. Hence, we compute a 2D UV-map pa-

rameterization (Sec. 3.3.3) of the garment surface, u : B ⊂
R

2 7→ G ⊂ R
3, where u(·) maps 2D points (k, l) from

the UV space to the surface G embedded in R
3. In this

way, all our targets live in a UV-space; specifically from

the fits, we generate: RGB texture maps Y ∈ R
K×L×3

using projective texturing, and UV correspondence maps

C ∈ C ⊂ R
K×L×2, which store, at every pixel (k, l) of

the (front/back) UV map, the (i, j) coordinates of the cor-

responding image pixel, that is Ck,l = (i, j). The input

representation for the garment images is a coordinate mask

X ∈ X ⊂ R
M×N×2, storing at every image pixel location

its own coordinates if the pixel belongs to the foreground

F , and 0 otherwise, Xij = (i, j) ∀(i, j) ∈ F ||Xij =
(0, 0) ∀(i, j) /∈ F . The foreground mask F is predicted

at test time using a segmentation network trained using a

standard cross-entropy loss–we compute segmentation la-

bels for training using the automatic – but slow – GrabCut

based method Sec. 3.2.1. For the front view of T-shirts,

we additionally ask annotators to segment out the back por-

tion of the shirt, which is visible in the front view image.

The segmentation network learns to remove this portion en-

suring that the back portion is not mapped to the UV-map.

With this we collect a dataset D consisting of inputs X, and

targets {Y,C}. D = {Xi, {Yi,Ci}}Ni .

3.3.2 Pix2Surf: Learning

We could naively attempt to predict the texture maps Y di-

rectly from images I using image to image translation, but

this is prone to overfit to image textures as we demonstrate

in our experiments (Sec. 4.2) . Instead, we follow a more ge-

ometric approach, and learn a mapping f(X;w) : X 7→ C
from coordinate masks X to UV correspondence maps C,

forcing the network to reason about the input shape. This

effectively, learns to predict, for every UV map location

(k, l), the corresponding pixel coordinates (i, j) in the im-

age, Ck,l = (i, j). Our key insight and assumption is that

this smooth mapping depends only on silhouette shape X,

and not on texture I. During training, we minimize the fol-

lowing loss

Ltotal = λregLreg + λpercLperc + λreconLrecon (11)

over the training set D, where each term in the loss is ex-

plained next.

Coordinate Regression Loss: Lreg evaluates an L2(·)
norm of the difference between the network output
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f(Xi;w) and the pseudo ground truths C obtained using

the silhouette fitting algorithm of Sec. 3.2:

Lreg =
N
∑

i=1

||f(Xi;w)−C
i||22 (12)

Reconstruction Loss: To provide more supervision to the

network we use a differentiable sampling kernel [34] to

infer a texture map directly from the correspondence map.

We minimize a dense photometric loss between predicted

texture maps and target texture maps Y obtained with pro-

jective texturing (Sec. 3.3.1):

Lrecon =

N
∑

i

KL
∑

k,l

||I
[

f1
k,l(X

i;w), f2
k,l(X

i;w)
]

−Y
i
k,l‖1

(13)

where the original image I is sampled (using a differentiable

kernel) at locations (i, j) = (f1
k,l(X

i;w), f2
k,l(X

i;w)) pro-

vided by the predicted correspondence map.

Perceptual Loss: Lperc is the perceptual loss as defined

in [81] between I[f(X;w)] ∈ R
K×L×3 (tensor notation)

and Y.

Once the network predicts a correspondence map for an in-

put image, we use it and the parallelizable kernel to generate

the final image by sampling points from the input image.

3.3.3 Implementation Details

We use Adam optimizer for training both networks. For the

segmentation network we use a UNet with instance normal-

ization and use color jittering in the input data to improve

performance. For Pix2Surf we use a six block ResNet. The

choice of normalization and activation functions is same

as [32].

Custom UV Map: Since the artist designed SMPL UV map

cuts the garments into different islands (bad for learning a

continuous mapping), we use a custom UV map for each

garment category. We cut the garment surface into front and

back and compute the UV map using Blender This results

in two islands (front and back), which makes the image to

UV mapping continuous and hence easier to learn.

4. Experiments

Since we are solving a problem for which there is no

ground-truth data, we evaluate our proposed method quali-

tatively and with a user study. We show results for three dif-

ferent garment types (T-shirts, shorts and long-pants), see

Fig. 4. Notice that the texture is nicely mapped without

transferring background. Notice also how the 3D textures

are complete without holes and seams. We compare our

method against the popular Shape-context with Thin Plate

Spline (TPS) matching baseline, an image-to-image trans-

lation which operates on pixels directly, and image based

virtual try on methods.

4.1. Dataset

To train our models, we create datasets of garment im-

ages by scraping the websites of clothing stores – specifi-

cally the websites of Zalando [3], Tom Tailor [2] and Jack

and Jones [1]. The back view of clothing images is scarcely

available on the internet, so we were unable to create a

dataset of back view images large enough for training map-

ping networks. We leverage the fact that the distribution of

garment silhouettes is similar for both front and back views,

and either augment the dataset used for training the mapping

from the back view image to the back UV map by combin-

ing front view images with back view images or using only

front view images.

We create a datasets consisting of 2267 front images of T-

shirts. The networks pertaining to the back are trained using

a dataset of 2267 images of which 964 are back view images

and the rest are front images. The front shorts dataset has

2277 items. We use the same dataset to train the networks

pertaining to the back views. For pants we collect a dataset

of 3410 front views. We create a dataset for back views by

horizontally flipping the front view images and their cor-

responding silhouettes. The back dataset has 3211 items.

The failure of the optimization based registration method

explains the discrepancy between the number of items in

the front and back views. Exploiting these front-back sym-

metries turns out to work well in practice, and allows to

compensate for the unavailability of back view images.

4.2. Shape Context Matching and Image­to­Image
Translation Baselines

We compare our method with shape context (SC) match-

ing plus TPS and image-to-image translation baselines. We

implement the shape context matching baseline as follows.

We first render the garment mesh to obtain a silhouette. To

make the baseline as strong as possible, we first pose the

garment in the same pose as the image. We then warp the

garment image to match the rendered garment. We then

lift the texture from the warped image onto the mesh using

projective texturing. Our experiments demonstrate that SC

matching and TPS [14] is not powerful enough to precisely

match the contours of the two shapes so the final texture al-

ways has artifacts along the sides. See Fig. 5.

We also compare Pix2Surf to a Pix2Pix [32] baseline, which

learns to produce a texture map from an image. To train

Pix2Pix, we use the same texture maps we use to train

Pix2Surf. Unlike Pix2Surf, Pix2Pix produces blurry results

and does not preserve details of the input texture. See Fig. 5.

For further evaluation, we have conducted a user study with

30 participants. We created 20 videos containing images

of reference clothing textures and two rotating textured 3D

avatars “wearing” the reference clothing. One is textured

using a baseline method and the other using Pix2Surf. We

ask participants to choose the better looking avatar. In 100%
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Figure 4. Textured garments obtained using our method: From the online retail store images (left), we create textures for three different

garment categories (T-shirt, pants, shorts). We use the textured garments to virtually dress SMPL (right).

of all comparisons, the avatar textured with Pix2Surf was

preferred over the one textured using the baselines.

4.3. Towards Photo­Realistic Rendering

Provided with the texture map of a 3D avatar with-

out clothes, Pix2Surf allows to map the texture atop the

avatar from potentially an infinite number of clothing items

scraped from online websites, automatically and in real

time. See Fig. 6 Using these photo-realistic renderings, we

are able to compare our method with Image based virtual

try-on method such as VITON [28] and CP-VTON [69].

Since our method requires a 3D avatar as input, to be able

to compare, we first render a photo-realistic image using our

method, and use VITON to change the upper garment of the

rendering. Fig. 7 shows that VITON and CP-VTON work

reasonably well for some poses, but fail badly for extreme

poses while our method does not. We note that these meth-

ods are related but conceptually different compared to our

method, so a direct fair comparison is not possible. These

methods are also not explicitly trained to handle such poses,

but the figure illustrates a general limitation of image based

virtual try-on approaches to generalize to novel view-points

and poses. In stark contrast, we only need to generalize to

silhouette shape variation, and once the texture is mapped

to the 3D avatar, novel poses and viewpoints are trivially

generated applying transformation in 3D.

5. Conclusions and Future Work

We have presented a simple yet effective model that

learns to transfer textures from web images of clothing to

3D garments worn by virtual humans. Our experiments

show that our non-linear optimization method is accurate

enough to compute a training set of clothing images aligned

with 3D mesh projections, from which we learn a direct
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Figure 5. We compare our results against textures obtained via SC matching and an image-to-image translation baseline. SC matching

produces textures with artefacts and Pix2Pix produces blurry results. Left: Pix2Pix, Middle: SC matching, Right: Pix2Surf

Figure 6. Photo-realistic virtual try-on. Given the garment images

and a 3D avatar with texture, we show our automatically textured

garments on top.

mapping with a neural model (Pix2Surf). While the opti-

mization method takes up ten minutes to converge, Pix2Surf

runs in real time, which is crucial for many applications

such as virtual try-on. Our key idea is to learn the cor-

respondence map from image pixels to a 2D UV parame-

terization of the surface, based on silhouette shape alone

instead of texture, which makes the model invariant to the

highly varying textures of clothing and consequently gen-

eralize better. We show Pix2Surf performs significantly

better than classical approaches such as 2D TPS warping

(while being orders of magnitude faster), and direct image-

to-image translation approaches.

We believe our model represents an important step to-

wards learning a generative model of textures directly in

3D. We plan to address this in the future since it is lack-

ing in current models like SMPL [42]. We focused on tex-

ture, and assume garment geometry is given, but we think

it should be possible to infer geometry from images. Since

clothing is laid out on a flat surface on web photographs,

geometry inference will require modelling how 3D gar-

ments deform when they are flattened out on a surface.

Input

image

Target

Cloth

CP-VTON VITON Ours

Figure 7. Comparison with VITON and CP-VTON
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