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Abstract

This paper addresses the problem of text-to-video tem-

poral grounding, which aims to identify the time interval in

a video semantically relevant to a text query. We tackle this

problem using a novel regression-based model that learns

to extract a collection of mid-level features for semantic

phrases in a text query, which corresponds to important se-

mantic entities described in the query (e.g., actors, objects,

and actions), and reflect bi-modal interactions between the

linguistic features of the query and the visual features of

the video in multiple levels. The proposed method effec-

tively predicts the target time interval by exploiting contex-

tual information from local to global during bi-modal inter-

actions. Through in-depth ablation studies, we find out that

incorporating both local and global context in video and

text interactions is crucial to the accurate grounding. Our

experiment shows that the proposed method outperforms the

state of the arts on Charades-STA and ActivityNet Captions

datasets by large margins, 7.44% and 4.61% points at Re-

call@tIoU=0.5 metric, respectively.

1. Introduction

As the amount of videos in the internet grows explo-

sively, understanding and analyzing video contents (e.g., ac-

tion classification [3, 7, 28] and detection [18, 22, 26, 27,

31, 34, 36, 38]) becomes increasingly important. Further-

more, with the recent advances of deep learning on top of

large-scale datasets [2, 16, 17, 23], research on video con-

tent understanding is moving towards multi-modal prob-

lems (e.g., video question answering [17, 23], video cap-

tioning [16, 24]) involving text, speech, and sound.

This paper addresses the problem of text-to-video tem-

poral grounding, which aims to localize the time interval in

a video corresponding to the expression in a text query. Our

main idea is to extract multiple semantic phrases from the

text query and align them with the video using local and

global interactions between linguistic and visual features.

We define the semantic phrase as a sequence of words that

time

Query: the woman mixed all ingredients, put it in a pan and put it in the oven

(a) An example of text-to-video temporal grounding

(b) Conventional approach

(c) Our approach
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Figure 1. Video-to-text temporal grounding. (a) An example

where the target time interval (red box) consists of multiple parts

related to semantic phrases in a text query. (b) Scan-and-localize

framework that localizes the target time interval by comparing in-

dividual proposals with the whole semantics of the query. (c) Our

method that regresses the target time interval with the bi-modal

interactions in three levels between video segments and semantic

phrases identified from a query.

may describe a semantic entity such as an actor, an object,

an action, a place, etc. Fig. 1(a) shows an example of tem-

poral grounding, where a text query consists of multiple se-

mantic phrases corresponding to actors (i.e., ‘the woman’)

and actions (i.e., ‘mixed all ingredients’, ‘put it in a pan’,

‘put it in the oven’). This example indicates that a text query

can be effectively grounded onto a video by identifying rele-

vant semantic phrases from the query and properly aligning

them with corresponding parts of the video.

Leveraging such semantic phrases of a text query, how-

ever, has never been explored in temporal grounding. Most

existing methods [1, 4, 5, 8, 9, 20, 32, 37] tackle the prob-

lem typically in the scan-and-localize framework, which in

a nutshell compares a query with all candidate proposals of

time intervals and selects the one with the highest matching
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score as shown in Fig. 1(b). During the matching proce-

dure, they rely on a single global feature of the query rather

than finer-grained features in a phrase level, thus missing

important details for localization. Recent work [35] formu-

lates the task as an attentive localization by regression and

attempts to extract semantic features from a query through

an attention scheme. However, it is still limited to identify-

ing the most discriminative semantic phrase without under-

standing comprehensive context.

We propose a novel regression-based method for tem-

poral grounding as depicted in Fig. 1(c), which performs

local-global video-text interactions for in-depth relationship

modeling between semantic phrases and video segments.

Contrary to the existing approaches, we first extract linguis-

tic features for semantic phrases in a query using sequen-

tial query attention. Then, we perform video-text interac-

tion in three levels to effectively align the semantic phrase

features with segment-level visual features of a video: 1)

segment-level fusion across the video segment and seman-

tic phrase features, which highlights the segments associ-

ated with each semantic phrase, 2) local context modeling,

which helps align the phrases with temporal regions of vari-

able lengths, and 3) global context modeling, which cap-

tures relations between phrases. Finally, we aggregate the

fused segment-level features using temporal attentive pool-

ing and regress the time interval using the aggregated fea-

ture.

The main contributions are summarized as follows:

• We introduce a sequential query attention module that

extracts representations of multiple and distinct se-

mantic phrases from a text query for the subsequent

video-text interaction.

• We present an effective local-global video-text inter-

action algorithm that models the relationship between

video segments and semantic phrases in multiple lev-

els, thus enhancing final localization by regression.

• We conduct extensive experiments to validate the ef-

fectiveness of our method and show that it outper-

forms the state of the arts by a large margin on both

Charades-STA and ActivityNet Captions datasets.

2. Related Work

2.1. Temporal Action Detection

Recent temporal action detection methods often rely on

the state-of-the-art object detection and segmentation tech-

niques in the image domain, and can be categorized into the

following three groups. First, some methods [22, 26] per-

form frame-level dense prediction and determine time in-

tervals by pruning frames based on their confidence scores

and grouping adjacent ones. Second, proposal-based tech-

niques [27, 31, 36, 38] extract all action proposals and re-

fine their boundaries for action detection. Third, there ex-

ist some approaches [18, 34] based on single-shot detection

like SSD [21] for fast inference. In contrast to the action

detection task, which is limited to localizing a single action

instance, temporal grounding on a video by a text requires

to localize more complex intervals that would involve more

than two actions depending on the description in sentence

queries.

2.2. Text­to­Video Temporal Grounding

Since the release of two datasets for text-to-video tempo-

ral grounding, referred to as DiDeMo and Charades-STA,

various algorithms [1, 8, 9, 20, 37] have been proposed

within the scan-and-localize framework, where candidate

clips are obtained by scanning a whole video based on slid-

ing windows and the best matching clip with an input text

query is eventually selected. As the sliding window scheme

is time-consuming and often contains redundant candidate

clips, more effective and efficient methods [4, 5, 32] are

proposed as alternatives; a LSTM-based single-stream net-

work [4] is proposed to perform frame-by-word interactions

and the clip proposal generation based methods [5, 32] are

proposed to reduce the number of redundant candidate clips.

Although those methods successfully enhance processing

time, they still need to observe full videos, thus, reinforce-

ment learning is introduced to observe only a fraction of

frames [29] or a few clips [12] for temporal grounding.

On the other hand, proposal-free algorithms [10, 25, 35]

have also been proposed. Inspired by the recent advance in

text-based machine comprehension, Ghosh et al. [10] pro-

pose to directly identify indices of video segments corre-

sponding to start and end positions, and Opazo et al. [25]

improve the method by adopting a query-guided dynamic

filter. Yuan et al. [35] present a co-attention based location

regression algorithm, where the attention is learned to focus

on video segments within ground-truth time intervals.

ABLR [35] is the most similar to our algorithm in the

sense that it formulates the task as the attention-based lo-

cation regression. However, our approach is different from

ABLR in the following two aspects. First, ABLR focuses

only on the most discriminative semantic phrase in a query

to acquire visual information, whereas we consider multiple

ones for more comprehensive estimation. Second, ABLR

relies on coarse interactions between video and text inputs

and often fails to capture fine-grained correlations between

video segments and query words. In contrast, we perform

a more effective multi-level video-text interaction to model

correlations between semantic phrases and video segments.

3. Proposed Method

This section describes our main idea and its implemen-

tation using a deep neural network in detail.
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Figure 2. Overall architecture of our algorithm. Given a video and a text query, we encode them to obtain segment-level visual features,

word-level and sentence-level textual features (Section 3.2). We extract a set of semantic phrase features from the query using the Sequential

Query Attention Network (SQAN) (Section 3.3). Then, we obtain semantics-aware segment features based on the extracted phrase features

via local-global video-text interactions (Section 3.4). Finally, we directly predict the time interval from the summarized video features using

the temporal attention (Section 3.5). We train the model using the regression loss and two additional attention-related losses (Section 3.6).

3.1. Algorithm Overview

Given an untrimmed video V , a text query Q and a time

interval of target region C within V , existing methods typ-

ically learn the models parametrized by θ to maximize the

following expected log-likelihood:

θ∗ = argmax
θ

E[log pθ(C|V,Q)]. (1)

Note that, in the above objective function, the text query

Q often involves multiple semantic phrases as presented in

Fig. 1(a), which requires modeling finer-level relations be-

tween a query and a video besides global ones to achieve

precise localization in temporal grounding. To realize this

idea, we introduce a differentiable module fe to represent

a query as a set of semantic phrases and incorporate local-

global video-text interactions for in-depth understanding of

the phrases within a video, which leads to a new objective

as follows:

θ∗ = argmax
θ

E[log pθ(C|V, fe(Q))]. (2)

Fig. 2 illustrates the overall architecture of the proposed

method. We first compute segment-level visual features

combined with their embedded time stamps, and then de-

rive word- and sentence-level features based on the query.

Next, the Sequential Query Attention Network (SQAN)

extracts multiple semantic phrase features from the query

by attending over word-level features sequentially. Then,

we obtain semantics-aware segment features via multi-level

video-text interactions; the segment feature corresponding

to each semantic phrase is highlighted through a segment-

level modality fusion followed by local context model-

ing while the relations between phrases are estimated by

global context modeling. Finally, the time intervals are pre-

dicted using the temporally attended semantics-aware seg-

ment features.

3.2. Encoders

Query encoding For a text query with L words, we

employ a two-layer bi-directional LSTM to obtain word-

and sentence-level representations, where the bi-directional

LSTM is applied to the embedded word features. A word-

level feature at the l-th position is obtained by the concate-

nation of hidden states in both directions, which is given by

wl = [~hl; ~hl] ∈ R
d, while a sentence-level feature q is pro-

vided by the concatenation of the last hidden states in both

the forward and backward LSTMs, i.e., q = [~hL, ~h1] ∈ R
d

where d denotes feature dimension.

Video encoding An untrimmed video is divided into a se-

quence of segments with a fixed length (e.g., 16 frames),

where two adjacent segments overlap each other for a half

of their lengths. We extract the features from individual

segments using a 3D CNN module, denoted by fv(·), af-

ter the uniform sampling of T segments, and feed the fea-

tures to an embedding layer followed by a ReLU function

to match their dimensions with query features. Formally, let

S = [s1, ..., sT ] ∈ R
d×T be a matrix that stores the T sam-
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pled segment features in its columns1. If the input videos

are short and the number of segments is less than T , the

missing parts are filled with zero vectors. We append the

temporal position embedding of each segment to the corre-

sponding segment feature vector as done in [6] to improve

accuracy in practice. This procedure leads to the following

equation for video representation:

S = ReLU(Wsegfv(V )) + fpos(Wpos, [1, ..., T ]), (3)

where Wseg ∈ R
d×dv denotes a learnable segment feature

embedding matrix while fpos(·, ·) is a lookup table defined

by an embedding matrix Wpos ∈ R
d×T and a timestamp

vector [1, . . . , T ]. Note that dv is the dimension of feature

provided by fv(·). Since we formulate the given task as

a location regression problem, the position encoding is a

crucial step for identifying semantics at diverse temporal

locations in the subsequent procedure.

3.3. Sequential Query Attention Network (SQAN)

SQAN, denoted by fe(·) in Eq. (2), plays a key role in

identifying semantic phrases describing semantic entities

(e.g., actors, objects, and actions) that should be observed

in videos for precise localization. Since there is no ground-

truth for semantic phrases, we learn their representations

in an end-to-end manner. To this end, we adopt an atten-

tion mechanism with an assumption that semantic phrases

are defined by a sequence of words in a query as shown in

Fig. 1(a). Those semantic phrases can be extracted indepen-

dently of each other. Note, however, that since our goal is

to obtain distinct phrases, we extract them by sequentially

conditioning on preceding ones as in [13, 33].

Given L word-level features E = [w1, ...,wL] ∈ R
d×L

and a sentence-level feature q ∈ R
d, we extract N seman-

tic phrase features {e(1), . . . , e(N)}. In each step n, a guid-

ance vector g(n) ∈ R
d is obtained by embedding the vector

that concatenates a linearly transformed sentence-level fea-

ture and the previous semantic phrase feature e(n−1) ∈ R
d,

which is given by

g(n) = ReLU(Wg([W
(n)
q q; e(n−1)])), (4)

where Wg ∈ R
d×2d and W

(n)
q ∈ R

d×d are learnable em-

bedding matrices. Note that we use different embedding

matrix W
(n)
q at each step to attend more readily to different

aspects of the query. Then, we obtain the current semantic

phrase feature e(n) by estimating the attention weight vec-

tor a(n) ∈ R
L over word-level features and computing a

1Although semantic phrases are sometimes associated with spatio-

temporal regions in a video, for computational efficiency, we only con-

sider temporal relationship between phrases and a video, and use spatially

pooled representation for each segment.

weighted sum of the word-level features as follows:

α
(n)
l

= Wqatt(tanh(Wgαg
(n) +Wwαwl)), (5)

a(n) = softmax([α
(n)
1 , ..., α

(n)
L

]), (6)

e(n) =

L
∑

l=1

a
(n)
l

wl, (7)

where Wqatt ∈ R
1× d

2 , Wgα ∈ R
d

2
×d and Wwα ∈ R

d

2
×d

are learnable embedding matrices in the query attention

layer, and α
(n)
l

is the confidence value for the l-th word at

the n-th step.

3.4. Local­Global Video­Text Interactions

Given the semantic phrase features, we perform video-

text interactions in three levels with two objectives: 1) indi-

vidual semantic phrase understanding, and 2) relation mod-

eling between semantic phrases.

Individual semantic phrase understanding Each se-

mantic phrase feature interacts with individual segment fea-

tures in two levels: segment-level modality fusion and local

context modeling. During the segment-level modality fu-

sion, we encourage the segment features relevant to the se-

mantic phrase features to be highlighted and the irrelevant

ones to be suppressed. However, segment-level interaction

is not sufficient to understand long-range semantic entities

properly since each segment has a limited field-of-view of

16 frames. We thus introduce the local context modeling

that considers neighborhood of individual segments.

With this in consideration, we perform the segment-level

modality fusion similar to [14] using the Hadamard product

while modeling the local context based on a residual block

(ResBlock) that consists of two temporal convolution lay-

ers. Note that we use kernels of large bandwidth (e.g., 15)

in the ResBlock to cover long-range semantic entities. The

whole process is summarized as follows:

m̃
(n)
i

= W(n)
m (W(n)

s si ⊙W(n)
e e(n)), (8)

M(n) = ResBlock([m̃
(n)
1 , ..., m̃

(n)
T

]), (9)

where W
(n)
m ∈ R

d×d, W
(n)
s ∈ R

d×d and W
(n)
e ∈ R

d×d

are learnable embedding matrices for segment-level fu-

sion, and ⊙ is the Hadamard product operator. Note that

m̃
(n)
i

∈ R
d stands for the i-th bi-modal segment feature

after segment-level fusion, and M(n) ∈ R
d×T denotes a

semantics-specific segment feature for the n-th semantic

phrase feature e(n).

Relation modeling between semantic phrases After ob-

taining a set of N semantics-specific segment features,

{M(1), ...,M(N)}, independently, we take contextual and

temporal relations between semantic phrases into account.
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For example, in Fig. 1(a), understanding ‘it’ in a semantic

phrase of ‘put it in a pan’ requires the context from another

phrase of ‘mixed all ingredients.’ Since such relations can

be defined between semantic phrases with a large temporal

gap, we perform global context modeling by observing all

the other segments.

For the purpose, we first aggregate N segment features

specific to semantic phrases, {M(1), ...,M(N)}, using at-

tentive pooling, where the weights are computed based on

the corresponding semantic phrase features, as shown in

Eq. (10) and (11). Then, we employ Non-Local block [30]

(NLBlock) that is widely used to capture global context.

The process of global context modeling is given by

c = softmax(MLPsatt([e
(1), ..., e(N)])), (10)

R̃ =

N
∑

n=1

c(n)M(n), (11)

R = NLBlock(R̃) (12)

= R̃+ (WrvR̃) softmax

(

(WrqR̃)T(WrkR̃)√
d

)T

,

where MLPsatt denotes a multilayer perceptron (MLP) with

a hidden layer of d

2 -dimension and c ∈ R
N is a weight

vector for the N semantics-specific segment features. R̃ ∈
R

d×T is the aggregated feature via attentive pooling, and

R ∈ R
d×T is the final semantics-aware segment fea-

tures using the proposed local-global video-text interac-

tions. Note that Wrq ∈ R
d×d, Wrk ∈ R

d×d and Wrv ∈
R

d×d are learnable embedding matrices in the NLBlock.

3.5. Temporal Attention based Regression

Once the semantics-aware segment features are obtained,

we summarize the information while highlighting important

segment features using temporal attention, and finally pre-

dict the time interval (ts, te) using an MLP as follows:

o = softmax(MLPtatt(R)), (13)

v =

T
∑

i=1

oiRi, (14)

ts, te = MLPreg(v), (15)

where o ∈ R
T and v ∈ R

d are attention weights for seg-

ments and summarized video feature, respectively. Note

that MLPtatt and MLPreg have d

2 - and d-dimensional hidden

layers, respectively.

3.6. Training

We train the network using three loss terms—1) loca-

tion regression loss Lreg, 2) temporal attention guidance loss

Ltag, and 3) distinct query attention loss Ldqa, and the total

Figure 3. Visualization of query attention weights (left) without

the distinct query attention loss and (right) with it. SQAN success-

fully extracts semantic phrases corresponding to actors and actions

across different steps.

loss is given by

L = Lreg + Ltag + Ldqa. (16)

Location regression loss Following [35], the regression

loss is defined as the sum of smooth L1 distances between

the normalized ground-truth time interval (t̂s, t̂e) ∈ [0, 1]
and our prediction (ts, te) as follows:

Lreg = smoothL1(t̂
s − ts) + smoothL1(t̂

e − te), (17)

where smoothL1(x) is defined as 0.5x2 if |x| < 1 and |x| −
0.5 otherwise.

Temporal attention guidance loss Since we directly

regress the temporal positions from temporally attentive

features, the quality of temporal attention is critical. There-

fore, we adopt the temporal attention guidance loss pro-

posed in [35], which is given by

Ltag = −
∑T

i=1 ôi log(oi)
∑T

i=1 ôi

, (18)

where ôi is set to 1 if the i-th segment is located within

the ground-truth time interval and 0 otherwise. The atten-

tion guidance loss makes the model obtain higher attention

weights for the segments related to the text query.

Distinct query attention loss Although SQAN is de-

signed to capture different semantic phrases in a query, we

observe that the query attention weights in different steps

are often similar as depicted in Fig. 3. Thus, we adopt a

regularization term introduced in [19] to enforce query at-

tention weights to be distinct along different steps:

Ldqa = ||(ATA)− λI||2F , (19)

where A ∈ R
L×N is the concatenated query attention

weights across N steps and || · ||F denotes Frobenius norm

of a matrix. The loss encourages attention distributions to

have less overlap by making the query attention weights at
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Table 1. Performance comparison with other algorithms on the

Charades-STA dataset. The bold-faced numbers mean the best

performance.

Method R@0.3 R@0.5 R@0.7 mIoU

Random - 8.51 3.03 -

CTRL [8] - 21.42 7.15 -

SMRL [29] - 24.36 9.01 -

SAP [5] - 27.42 13.36 -

ACL [9] - 30.48 12.20 -

MLVI [32] 54.70 35.60 15.80 -

TripNet [11] 51.33 36.61 14.50 -

RWM [12] - 36.70 - -

ExCL [10] 65.10 44.10 22.60 -

MAN [37] - 46.53 22.72 -

PfTML-GA [25] 67.53 52.02 33.74 -

Ours 72.96 59.46 35.48 51.38

two different steps decorrelated. Note that λ ∈ [0, 1] con-

trols the extent of overlap between query attention distribu-

tions; when λ is close to 1, the attention weights are learned

to be the one-hot vector. Fig. 3 clearly shows that the reg-

ularization term encourages the model to focus on distinct

semantic phrases across query attention steps.

4. Experiments

4.1. Datasets

Charades-STA The dataset is collected from the Cha-

rades dataset for evaluating text-to-video temporal ground-

ing by [8], which is composed of 12,408 and 3,720 time

interval and text query pairs in training and test set, respec-

tively. The videos are 30 seconds long on average and the

maximum length of a text query is set to 10.

ActivityNet Captions This dataset, which has originally

been constructed for dense video captioning, consists of 20k

YouTube videos with an average length of 120 seconds. It

is divided into 10,024, 4,926, and 5,044 videos for train-

ing, validation, and testing, respectively. The videos con-

tain 3.65 temporally localized time intervals and sentence

descriptions on average, where the average length of the de-

scriptions is 13.48 words. Following the previous methods,

we report the performance of our algorithm on the valida-

tion set (denoted by val 1 and val 2) since annotations of

the test split is not publicly available.

4.2. Metrics

Following [8], we adopt two metrics for the performance

comparison: 1) Recall at various thresholds of the temporal

Intersection over Union (R@tIoU) to measure the percent-

age of predictions that have tIoU with ground-truth larger

than the thresholds, and 2) mean averaged tIoU (mIoU). We

use three tIoU threshold values, {0.3, 0.5, 0.7}.

Table 2. Performance comparison with other algorithms on the

ActivityNet Captions dataset. The bold-faced numbers denote the

best performance.

Method R@0.3 R@0.5 R@0.7 mIoU

MCN [1] 21.37 9.58 - 15.83

CTRL [8] 28.70 14.00 - 20.54

ACRN [20] 31.29 16.17 - 24.16

MLVI [32] 45.30 27.70 13.60 -

TGN [4] 45.51 28.47 - -

TripNet [11] 45.42 32.19 13.93 -

PfTML-GA [25] 51.28 33.04 19.26 37.78

ABLR [35] 55.67 36.79 - 36.99

RWM [12] - 36.90 - -

Ours 58.52 41.51 23.07 41.13

4.3. Implementation Details

For the 3D CNN modules to extract segment features for

Charades-STA and ActivityNet Captions datasets, we em-

ploy I3D [3] 2 and C3D [28] 3 networks, respectively, while

fixing their parameters during a training step. We uniformly

sample T (= 128) segments from each video. For query

encoding, we maintain all word tokens after lower-case

conversion and tokenization; vocabulary sizes are 1,140

and 11,125 for Charades-STA and ActivityNet Captions

datasets, respectively. We truncate all text queries that have

maximum 25 words for ActivityNet Captions dataset. For

sequential query attention network, we extract 3 and 5 se-

mantic phrases and set λ in Eq. (19) to 0.3 and 0.2 for Cha-

rades and ActivityNet Captions datasets, respectively. In all

experiments, we use Adam [15] to learn models with a mini-

batch of 100 video-query pairs and a fixed learning rate of

0.0004. The feature dimension d is set to 512.

4.4. Comparison with Other Methods

We compare our algorithm with several recent methods,

which are divided into two groups: scan-and-localize meth-

ods, which include MCN [1], CTRL [8], SAP [5], ACL [9],

ACRN [20], MLVI [32], TGN [4], MAN [37], TripNet [11],

SMRL [29], and RWM [12], and proposal-free algorithms

such as ABLR [35], ExCL [10], and PfTML-GA [25].

Table 1 and Table 2 summarize the results on Charades-

STA and ActivityNet Captions datasets, respectively, where

our algorithm outperforms all competing methods. It is no-

ticeable that the proposed technique surpasses the state-of-

the-art performances by 7.44% and 4.61% points in terms

of R@0.5 metric, respectively.

4.5. In­Depth Analysis

For the better understanding of our algorithm, we ana-

lyze the contribution for the individual components.

2https://github.com/piergiaj/pytorch-i3d
3http://activity-net.org/challenges/2016/download.html#c3d
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Table 3. Results of main ablation studies on the Charades-STA dataset. The bold-faced numbers means the best performance.

Method
Query Information Loss Terms

R@0.3 R@0.5 R@0.7 mIoU
sentence (q) phrase (e) +Ltag +Ldqa

LGI
√ √ √

72.96 59.46 35.48 51.38

LGI w/o Ldqa

√ √
71.42 58.28 34.30 50.24

LGI w/o Ltag

√ √
61.91 47.12 24.62 42.43

LGI–SQAN
√ √

71.02 57.34 33.25 49.52

LGI–SQAN w/o Ltag

√
57.66 43.33 22.74 39.53
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Figure 4. Ablation studies with respect to the number of extracted

semantic phrases.
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Figure 5. Ablation studies across with respect to λ values.

4.5.1 Main Ablation Studies

We first investigate the contribution of sequential query at-

tention network (SQAN) and loss terms on the Charades-

STA dataset. In this experiment, we train five variants

of our model: 1) LGI: our full model performing local-

global video-text interactions based on the extracted se-

mantic phrase features by SQAN and being learned us-

ing all loss terms, 2) LGI w/o Ldqa: LGI learned without

distinct query attention loss Ldqa, 3) LGI w/o Ltag: LGI

learned without temporal attention guidance loss Ltag, 4)

LGI–SQAN: a model localizing a text query with sentence-

level feature q without SQAN, 5) LGI–SQAN w/o Ltag:

LGI–SQAN learned without Ltag. Note that the architec-

ture of LGI–SQAN is depicted in supplementary material.

Table 3 summarizes the results where we observe the fol-

lowings. First, extracting semantic phrase features from the

query (LGI) is more effective for precise localization than

simply relying on the sentence-level representation (LGI–

SQAN). Second, regularizing the query attention weights

for distinctiveness, i.e., using Ldqa, enhances performance

by capturing distinct constituent semantic phrases. Third,

temporal attention guidance loss Ltag improves the accu-

racy of localization by making models focus on segment

features within the target time interval. Finally, it is no-

Table 4. Performance comparison by varying the combinations

of modules in local and global context modeling on the Charades-

STA dataset. The bold-faced numbers mean the best performance.

Local Context Global Context R@0.5

- - 40.86

Masked NL (b=1, w=15) - 42.66

Masked NL (b=4, w=15) - 45.78

Masked NL (b=4, w=31) - 47.80

ResBlock (k=3) - 43.95

ResBlock (k=7) - 46.24

ResBlock (k=11) - 49.78

ResBlock (k=15) - 50.54

- NLBlock (b=1) 48.12

- NLBlock (b=2) 48.95

- NLBlock (b=4) 48.52

Masked NL (b=1, w=15) NLBlock (b=1) 50.11

Masked NL (b=4, w=15) NLBlock (b=1) 53.92

Masked NL (b=4, w=31) NLBlock (b=1) 54.81

ResBlock (k=7) NLBlock (b=1) 55.00

ResBlock (k=15) NLBlock (b=1) 57.34

ticeable that LGI–SQAN already outperforms the state-of-

the-art method at R@0.5 (i.e., 52.02% vs.57.34%), which

shows the superiority of the proposed local-global video-

text interactions in modeling relationship between video

segments and a query.

We also analyze the impact of two hyper-parameters in

SQAN—the number of semantic phrases (N ) and control-

ling value (λ) in Ldqa—on the two datasets. Fig. 4 presents

the results across the number of semantic phrases in SQAN,

where performances increase until certain numbers (3 and

5 for Charades-STA and ActivityNet Captions datasets, re-

spectively) and decrease afterwards. This is because larger

N makes models capture shorter phrases and fail to describe

proper semantics As shown in Fig. 5, the controlling value λ

of 0.2 and 0.3 generally provides good performances while

higher λ provides worse performance by making models fo-

cus on one or two words as phrases.

4.5.2 Analysis on Local-Global Video-Text Interaction

We perform in-depth analysis for local-global interaction on

the Charades-STA dataset. For this experiment, we employ

LGI–SQAN (instead of LGI) as our base algorithm to save

training time.
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Option R@0.5

Local-Global-Fusion 46.96

Local-Fusion-Global 53.47

Fusion-Local-Global 57.34

(a) Performance comparison depending on

the location of segment-level modality fu-

sion in the video-text interaction.

Option R@0.5

Addition 46.75

Concatenation 48.15

Hadamard Product 57.34

(b) Performance comparison with respect

to fusion methods.

Option R@0.5

None 45.70

Position Embedding 57.34

(c) Impact of position embedding for video

encoding.

Table 5. Ablations on the Charades-STA dataset.

Impact of local and global context modeling We study

the impact of local and global context modeling by varying

the kernel size (k) in the residual block (ResBlock) and the

number of blocks (b) in Non-Local block (NLBlock). For

local context modeling, we also adopt an additional module

referred to as a masked Non-Local block (Masked NL) in

addition to ResBlock; the mask restricts attention region to

a local scope with a fixed window size w centered at indi-

vidual segments in the NLBlock.

Table 4 summarizes the results, which imply the follow-

ings. First, the performance of model using only segment-

level modality fusion without context modeling is far from

the state-of-the-art performance. Second, incorporating lo-

cal or global context modeling improves performance by

enhancing the alignment of semantic phrases with the video.

Third, a larger scope of local view in local context model-

ing further improves performance, where ResBlock is more

effective than Masked NL according to our observation. Fi-

nally, incorporating both local and global context modeling

results in the best performance gain of 16.48% points. Note

that while the global context modeling has a capability of

local context modeling by itself, it turns out to be difficult to

model local context by increasing the number of NLBlocks;

a combination of Masked NL and NLBlock outperforms the

stacked NLBlocks, showing the importance of explicit local

context modeling.

When to perform segment-level modality fusion Ta-

ble 5(a) presents the results from three different options for

the modality fusion phase. This result implies that early fu-

sion is more beneficial for semantics-aware joint video-text

understanding and leads to the better accuracy.

Modality fusion method We compare different fusion

operations—addition, concatenation, and Hadamard prod-

uct. For concatenation, we match the output feature dimen-

sion with that of the other methods by employing an addi-

tional embedding layer. Table 5(b) shows that Hadamard

product achieves the best performance while the other two

methods perform much worse. We conjecture that this is

partly because Hadamard product acts as a gating opera-

tion rather than combines two modalities, and thus helps

the model distinguish segments relevant to semantic phrases

from irrelevant ones.

GT

attention LGI

LGI-SQAN attention 

LGI

LGI-SQAN

Query: she then sands down the table and dips a brush into paint

time

Figure 6. Visualization of predictions of two models (LGI and

LGI–SQAN) and their temporal attention weights o computed be-

fore regression.

Impact of position embedding Table 5(c) presents the

effectiveness of the position embedding in identifying se-

mantic entities at diverse temporal locations and improving

the accuracy of temporal grounding.

4.5.3 Qualitative Results

Fig. 6 illustrates the predictions and the temporal atten-

tion weights o for LGI and LGI–SQAN. Our full model

(LGI) provides more accurate locations than LGI–SQAN

through query understanding in a semantic phrase level,

which makes video-text interaction more effective. More

examples with visualization of temporal attention weights,

query attention weights a and predictions are presented in

our supplementary material.

5. Conclusion

We have presented a novel local-global video-text inter-

action algorithm for text-to-video temporal grounding via

constituent semantic phrase extraction. The proposed multi-

level interaction scheme is effective in capturing relation-

ships of semantic phrases and video segments by modeling

local and global contexts. Our algorithm achieves the state-

of-the-art performance in both Charades-STA and Activi-

tyNet Captions datasets.
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