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Abstract

Fine-grained action recognition datasets exhibit envi-

ronmental bias, where multiple video sequences are cap-

tured from a limited number of environments. Training a

model in one environment and deploying in another results

in a drop in performance due to an unavoidable domain

shift. Unsupervised Domain Adaptation (UDA) approaches

have frequently utilised adversarial training between the

source and target domains. However, these approaches

have not explored the multi-modal nature of video within

each domain. In this work we exploit the correspondence

of modalities as a self-supervised alignment approach for

UDA in addition to adversarial alignment (Fig. 1).

We test our approach on three kitchens from our large-

scale dataset, EPIC-Kitchens [8], using two modalities

commonly employed for action recognition: RGB and Op-

tical Flow. We show that multi-modal self-supervision

alone improves the performance over source-only training

by 2.4% on average. We then combine adversarial train-

ing with multi-modal self-supervision, showing that our ap-

proach outperforms other UDA methods by 3%.

1. Introduction

Fine-grained action recognition is the problem of recog-

nising actions and interactions such as “cutting a tomato”

or “tightening a bolt” compared to coarse-grained actions

such as “preparing a meal”. This has a wide range of ap-

plications in assistive technologies in homes as well as in

industry. Supervised approaches rely on collecting a large

number of labelled examples to train discriminative mod-

els. However, due to the difficulty in collecting and anno-

tating such fine-grained actions, many datasets collect long

untrimmed sequences. These contain several fine-grained

actions from a single [43, 50] or few [8, 47] environments.

Figure 2 shows the recent surge in large-scale fine-

grained action datasets. Two approaches have been at-

tempted to achieve scalability: crowd-sourcing scripted ac-

tions [17, 46, 47], and long-term collections of natural in-

teractions in homes [8, 37, 43]. While the latter offers more
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Figure 1: Our proposed UDA approach for multi-modal

action recognition. Improved target domain performance

is achieved via multi-modal self-supervision on source and

target domains simultaneously, jointly optimised with mul-

tiple domain discriminators, one per-modality.

realistic videos, many actions are collected in only a few

environments. This leads to learned representations which

do not generalise well [53].

Transferring a model learned on a labelled source do-

main to an unlabelled target domain is known as Unsu-

pervised Domain Adaptation (UDA). Recently, significant

attention has been given to deep UDA in other vision

tasks [14, 15, 32, 33, 51, 55]. However, very few works

have attempted deep UDA for video data [7, 19]. Surpris-

ingly, none have tested on videos of fine-grained actions

and all these approaches only consider video as images (i.e.

RGB modality). This is in contrast with self-supervised ap-

proaches that have successfully utilised multiple modalities

within video when labels are not present during training [1].

Up to our knowledge, no prior work has explored the

multi-modal nature of video data for UDA in action recog-

nition. We summarise our contributions as follows:

• We show that multi-modal self-supervision, applied to

both source and unlabelled target data, can be used for
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Figure 2: Fine-grained action datasets [8, 17, 26, 28, 38,

42, 46, 47, 50], x-axis: number of action segments per en-

vironment (ape), y-axis: dataset size divided by ape. EPIC-

Kitchens [8] offers the largest ape relative to its size.

domain adaptation in video.

• We propose a multi-modal UDA strategy, which we

name MM-SADA, to adapt fine-grained action recogni-

tion models to unlabelled target environments, using both

adversarial alignment and multi-modal self-supervision.

• We test our approach on three domains from EPIC-

Kitchens [8], trained end-to-end using I3D [6], and pro-

vide the first benchmark of UDA for fine-grained action

recognition. Our results show that MM-SADA outper-

forms source-only generalisation as well as alternative

domain adaptation strategies such as batch-based normal-

isation [29], distribution discrepancy minimisation [32]

and classifier discrepancy [45].

2. Related Works

This section discusses related literature starting with

general UDA approaches, then supervised and self-

supervised learning for action recognition, concluding with

works on domain adaptation for action recognition.

Unsupervised Domain Adaptation (UDA) outside of Ac-

tion Recognition. UDA has been extensively studied for

vision tasks including object recognition [14, 15, 32, 33,

51, 55], semantic segmentation [18, 60, 65] and person re-

identification [10, 49, 62]. Typical approaches adapt neural

networks by minimising a discrepancy measure [15, 51],

thus matching mid-level representations of source and tar-

get domains. For example, Maximum Mean Discrep-

ancy (MMD) [15, 32, 33] minimises the distance between

the means of the projected domain distributions in Repro-

ducing Kernel Hilbert Space. More recently, domain adap-

tation has been influenced by adversarial training [14, 55].

Simultaneously learning a domain discriminator, whilst

maximising its loss with respect to the feature extractor,

minimises the domain discrepancy between source and tar-

get. In [55], a GAN-like loss function allows separate

weights for source and target domains, while in [14] shared

weights are used, efficiently removing domain specific in-

formation by inverting the gradient produced by the domain

discriminator with a Gradient Reversal Layer (GRL).

Utilising multiple modalities (image and audio) for UDA

has been recently investigated for bird image retrieval [39].

Multiple adversarial discriminators are trained on a single

modality as well as mid-level fusion and a cross-modality

attention is learnt. The work shows the advantages of multi-

modal domain adaptation in contrast to single-modality

adaptation, though in their work both modalities demon-

strate similar robustness to the domain shift.

Very recently, self-supervised learning has been pro-

posed as a domain adaptation approach [5, 52]. In [5], it is

used as an auxiliary task, by jigsaw-shuffling image patches

and predicting their permutations over multiple source do-

mains. In [52], self-supervision was shown to replace ad-

versarial training using tasks such as predicting rotation and

translation for object recognition. In the same work, self-

supervision was shown to benefit adversarial training when

jointly trained for semantic segmentation. Both works only

use a single image. Our work utilises the multiple modali-

ties offered by video, showing that self-supervision can be

used to adapt action recognition models to target domains.

Supervised Action Recognition. Convolutional networks

are state of the art for action recognition, with the first sem-

inal works using either 3D [20] or 2D convolutions [22].

Both utilise a single modality—appearance information

from RGB frames. Simonyan and Zisserman [48] address

the lack of motion features captured by these architectures,

proposing two-stream late fusion that learns separate fea-

tures from the Optical Flow and RGB modalities, outper-

forming single modality approaches.

Following architectures have focused on modelling

longer temporal structure, through consensus of predictions

over time [30, 58, 63] as well as inflating CNNs to 3D con-

volutions [6], all using the two-stream approach of late-

fusing RGB and Flow. The latest architectures have fo-

cused on reducing the high computational cost of 3D con-

volutions [12, 21, 61], yet still show improvements when

reporting results of two-stream fusion [61].

Self-supervision for Action Recognition. Self-supervision

methods learn representations from the temporal [13, 59]

and multi-modal structure of video [1, 25], leveraging pre-

training on a large corpus of unlabelled videos. Methods

exploiting the temporal consistency of video have predicted

the order of a sequence of frames [13] or the arrow of

time [59]. Alternatively, the correspondence between mul-

tiple modalities has been exploited for self-supervision, par-

ticularly with audio and RGB [1, 25, 35]. Works predicted

if modalities correspond or are synchronised. We test both

approaches for self-supervision in our UDA approach.

Domain Adaptation for Action Recognition. Of the sev-

eral domain shifts in action recognition, only one has re-

ceived significant research attention, that is the problem
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Figure 3: Proposed architecture: feature extractors FRGB and FFlow are shared for both target and source domains. Domain

Discriminators, DRGB and DFlow, are applied to each modality. Self-supervised correspondence of modalities, C, is trained

from both source and unlabelled target data. Classifiers, GRGB and GFlow are trained using source domain examples only

from the average pooled classification scores of each modality. During inference, multimodal target data is classified.

of cross-viewpoint (or viewpoint-invariant) action recogni-

tion [24, 27, 31, 40, 46]. These works focus on adapting

to the geometric transformations of a camera but do little

to combat other shifts, like changes in environment. Works

utilise supervisory signals such as skeleton or pose [31] and

corresponding frames from multiple viewpoints [24, 46].

Recent works have used GRLs to create a view-invariant

representation [27]. Though several modalities (RGB, flow

and depth) have been investigated, these were aligned and

evaluated independently.

On the contrary, UDA for changes in environment has re-

ceived limited recent attention. Before deep-learning, UDA

for action recognition used shallow models to align source

and target distributions of handcrafted features [4, 11, 64].

Three recent works attempted deep UDA [7, 19, 36]. These

apply GRL adversarial training to C3D [54], TRN [63] or

both [36] architectures. Jamal et al.’s approach [19] outper-

forms shallow methods that use subspace alignment. Chen

et al. [7] show that attending to the temporal dynamics of

videos can improve alignment. Pan et al. [36] use a cross-

domain attention module, to avoid uninformative frames.

Two of these works use RGB only [7, 19] while [36] re-

ports results on RGB and Flow, however, modalities are

aligned independently and only fused during inference. The

approaches [7, 19, 36] are evaluated on 5-7 pairs of do-

mains from subsets of coarse-grained action recognition

and gesture datasets, for example aligning UCF [41] to

Olympics [34]. We evaluate on 6 pairs of domains. Com-

pared to [19], we use 3.8× more training and 2× more test-

ing videos.

The EPIC-Kitchens [8] dataset for fine-grained action

recognition released two distinct test sets—one with seen

and another with unseen/novel kitchens. In the 2019 chal-

lenges report, all participating entries exhibit a drop in ac-

tion recognition accuracy of 12-20% when testing their

models on novel environments compared to seen environ-

ments [9]. Up to our knowledge, no previous effort applied

UDA on this or any fine-grained action dataset.

In this work, we present the first approach to multi-modal

UDA for action recognition, tested on fine-grained actions.

We combine adversarial training on multiple modalities

with a modality correspondence self-supervision task. This

utilises the differing robustness to domain shifts between

the modalities. Our method is detailed next.

3. Proposed Method

This section outlines our proposed action recognition do-

main adaptation approach, which we call Multi-Modal Self-

Supervised Adversarial Domain Adaptation (MM-SADA).

In Fig. 3, we present an overview of MM-SADA, visu-

alised for action recognition using two modalities: RGB

and Optical Flow. We incorporate a self-supervision align-

ment classifier, C, that determines whether modalities are

sampled from the same or different actions to learn modal-

ity correspondence. This takes in the concatenated features

from both modalities, without any labels. Learning the cor-

respondence on source and target encourages features that

generalise to both domains. Aligning the domain statistics

is achieved by adversarial training, with a domain discrim-

inator per modality that predicts the domain. A Gradient

Reversal layer (GRL) reverses and backpropagates the gra-

dient to the features. Both alignment techniques are trained

on source and unlabelled target data whereas the action clas-

sifier is only trained with labelled source data.

We next detail MM-SADA, generalised to any two or
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more modalities. We start by revisiting the problem of

domain adaptation and outlining multi-stream late fusion,

then we describe our adaptation approach.

3.1. Unsupervised Domain Adaptation (UDA)

A domain is a distribution over the input population X

and the corresponding label space Y. The aim of supervised

learning, given labelled samples {(x, y)}, is to find a rep-

resentation, G(·), over some learnt features, F (·), that min-

imises the empirical risk, ES[Ly(G(F (x)), y)]. The em-

pirical risk is optimised over the labelled source domain,

S = {Xs, Y s,Ds}, where Ds is a distribution of source

domain samples. The goal of domain adaptation is to min-

imise the risk on a target domain, T = {Xt, Y t,Dt}, where

the distributions in the source and target domains are dis-

tinct, Ds 6= Dt. In UDA, the label space Y t is unknown,

thus methods minimise both the source risk and the distribu-

tion discrepancy between the source and target domains [3].

3.2. Multi­modal Action Recognition

When the input is multi-modal, i.e. X = (X1, · · · , XM )
where Xm is the mth modality of the input, fusion of

modalities can be employed. Most commonly, late fusion is

implemented, where we sum prediction scores from modal-

ities and backpropagate the error to all modalities, i.e.:

Ly =
∑

x∈{S}

−y logP (x)

where: P (x) = σ
(

M
∑

m=1

Gm(Fm(xm))
)

(1)

where Gm is the modality’s task classifier, and Fm is

the modality’s learnt feature extractor. The consensus of

modality classifiers is trained by a cross entropy loss, Ly ,

between the task label, y, and the prediction, P (x). σ is

defined as the softmax function. Training for classification

expects the presence of labels and thus can only be applied

to the labelled source input.

3.3. Within­Modal Adversarial Alignment

Both generative and discriminative adversarial ap-

proaches have been proposed for bridging the distribu-

tion discrepancy between source and target domains. Dis-

criminative approaches are most appropriate with high-

dimensional input data present in video. Generative adver-

sarial requires a huge amount of training data and temporal

dynamics are often difficult to reconstruct. Discriminative

methods train a discriminator, D(·), to predict the domain

of an input (i.e. source or target), from the learnt features,

F (·). By maximising the discriminator loss, the network

learns a feature representation that is invariant to both do-

mains.

For aligning multi-modal video data, we propose us-

ing a domain discriminator per modality that penalises do-

main specific features from each modality’s stream. Align-

ing modalities separately avoids the easier solution of the

network focusing only on the less robust modality in clas-

sifying the domain. Each separate domain discriminator,

Dm, is thus used to train the modality’s feature representa-

tion Fm. Given a binary domain label, d, indicating if an

example x ∈ S or x ∈ T, the domain discriminator, for

modality m, is defined as,

Lm
d =

∑

x∈{S,T}

−d log(Dm(Fm(x)))−

(1− d) log(1−Dm(Fm(x))) (2)

3.4. Multi­Modal Self­Supervised Alignment

Prior approaches to domain adaptation have mostly fo-

cused on images and thus have not explored the multi-modal

nature of the input data. Videos are multi-modal, where cor-

responding modalities are present in both source and target.

We thus propose a multi-modal self-supervised task to align

domains. Multi-modal self-supervision has been success-

fully exploited as a pretraining strategy [1, 2]. However,

we show that self-supervision for both source and target do-

mains can also align domains.

We learn the temporal correspondence between modali-

ties as a self-supervised binary classification task. For pos-

itive examples, indicating that modalities correspond, we

sample modalities from the same action. These could be

from the same time, or different times within the same ac-

tion. For negative examples, each modality is sampled from

a different action. The network is thus trained to deter-

mine if the modalities correspond. This is optimised over

both domains. A self-supervised correspondence classifier

head, C, is used to predict if modalities correspond. This

shares the same modality feature extractors, Fm, as the ac-

tion classifier. It is important that C is as shallow as possible

so that most of the self-supervised representation is learned

in the feature extractors. Given a binary label defining if

modalities correspond, c, for each input, x, and concate-

nated features of the multiple modalities, we calculate the

multi-modal self-supervision loss as follows:

Lc =
∑

x∈{S,T}

−c logC(F 0(x), ..., FM (x)) (3)

3.5. Proposed MM­SADA

We define the Mutli-Modal Self-Supervised Adversarial

Domain Adaptation (MM-SADA) approach as follows. The

classification loss, Ly , is jointly optimised with the adver-

sarial and self-supervised alignment losses. The within-

modal adversarial alignment is weighted by λd, and the

multi-modal self-supervised alignment is weighted by λc.

Optimising both alignment strategies achieves benefits in
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matching source and target statistics and learning cross-

modal relationships transferable to the target domain.

L = Ly + λd

∑

m

Lm
d + λcLc (4)

Note that the first loss Ly is only optimised for labelled

source data, while the alignment losses ∀m : Lm
d and Lc

are optimised for both unlabelled source and target data.

4. Experiments and Results

This section first discusses the dataset, architecture, and

implementation details in Sec. 4.1. We compare against

baseline methods noted in Sec. 4.2. Results are presented

in Sec. 4.3, followed by an ablation study of the method’s

components in Sec. 4.4 and qualitative results including fea-

ture space visualisations in Sec. 4.5.

4.1. Implementation Details

Dataset. Our previous work, EPIC Kitchens [8], offers

a unique opportunity to test domain adaptation for fine-

grained action recognition, as it is recorded in 32 envi-

ronments. Similar to previous works for action recogni-

tion [14, 19], we evaluate on pairs of domains. We select

the three largest kitchens, in number of training action in-

stances, to form our domains. These are P01, P22, P08,

which we refer to as D1, D2 and D3, respectively (Fig. 4).

We analyse the performance for the 8 largest action

classes: (‘put’, ‘take’, ‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’,

and ‘pour’), which form 80% of the training action seg-

ments for these domains. This ensures sufficient exam-

ples per domain and class, without balancing the training

set. The label imbalance of these 8 classes is depicted in

Fig. 4 (middle) which also shows the differing distribution

of classes between the domains. Most domain adaptation

works evaluate on balanced datasets [14, 16, 44] with few

using imbalanced datasets [57]. EPIC-Kitchens has a large

class imbalance offering additional challenges for domain

adaptation. The number of action segments in each domain

are specified in Fig. 4 (bottom), where a segment is a la-

beled start/end time, with an action label.

Architecture. We train all our models end-to-end. We

use the inflated 3D convolutional architecture (I3D) [6]

as our backbone for feature extraction, one per modality

(Fm). In this work, F convolves over a temporal window

of 16 frames. In training, a single temporal window is ran-

domly sampled from within the action segment each itera-

tion. In testing, as in [58], we use an average over 5 tem-

poral windows, equidistant within the segment. We use the

RGB and Optical Flow frames provided publicly [8]. The

output of F is the result of the final average pooling layer

of I3D, with 1024 dimensions. G is a single fully connected

layer with softmax activation to predict class labels. Each

domain discriminator Dm is composed of 2 fully connected

Take Put Open Wash Close Cut Pour Mix
Action Class

0

5

10

15

20

25

30

Pr
op

or
tio

n 
of

 A
ct

io
n 

Se
gm

en
ts

 (%
)

Domain
D1
D2
D3

Domain D1 D2 D3

Ref. EPIC Kitchen P08 P01 P22

Training Action Segments 1543 2495 3897

Test Action Segments 435 750 974

Figure 4: Top: Three kitchens from EPIC-Kitchens se-

lected as domains to evaluate our method Middle: Class

distribution per domain, for the 8 classes in legend. Bot-

tom: Number of action segments per domain.

layers with a hidden layer of 100 dimensions and a ReLU

activation function. A dropout rate of 0.5 was used on the

output of F and 1e − 7 weight decay for all parameters.

Batch normalisation layers are used in Fm and are updated

with target statistics for testing, as in AdaBN [29]. We ap-

ply random crops, scale jitters and horizontal flips for data

augmentation as in [58]. During testing only center crops

are used. The self-supervised correspondence function C

(Eq. 3) is implemented as 2 fully connected layers of 100

dimensions and a ReLU activation function. The features

from both modalities are concatenated along the channel di-

mension as input to C.

Training and Hyper-parameter Choice. We train using

the Adam optimiser [23] in two stages. First the network

is trained with only the classification and self supervision

losses Ly + λcLc at a learning rate of 1e − 2 for 3K it-

erations. Then, the overall loss function (Eq. 4) is opti-

mised, applying the domain adversarial losses Lm
d , and re-

ducing the learning rate to 2e − 4 for a further 6K steps.
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D2→ D1 D3→ D1 D1→ D2 D3→ D2 D1→ D3 D2→ D3 Mean

MM Source-only 42.5 44.3 42.0 56.3 41.2 46.5 45.5

AdaBN [29] 44.6 47.8 47.0 54.7 40.3 48.8 47.2

MMD [32] 43.1 48.3 46.6 55.2 39.2 48.5 46.8

MCD [45] 42.1 47.9 46.5 52.7 43.5 51.0 47.3

MM-SADA 48.2 N+5.7 50.9N+6.6 49.5N+7.5 56.1H-0.2 44.1N+2.9 52.7 N+6.3 50.3 N+4.8

Supervised target 62.8 62.8 71.7 71.7 74.0 74.0 69.5

Table 1: Top-1 Accuracy on the target domain, for our proposed MM-SADA, compared to different alignment approaches.

On average, we outperform the source-only performance by 4.8%.

(a) Target D1 (b) Target D2 (c) Target D3

Figure 5: Accuracy on target during training epochs. Solid line is MM-SADA and dotted line is source-only performance.

The self-supervision hyper-parameter, λc = 5 was chosen

by observing the performance on the labelled source do-

main only, i.e. this has not been optimised for the target

domain. Note that while training with self-supervision, half

the batch contains corresponding modalities and the other

non-corresponding modalities. Only source examples with

corresponding modalities are used to train for action classi-

fication. The domain adversarial hyper-parameter, λd = 1,

was chosen arbitrarily; we show that the results are robust to

some variations in this hyper-parameter in an ablation study.

Batch size was set to 128, split equally for source and target

samples. On average, training takes 9 hours on an NVIDIA

DGX-1 with 8 V100 GPUs.

4.2. Baselines
For all results, we report the top-1 target accuracy av-

eraged over the last 9 epochs of training, for robustness.

We first evaluate the impact of domain shift between source

and target by testing using a multi-modal source-only model

(MM source-only), trained with no access to unlabelled tar-

get data. Additionally, we compare to 3 baselines for unsu-

pervised domain adaptation as follows:

– AdaBN [29]: Batch Normalisation layers are updated

with target domain statistics.

– Maximum Mean Discrepancy (MMD): The multiple ker-

nel implementation of the commonly used domain dis-

crepancy measure MMD is used as a baseline [32]. This

directly replaces the adversarial alignment with separate

discrepancy measures applied to individual modalities.

– Maximum Classifier Discrepancy (MCD) [45]: Align-

ment through classifier disagreement is used. We use

two multi-modal classification heads as separate classi-

fiers. The classifiers are trained to maximise prediction

disagreement on the target domain, implemented as L1

loss, finding examples out of support from the source do-

main. We use a GRL to optimise the feature extractors.

Additionally, as an upper limit, we also report the su-

pervised target domain results. This is a model trained on

labelled target data and only offers an understanding of the

upper limit for these domains. We highlight these results in

the table to avoid confusion.

4.3. Results
First we compare our proposed method MM-SADA

to the various domain alignment techniques in Table 1.

We show that our method outperforms batch-based [29]

(by 3.1%), classifier discrepancy [45] (by 3%) and dis-

crepancy minimisation alignment [32] (by 3.5%) methods.

The improvement is consistent for all pairs of domains.

Additionally, it significantly improves on the source-only

baseline by up to 7.5% in 5 out of 6 cases. For a single

case, D3 → D2, all baselines under-perform compared to
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λd λc D2→ D1 D3→ D1 D1→ D2 D3→ D2 D1→ D3 D2→ D3 Mean

Source-only 0 0 42.5 44.3 42.0 56.3 41.2 46.5 45.5

MM-SADA (Self-Supervised only) 0 5 41.8 49.7 47.7 57.4 40.3 50.6 47.9N+2.4

MM-SADA (Adversarial only) 1 0 46.5 51.0 50.0 53.7 43.5 51.5 49.4N+3.9
MM-SADA (Adversarial only) 0.5 0 46.9 50.2 50.2 53.6 44.7 50.8 49.4N+3.9

MM-SADA 0.5 5 45.8 52.1 50.4 56.9 43.5 51.9 50.1N+4.6
MM-SADA 1 5 48.2 50.9 49.5 56.1 44.2 52.7 50.3N+4.8

Table 2: Ablation of our method, showing the contribution of the various loss functions (Eq 4). When λd = 0, modality

adversarial is not utilised. When λc = 0, self-supervision is not utilised.

D2→ D1 D3→ D1 D1→ D2 D3→ D2 D1→ D3 D2→ D3 Mean

RGB source-only 37.0 36.3 36.1 44.8 36.6 33.6 37.4

RGB (Adversarial-only) 37.8 41.1 45.7 45.1 38.1 41.2 41.5

RGB (MM-SADA) 41.7 42.1 45.0 48.4 39.7 46.1 43.9

Flow source-only 44.6 44.4 52.2 54.0 41.1 50.0 47.7

Flow (Adversarial-only) 45.5 46.8 51.1 54.6 44.2 47.1 48.2

Flow (MM-SADA) 45.0 45.7 49.0 58.9 44.8 52.1 49.3

Table 3: Ablation of our method on individual modalities, reporting predictions from each modality stream, before late

fusion. Note that we still use both modalities for self-supervision. MM-SADA provides improvements for both modalities.

Figure 6: Robustness of the average top-1 accuracy over all

pairs of domains for various λd on the target domain.

source-only. Ours has a slight drop (-0.2%) but outperforms

other alignment approaches. We will revisit this case in the

ablation study.

Figure 5 shows the top-1 accuracy on the target during

training (solid lines) vs source-only training without do-

main adaptation (dotted lines). Training without adapta-

tion has consistently lower accuracy, except for our failure

case D3 → D2, showing the stability and robustness of

our method during training, with minimal fluctuations due

to stochastic optimisation on batches. This is essential for

UDA as no target labels can be used for early stopping.

4.4. Ablation Study

Next, we compare the individual contributions of differ-

ent components of MM-SADA. We report these results in

Table 2. The self-supervised component on its own gives a

2.4% improvement over no adaption. This shows that self-

supervision can learn features common to both source and

target domains, adapting the domains. Importantly, this on

average outperforms the three baselines in Table 1. Ad-

versarial alignment per modality gives a further 2.4% im-

provement as this encourages the source and target distri-

butions to overlap, removing domain specific features from

each modality. Compared to adversarial alignment only, our

method improves in 5 of the 6 domains and by up to 3.2%.

For the single pair noted earlier, D3 → D2, self-

supervision alone outperforms source-only and all other

methods reported in Table 1 by 1.1%. However when com-

bined with domain adaptation using λd = 1, the overall per-

formance of MM-SADA reported in Table 1 cannot beat the

baseline. In Table 2, we show that when halving the contri-

bution of adversarial component to λd = 0.5, MM-SADA

can achieve 56.9% outperforming the source-only baseline.

Therefore self-supervision can improve performance where

marginal alignment domain adaptation techniques fail.

Figure 6 plots the performance of MM-SADA as λd

changes. Note that λc can be chosen by observing the

performance of self-supervision on source-domain labels,

while λd requires access to target data. We show that our

approach is robust to various values of λd, with even higher

accuracy at λd = 0.75 than those reported in Table 2.

Table 3 shows the impact of our method on the perfor-

mance of the modalities individually. Predictions are taken

from each modality separately before late fusion. RGB,

the less robust modality, benefits most from MM-SADA,

improving over source-only by 6.5% on average, whereas

Flow improves by 1.6%. The inclusion of multi-modal

self-supervision provides 2.4% and 1.1% improvements for
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Self-Supervision D2→ D1 D3→ D1 D1→ D2 D3→ D2 D1→ D3 D2→ D3 Mean

Sync. 44.2 50.2 48.0 54.6 41.0 49.4 47.9

Seg. Corr. 41.8 49.7 47.7 57.4 40.3 50.6 47.9

Table 4: Comparision of two self-supervision tasks for modality correspondence: determining modality synchrony vs. deter-

mining whether modality samples come from the same segment. The two approaches perform comparably on average.

Figure 7: t-SNE plots of RGB (left) and Flow (right) feature spaces produced by source-only, self-supervised alignment and

our proposed model MM-SADA. Target is shown in red and source in blue. Our method better aligns both modalities.

RGB and Flow, compared to only using adversarial align-

ment. This shows the benefit of employing self-supervision

from multiple modalities during alignment.

We also compare two approaches for multi-modal self-

supervision in Table 4. The first, which has been used to

report all results above, learns the correspondence of RGB

and Flow within the same action segment. We refer to

this as ‘Seg. Corr.’. The second learns the correspondence

only from time-synchronised RGB and Flow data, which

we call ‘Sync’. The two approaches are comparable in per-

formance overall, with no difference on average over the

domain pairs. This shows the potential to use a number of

multi-modal self-supervision tasks for alignment.

4.5. Qualitative Results

Figure 7 shows the t-SNE [56] visualisation of the

RGB (left) and Flow (right) feature spaces Fm. Several

observations are worth noting from this figure. First, Flow

shows higher overlap between source and target features

pre-alignment (first row). This shows that Flow is more

robust to environmental changes. Second, self-supervision

alone (second row) changes the feature space by separating

the features into clusters, that are potentially class-relevant.

This is most evident for D3 → D1 on the RGB modal-

ity (second row third column). However, alone this feature

space still shows domain gaps, particularly for RGB fea-

tures. Third, our proposed MM-SADA (third row) aligns

the marginal distributions of source and target domains.

5. Conclusion and Future Work

We proposed a multi-modal domain adaptation approach

for fine-grained action recognition utilising multi-modal

self-supervision and adversarial training per modality. We

show that the self-supervision task of predicting the cor-

respondence of multiple modalities is an effective domain

adaptation method. On its own, this can outperform domain

alignment methods [32, 45], by jointly optimising for the

self-supervised task over both domains. Together with ad-

versarial training, the proposed approach outperforms non-

adapated models by 4.8%. We conclude that aligning indi-

vidual modalities whilst learning a self-supervision task on

source and target domains can improve the ability of action

recognition models to transfer to unlabelled environments.

Future work will focus on utilising more modalities, such

as audio, to aid domain adaptation as well as exploring addi-

tional self-supervised tasks for adaptation, trained individu-

ally as well as for multi-task self-supervision.
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