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Abstract

Semantic reconstruction of indoor scenes refers to both

scene understanding and object reconstruction. Existing

works either address one part of this problem or focus on

independent objects. In this paper, we bridge the gap be-

tween understanding and reconstruction, and propose an

end-to-end solution to jointly reconstruct room layout, ob-

ject bounding boxes and meshes from a single image. In-

stead of separately resolving scene understanding and ob-

ject reconstruction, our method builds upon a holistic scene

context and proposes a coarse-to-fine hierarchy with three

components: 1. room layout with camera pose; 2. 3D ob-

ject bounding boxes; 3. object meshes. We argue that un-

derstanding the context of each component can assist the

task of parsing the others, which enables joint understand-

ing and reconstruction. The experiments on the SUN RGB-

D and Pix3D datasets demonstrate that our method consis-

tently outperforms existing methods in indoor layout esti-

mation, 3D object detection and mesh reconstruction.

1. Introduction

Semantic reconstruction from an indoor image shows its

unique importance in applications such as interior design

and real estate. In recent years, this topic has received

a rocketing interest from researchers in both computer vi-

sion and graphics communities. However, the inherent am-

biguity in depth perception, the clutter and complexity of

real-world environments make it still challenging to fully

recover the scene context (both semantics and geometry)

merely from a single image.

Previous works have attempted to address it via various

approaches. Scene understanding methods [38, 14, 3] ob-

tain room layout and 3D bounding boxes of indoor objects

without shape details. Scene-level reconstruction methods

recover object shapes using contextual knowledge (room
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Figure 1: From a single image (left), we simultaneously

predict the contextual knowledge including room layout,

camera pose, and 3D object bounding boxes (middle) and

reconstruct object meshes (right).

layout and object locations) for scene reconstruction, but

most methods currently adopt depth or voxel representa-

tions [39, 22, 46, 19]. Voxel-grid presents better shape de-

scription than boxes, but its resolution is still limited, and

the improvement of voxel quality exponentially increases

the computational cost, which is more obvious in scene-

level reconstruction. Mesh-retrieval methods [17, 15, 16]

improve the shape quality in scene reconstruction using a

3D model retrieval module. As these approaches require it-

erations of rendering or model search, the mesh similarity

and time efficiency depend on the size of the model repos-

itory and raise further concerns. Object-wise mesh recon-

struction exhibits the advantages in both efficiency and ac-

curacy [50, 10, 30, 18, 9], where the target mesh is end-to-

end predicted in its own object-centric coordinate system.

For scene-level mesh reconstruction, predicting objects as

isolated instances may not produce ideal results given the

challenges of object alignment, occlusion relations and mis-

cellaneous image background. Although Mesh R-CNN [9]

is capable of predicting meshes for multiple objects from an

image, its object-wise approach still ignores scene under-

standing and suffers from the artifacts of mesh generation

on cubified voxels. So far, to the best of authors’ knowl-

edge, few works take into account both mesh reconstruction
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and scene context (room layout, camera pose and object lo-

cations) for total 3D scene understanding.

To bridge the gap between scene understanding and ob-

ject mesh reconstruction, we unify them together with joint

learning, and simultaneously predict room layout, camera

pose, 3D object bounding boxes and meshes (Figure 1).

The insight is that object meshes in a scene manifest spa-

tial occupancy that could help 3D object detection, and the

3D detection provides with object alignment that enables

object-centric reconstruction at the instance-level. Unlike

voxel grids, coordinates of reconstructed meshes are differ-

entiable, thus enabling the joint training by comparing the

output mesh with the scene point cloud (e.g. on SUN RGB-

D [41]). With the above settings, we observe that the perfor-

mance on scene understanding and mesh reconstruction can

make further progress and reach the state-of-the-art on the

SUN RGB-D [41] and Pix3D [42] datasets. In summary,

we list our contributions as follows:

• We provide a solution to automatically reconstruct

room layout, object bounding boxes, and meshes from

a single image. To our best knowledge, it is the first

work of end-to-end learning for comprehensive 3D

scene understanding with mesh reconstruction at the

instance level. This integrative approach shows the

complementary role of each component and reaches

the state-of-the-art on each task.

• We propose a novel density-aware topology modifier

in object mesh generation. It prunes mesh edges based

on local density to approximate the target shape by

progressively modifying mesh topology. Our method

directly tackles the major bottleneck of [30], which is

in the requirement of a strict distance threshold to re-

move detached faces from the target shape. Compared

with [30], our method is robust to diverse shapes of

indoor objects under complex backgrounds.

• Our method takes into account the attention mecha-

nism and multilateral relations between objects. In 3D

object detection, the object pose has an implicit and

multilateral relation with surroundings, especially in

indoor rooms (e.g., bed, nightstand, and lamp). Our

strategy extracts the latent features for better deciding

object locations and poses, and improves 3D detection.

2. Related Work

Single-view scene reconstruction presents a challenging

task since the first work [37] in monocular shape inference.

For indoor reconstruction, the difficulties increase with the

complexity of clutter, occlusion and object diversity, etc.

Early works focus on room layout estimation [12, 21, 25,

5, 35] to represent rooms with a cuboid. With the advance

of CNNs, more methods are developed to estimate object

poses beyond the layout [7, 14, 1]. Still, these methods are

limited to the 3D bounding box prediction of each furni-

ture. To recover object shapes, some methods [17, 16, 15]

adopt shape retrieval to search for appearance-similar mod-

els from a dataset. However, its accuracy and efficiency

directly depend on the size and diversity of the dataset.

Scene reconstruction at the instance level remains prob-

lematic because of the large number of object categories

with diverse geometry and topology. To first address sin-

gle object reconstruction, approaches represent shapes in

the form of point cloud [8, 26, 20, 29], patches [10, 51]

and primitives [45, 47, 32, 6] which are adaptable to com-

plex topology but require post-processing to obtain meshes.

The structure of voxel grids [4, 23, 49] is regular while

suffering from the balance between resolution and effi-

ciency, demanding for Octree to improve local details

[36, 44, 51]. Some methods produce impressive mesh re-

sults using signed distance functions [31] and implicit sur-

faces [2, 28, 52, 27]. However, they are time-consuming

and computationally intensive, making it impractical to re-

construct all objects in a scene. Another popular approach

is to reconstruct meshes from a template [50, 10, 18], but

the topology of the reconstructed mesh is restricted. So

far, the state-of-art approaches modify the mesh topology to

approximate the ground-truth [30, 43]. However, existing

methods estimate 3D shapes in the object-centric system,

which cannot be applied to scene reconstruction directly.

The most relevant works to us are [22, 46, 19, 9], which

take an image as input and predict multiple object shapes

in a scene. However, the methods [22, 46, 19] are designed

for voxel reconstruction with limited resolution. Mesh R-

CNN [9] produces object meshes, but still treats objects as

isolated geometries without considering the scene context

(room layout, object pose, etc.). It uses cubified voxels as

an intermediate representation and suffers from the limited

resolution. Different from them, our method connects the

object-centric reconstruction with 3D scene understanding,

enabling joint learning of room layout, camera pose, object

bounding boxes, and meshes from a single image.

3. Method

We illustrate our overview in Figure 2a. The network ar-

chitecture follows a ‘box-in-the-box’ manner and consists

of three modules: 1. Layout Estimation Network (LEN); 2.

3D Object Detection Network (ODN); 3. Mesh Generation

Network (MGN). From a single image, we first predict 2D

object bounding boxes with Faster R-CNN [34]. LEN takes

the full image to produce the camera pose and the layout

bounding box. Given the 2D object detections, ODN pre-

dicts their 3D bounding box in the camera system, while

MGN generates the mesh geometry in their object-centric

system. We reconstruct the full scene mesh by embed-

ding the outputs of all networks together with joint training
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(a) Architecture of the scene reconstruction network (b) Parameterization of the learning targets

Figure 2: Overview of our approach. (a) The hierarchy of our method follows a ‘box-in-the-box’ manner using three modules:

the Layout Estimation Network (LEN), 3D Object Detection Network (ODN) and Mesh Generation Network (MGN). A full

scene mesh is reconstructed by embedding them together with joint inference. (b) The parameterization of our learning

targets in LEN and ODN [14].

and inference, where object meshes from MGN are scaled

and placed into their bounding boxes (by ODN) and trans-

formed into the world system with the camera pose (by

LEN). The details of each network are described below.

3.1. 3D Object Detection and Layout Estimation

To make the bounding box of layout and objects learn-

able, we parameterize a box as the prior work [14] (Fig-

ure 2b). We set up the world system located at the camera

center with its vertical (y-) axis perpendicular to the floor,

and its forward (x-) axis toward the camera, such that the

camera pose R (β, γ) can be decided by the pitch and roll

angles (β, γ). In the world system, a box can be determined

by a 3D center C ∈ R
3, spatial size s ∈ R

3, orientation

angle θ ∈ [−π, π). For indoor objects, the 3D center C is

represented by its 2D projection c ∈ R
2 on the image plane

with its distance d ∈ R to the camera center. Given the

camera intrinsic matrix K ∈ R
3, C can be formulated by:

C = R
−1 (β, γ) · d ·

K
−1 [c, 1]

T

‖K−1 [c, 1]
T
‖2

. (1)

The 2D projection center c can be further decoupled by cb+
δ. cb is the 2D bounding box center and δ ∈ R

2 is the offset

to be learned. From the 2D detection I to its 3D bounding

box corners, the network can be represented as a function by

F (I|δ, d, β, γ, s, θ) ∈ R
3×8. The ODN estimates the box

property (δ, d, s, θ) of each object, and the LEN decides the

camera pose R (β, γ) with the layout box
(

C, sl, θl
)

.

Object Detection Network (ODN). In indoor environ-

ments, object poses generally follow a set of interior de-

sign principles, making it a latent learnable pattern. Pre-

vious works either predict 3D boxes object-wisely [14, 46]

or only consider pair-wise relations [19]. In our work, we

assume each object has a multi-lateral relation between its

Figure 3: 3D Object Detection Network (ODN)

surroundings, and take all in-room objects into account in

predicting its bounding box. The network is illustrated in

Figure 3. Our method is inspired by the consistent im-

provement of attention mechanism in 2D object detection

[13]. For 3D detection, we first object-wisely extract the ap-

pearance feature with ResNet-34 [11] from 2D detections,

and encode the relative position and size between 2D object

boxes into geometry feature with the method in [13, 48].

For each target object, we calculate its relational feature

to the others with the object relation module [13]. It adopts

a piece-wise feature summation weighted by the similar-

ity in appearance and geometry from the target to the oth-

ers, which we call ‘attention sum’ in Figure 3. We then

element-wisely add the relational feature to the target and

regress each box parameter in (δ, d, s, θ) with a two-layer

MLP. For indoor reconstruction, the object relation module

reflects the inherent significance in the physical world: ob-

jects generally have stronger relations with the others which

are neighboring or appearance-similar. We demonstrate its

effectiveness in 3D object detection in our ablation analysis.

Layout Estimation Network (LEN). The LEN predicts

the camera pose R (β, γ) and its 3D box
(

C, sl, θl
)

in the

world system. In this part, we employ the same architecture

as ODN but remove the relational feature.
(

β, γ,C, sl, θl
)
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are regressed with two fully-connected layers for each tar-

get after the ResNet. Similar to [14], the 3D center C is

predicted by learning an offset to the average layout center.

3.2. Mesh Generation for Indoor Objects

Our Mesh Generation Network directly tackles the ma-

jor issue with one recent work, Topology Modification Net-

work (TMN) [30]: TMN approximates object shapes by

deforming and modifying the mesh topology, where a pre-

defined distance threshold is required to remove detached

faces from the target shape. However, it is nontrivial to give

a general threshold for different scales of object meshes (see

Figure 5e). One possible reason is that indoor objects have

a large shape variance among different categories. Another

one is that complex backgrounds and occlusions often cause

the failure of estimating a precise distance value.

Figure 4: Mesh Generation Network (MGN). Our method

takes as input a detected object which is vulnerable to oc-

clusions, and outputs a plausible mesh.

Density v.s. Distance. Different from TMN where a strict

distance threshold is used for topology modification, we ar-

gue that whether to reserve a face or not should be deter-

mined by its local geometry. In this part, we propose an

adaptive manner that modifies meshes based on the local

density of the ground-truth. We set pi ∈ R
3 as a point

on our reconstructed mesh, and qi ∈ R
3 corresponds to its

nearest neighbor on the ground-truth (see Figure 4). We de-

sign a binary classifier f (∗) to predict whether pi is close

to the ground-truth mesh in Equation 2:

f(pi) =

{

False ‖pi − qi‖2 > D (qi)

True otherwise

D (qi) = max min
qm,qn∈N(qi)

‖qm − qn‖2,m 6= n

, (2)

where N (qi) are the neighbors of qi on the ground-truth

mesh, and D (qi) is defined as its local density. This clas-

sifier is designed by our insight that: in shape approxima-

tion, a point should be reserved if it belongs to the neighbors

N (∗) of the ground-truth. We also observe that this classi-

fier shows better robustness with different mesh scales than

using a distance threshold (see Figure 5).

Edges v.s. Faces. Instead of removing faces, we choose

to cut mesh edges for topology modification. We randomly

sample points on mesh edges and use the classifier f (∗) to

cut edges on which the average classification score is low. It

is from the consideration that cutting false edges can reduce

incorrect connections penalized by the edge loss [50] and

create compact mesh boundaries.

Mesh Generation Network. We illustrate our network ar-

chitecture in Figure 4. It takes a 2D detection as input and

uses ResNet-18 to produce image features. We encode the

detected object category into a one-hot vector and concate-

nate it with the image feature. It is from our observation

that the category code provides shape priors and helps to

approximate the target shape faster. The augmented fea-

ture vector and a template sphere are fed into the decoder

in AtlasNet [10] to predict deformation displacement on the

sphere and output a plausible shape with unchanged topol-

ogy. The edge classifier has the same architecture with

the shape decoder, where the last layer is replaced with a

fully connected layer for classification. It shares the image

feature, takes the deformed mesh as input and predicts the

f (∗) to remove redundant meshes. We then append our net-

work with a boundary refinement module [30] to refine the

smoothness of boundary edges and output the final mesh.

3.3. Joint Learning for Total 3D Understanding

In this section, we conclude the learning targets with the

corresponding loss functions, and describe our joint loss for

end-to-end training.

Individual losses. ODN predicts (δ, d, s, θ) to recover the

3D object box in the camera system, and LEN produces
(

β, γ,C, sl, θl
)

to represent the layout box, along with the

camera pose to transform 3D objects into the world sys-

tem. As directly regressing absolute angles or length with

L2 loss is error-prone [14, 33]. We keep inline with them

by using the classification and regression loss Lcls,reg =
Lcls + λrL

reg to optimize
(

θ, θl, β, γ, d, s, sl
)

. We refer

readers to [14] for details. As C and δ are calculated by the

offset from a pre-computed center, we predict them with L2

loss. For MGN, we adopt the Chamfer loss Lc, edge loss

Le, boundary loss Lb as [10, 50, 30] with our cross-entropy

loss Lce for classifying edges in mesh modification.

Joint losses. We define the joint loss between ODN, LEN

and MGN based on two insights: 1. The camera pose esti-

mation should improve 3D object detection, and vice versa;

2. object meshes in a scene present spatial occupancy that

should benefit the 3D detection, and vice versa. For the first,

we adopt the cooperative loss Lco from [14] to ensure the

consistency between the predicted world coordinates of lay-

out & object boxes and the ground-truth. For the second, we

require the reconstructed meshes close to their point cloud

in the scene. It exhibits global constraints by aligning mesh

coordinates with the ground-truth. We define the global loss
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as the partial Chamfer distance [10]:

Lg =
1

N

N
∑

i=1

1

|Si|

∑

q∈Si

min
p∈Mi

‖p− q‖22, (3)

where p and q respectively indicate a point on a recon-

structed mesh Mi and the ground-truth surface Si of i-th

object in the world system. N is the number of objects and

|Si| denotes the point number on Si. Unlike single object

meshes, real-scene point clouds are commonly coarse and

partially covered (scanned with depth sensors), thus we do

not use the Chamfer distance to define Lg . All the loss func-

tions in joint training can be concluded as:

L =
∑

x∈{δ,d,s,θ}

λxLx +
∑

y∈{β,γ,C,sl,θl}

λyLy

+
∑

z∈{c,e,b,ce}

λzLz + λcoLco + λgLg,
(4)

where the first three terms represent the individual loss in

ODN, LEN and MGN, and the last two are the joint terms.

{λ∗} are the weights used to balance their importance.

4. Results and Evaluation

4.1. Experiment Setup

Datasets: We use two datasets in our experiments: 1)

SUN RGB-D dataset [41] consists of 10,335 real indoor

images with labeled 3D layout, object bounding boxes and

coarse point cloud (depth map). We use the official train/test

split and NYU-37 object labels [40] for evaluation on lay-

out, camera pose estimation and 3D object detection. 2)

Pix3D dataset [42] contains 395 furniture models with 9

categories, which are aligned with 10,069 images. We use

this for mesh generation and keep the train/test split inline

with [9]. The object label mapping from NYU-37 to Pix3D

for scene reconstruction is listed in the supplementary file.

Metrics: Our results are measured on both scene under-

standing and mesh reconstruction metrics. We evaluate

layout estimation with average 3D Intersection over Union

(IoU). The camera pose is evaluated by the mean absolute

error. Object detection is tested with the average precision

(AP) on all object categories. We test the single-object mesh

generation with the Chamfer distance as previous works

[9, 30], and evaluate the scene mesh with Equation 3.

Implementation: We train the 2D detector (Figure 2a) on

the COCO dataset [24] first and fine-tune it on SUN RGB-

D. In MGN, the template sphere has 2562 vertices with unit

radius. We cut edges whose average classification score is

lower than 0.2. Since SUN RGB-D does not provide full

instance meshes for 3D supervision, and Pix3D is only la-

beled with one object per image without layout information.

We first train ODN, LEN on SUN-RGBD, and train MGN

on Pix3D individually. We then combine Pix3D into SUN

RGB-D to provide mesh supervision and jointly train all

networks with the loss L in Equation 4. Here we use one hi-

erarchical batch (each batch contains one scene image with

N object images) in joint training. We explain the full ar-

chitecture, training strategies, time efficiency and parameter

setting of our networks in the supplementary file.

4.2. Qualitative Analysis and Comparison

In this section, we evaluate the qualitative performance

of our method on both object and scene levels.

Object Reconstruction: We compare our MGN with the

state-of-the-art mesh prediction methods [9, 10, 30] on

Pix3D. Because our method is designed to accomplish

scene reconstruction in real scenes, we train all methods

inputted with object images but without masks. For Atlas-

Net [10] and Topology Modification Network (TMN) [30],

we also encode the object category into image features en-

abling a fair comparison. Both TMN and our method are

trained following a ‘deformation+modification+refinement’

process (see [30]). For Mesh R-CNN [9], it involves an ob-

ject recognition phase, and we directly compare with the re-

sults reported in their paper. The comparisons are illustrated

in Figure 5, from which we observe that indoor furniture

are often overlaid with miscellaneous backgrounds (such

as books on the shelf). From the results of Mesh R-CNN

(Figure 5b), it generates meshes from low-resolution voxel

grids (243 voxels) and thus results in noticeable artifacts on

mesh boundaries. TMN improves from AtlasNet and refines

shape topology. However, its distance threshold τ does not

show consistent adaptability for all shapes in indoor envi-

ronments (e.g. the stool and the bookcase in Figure 5e). Our

method relies on the edge classifier. It cuts edges depend-

ing on the local density, making the topology modification

adaptive to different scales of shapes among various object

categories (Figure 5f). The results also demonstrate that our

method keeps better boundary smoothness and details.

Scene Reconstruction: As this is the first work, to our best

knowledge, of combing scene understanding and mesh gen-

eration for full scene reconstruction, we illustrate our results

on the testing set of SUN RGB-D in Figure 6 (see more

samples in the supplementary file). Note that SUN RGB-

D does not contain ground-truth object meshes for training.

We present the results under different scene types and di-

verse complexities to test the robustness of our method. The

first row in Figure 6 shows the scenes with large repetitions

and occlusions. We exhibit the cases with disordered object

orientations in the second row. The third and the fourth rows

present the results under various scene types, and the fifth

row shows the performance in handling cluttered and ‘out-

of-view’ objects. All the results manifest that, with different

complexities, our method maintains visually appealing ob-

ject meshes with reasonable object placement.
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(a) (b) (c) (d) (e) (f)

Figure 5: Mesh reconstruction for individual objects. From

left to right: (a) Input images and results from (b) Mesh R-

CNN [9], (c) AtlasNet-Sphere [10], (d, e) TMN with τ =
0.1 and τ = 0.05 [30], (f) Ours.

4.3. Quantitative Analysis and Comparison

We compare the quantitative performance of our method

with the state-of-the-arts on four aspects: 1. layout esti-

mation; 2. camera pose prediction; 3. 3D object detection

and 4. object and scene mesh reconstruction. The object

mesh reconstruction is tested on Pix3D, and the others are

evaluated on SUN RGB-D. We also ablate our method by

removing joint training: each subnetwork is trained indi-

vidually, to investigate the complementary benefits of com-

bining scene understanding and object reconstruction.

Layout Estimation: We compare our method with exist-

ing layout understanding works [3, 15, 14]. As shown in

Table 1, joint training with room layout, object bounding

boxes and meshes helps to improve the layout estimation,

providing a gain of 2 points than the state-of-the-arts.

Camera Pose Estimation: Camera pose is defined by

R (β, γ), hence we evaluate the pitch β and roll γ with the

mean absolute error with the ground-truth. The results are

show in Table 1, where we observe that joint learning also

benefits the camera pose estimation.

Method 3D Layout Cam pitch Cam roll

3DGP [3] 19.2 - -

Hedau [12] - 33.85 3.45

HoPR [15] 54.9 7.60 3.12

CooP [14] 56.9 3.28 2.19

Ours (w/o. joint) 57.6 3.68 2.59

Ours (joint) 59.2 3.15 2.09

Table 1: Comparisons of 3D layout and camera pose esti-

mation on SUN RGB-D. We report the average IoU to eval-

uate layout prediction (higher is better), and the mean abso-

lute error of pitch and roll angles (in degree) to test camera

pose (lower is better). Note that our camera axes are defined

in a different order with [14] (see the supplementary file).

3D Object Detection: We investigate the object detection

with the benchmark consistent with [14], where the mean

average precision (mAP) is employed using 3D bounding

box IoU. A detection is considered true positive if its IoU

with the ground-truth is larger than 0.15. We compare our

method with existing 3D detection works [3, 15, 14] on the

shared object categories in Table 2. The full table on all

object categories is listed in the supplementary file. The

comparisons show that our method significantly improves

over the state-of-the-art methods, and consistently advances

the ablated version. The reason could be two-fold. One is

that the global loss Lg in joint learning involves geometry

constraint which ensures the physical rationality, and the

other is that multi-lateral relational features in ODN benefit

the 3D detection in predicting spatial occupancy.

We also compare our work with [46] to evaluate object

pose prediction. We keep consistent with them by training

on the NYU v2 dataset [40] with their six object categories

and ground-truth 2D boxes. The results are reported in Ta-

ble 3. Object poses are tested with errors in object transla-

tion, rotation and scale. We refer readers to [46] for the def-

inition of the metrics. The results further demonstrate that

our method not only obtains reasonable spatial occupancy

(mAP), but also retrieves faithful object poses.

Mesh Reconstruction: We evaluate mesh reconstruction

on both the object and scene levels. For object recon-

struction, we compare our MGN with the state-of-the-arts

[10, 30] in Table 4. We ablate our topology modification

method with two versions: 1. removing faces instead of

edges (w/o. edge); 2. using distance threshold [30] instead

of our local density (w/o. dens) for topology modification.

The results show that each module improves the mean ac-

curacy, and combining them advances our method to the

state-of-the-art. A possible reason is that using local density

keeps small-scale topology, and cutting edges is more ro-

bust in avoiding incorrect mesh modification than removing
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Figure 6: Scene reconstruction on SUN RGB-D. Given a single image, our method end-to-end reconstructs the room layout,

camera pose with object bounding boxes, poses and meshes.

Method bed chair sofa table desk dresser nightstand sink cabinet lamp mAP

3DGP [3] 5.62 2.31 3.24 1.23 - - - - - - -

HoPR [15] 58.29 13.56 28.37 12.12 4.79 13.71 8.80 2.18 0.48 2.41 14.47

CooP [14]* 63.58 17.12 41.22 26.21 9.55 4.28 6.34 5.34 2.63 1.75 17.80

CooP [14]** 57.71 15.21 36.67 31.16 19.90 15.98 11.36 15.95 10.47 3.28 21.77

Ours (w/o. joint) 59.03 15.98 43.95 35.28 23.65 19.20 6.87 14.40 11.39 3.46 23.32

Ours (joint) 60.65 17.55 44.90 36.48 27.93 21.19 17.01 18.50 14.51 5.04 26.38

Table 2: Comparisons of 3D object detection. We compare the average precision of detected objects on SUN RGB-D (higher

is better). [14]* shows the results from their paper, which are trained with fewer object categories. CooP [14]** presents the

model trained on the NYU-37 object labels for a fair comparison.

Translation (meters) Rotation (degrees) Scale

Method Median Mean (Err≤0.5m)% Median Mean (Err≤30◦)% Median Mean (Err≤0.2)%

(lower is better) (higher is better) (lower is better) (higher is better) (lower is better) (higher is better)

Tulsiani et al.[46] 0.49 0.62 51.0 14.6 42.6 63.8 0.37 0.40 18.9

Ours (w/o. joint) 0.52 0.65 49.2 15.3 45.1 64.1 0.28 0.29 42.1

Ours (joint) 0.48 0.61 51.8 14.4 43.7 66.5 0.22 0.26 43.7

Table 3: Comparisons of object pose prediction. The difference values of translation, rotation and scale between the predicted

and the ground-truth bounding boxes on NYU v2 are reported, where the median and mean of the differences are listed in the

first two columns (lower is better). The third column presents the correct rate within a threshold (higher is better).
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Category bed bookcase chair desk sofa table tool wardrobe misc mean

AtlasNet [10] 9.03 6.91 8.37 8.59 6.24 19.46 6.95 4.78 40.05 12.26

TMN [30] 7.78 5.93 6.86 7.08 4.25 17.42 4.13 4.09 23.68 9.03

Ours (w/o. edge) 8.19 6.81 6.26 5.97 4.12 15.09 3.93 4.01 25.19 8.84

Ours (w/o. dens) 8.16 6.70 6.38 5.12 4.07 16.16 3.63 4.32 24.22 8.75

Ours 5.99 6.56 5.32 5.93 3.36 14.19 3.12 3.83 26.93 8.36

Table 4: Comparisons of object reconstruction on Pix3D. The Chamfer distance is used in evaluation. 10K points are sampled

from the predicted mesh after being aligned with the ground-truth using ICP. The values are in units of 10−3 (lower is better).

faces. Mesh reconstruction of scenes is evaluated with Lg

in Equation 3, where the loss is calculated with the average

distance from the point cloud of each object to its nearest

neighbor on the reconstructed mesh. Different from single

object reconstruction, scene meshes are evaluated consider-

ing object alignment in the world system. In our test, Lg

decreases from 1.89e-2 to 1.43e-2 with our joint learning.

4.4. Ablation Analysis and Discussion

To better understand the effect of each design on the final

result, we ablate our method with five configurations:

C0: without relational features (in ODN) and joint training

(Baseline).

C1: Baseline + relational features.

C2: Baseline + (only) cooperative loss Lco in joint training.

C3: Baseline + (only) global loss Lg in joint training.

C4: Baseline + joint training (Lg + Lco).

Full: Baseline + relational features + joint training.

We test the layout estimation, 3D detection and scene

mesh reconstruction with 3D IoU, mAP and Lg . The results

are reported in Table 5, from which we observe that:

C0 v.s.C4 and C1 v.s. Full: Joint training consistently im-

proves layout estimation, object detection and scene mesh

reconstruction no matter using relational features or not.

C0 v.s.C1 and C4 v.s. Full: Relational features help to im-

prove 3D object detection, which indirectly reduces the loss

in scene mesh reconstruction.

C0 v.s.C2 and C0 v.s. C3: In joint loss, both Lco and Lg

in joint training benefit the final outputs, and combing them

further advances the accuracy.

We also observe that the global loss Lg shows the most

effect on object detection and scene reconstruction, and the

cooperative loss Lco provides more benefits than others on

layout estimation. Besides, scene mesh loss decreases with

the increasing of object detection performance. It is inline

with the intuition that object alignment significantly affects

mesh reconstruction. Fine-tuning MGN on SUN RGB-D

can not improve single object reconstruction on Pix3D. It

reflects that object reconstruction depends on clean mesh

for supervision. All the facts above explain that the tar-

gets for full scene reconstruction actually are intertwined

together, which makes joint reconstruction a feasible solu-

tion toward total scene understanding.

Version Layout (IoU) 3D Objects (mAP) Scene mesh (Lg)
(higher is better) (higher is better) (lower is better)

C0 57.63 20.19 2.10

C1 57.63 23.32 1.89

C2 58.21 21.77 1.73

C3 57.92 24.59 1.64

C4 58.87 25.62 1.52

Full 59.25 26.38 1.43

Table 5: Ablation analysis in layout estimation, 3d object

detection and scene mesh reconstruction on SUN RGB-D.

The Lg values are in units of 10−2.

5. Conclusion

We develop an end-to-end indoor scene reconstruction

approach from a single image. It embeds scene understand-

ing and mesh reconstruction for joint training, and auto-

matically generates the room layout, camera pose, object

bounding boxes and meshes. Extensive experiments show

that our joint learning approach significantly improves the

performance on each subtask and advances the state-of-the-

arts. It indicates that each individual scene parsing process

has an implicit impact on the others, revealing the neces-

sity of training them integratively toward total 3D recon-

struction. One limitation of our method is the requirement

for dense point cloud for learning object meshes, which is

labor-consuming to obtain in real scenes. To tackle this

problem, a self or weakly supervised scene reconstruction

method would be a desirable solution in the future work.
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