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Figure 1: A difficult example for video frame interpolation. Our approach produces a high-quality result in spite of the

delicate flamingo leg that is subject to large motion. Please see the arXiv version to be able to view this figure as a video.

Abstract

Differentiable image sampling in the form of backward

warping has seen broad adoption in tasks like depth esti-

mation and optical flow prediction. In contrast, how to per-

form forward warping has seen less attention, partly due to

additional challenges such as resolving the conflict of map-

ping multiple pixels to the same target location in a dif-

ferentiable way. We propose softmax splatting to address

this paradigm shift and show its effectiveness on the appli-

cation of frame interpolation. Specifically, given two input

frames, we forward-warp the frames and their feature pyra-

mid representations based on an optical flow estimate using

softmax splatting. In doing so, the softmax splatting seam-

lessly handles cases where multiple source pixels map to

the same target location. We then use a synthesis network

to predict the interpolation result from the warped represen-

tations. Our softmax splatting allows us to not only inter-

polate frames at an arbitrary time but also to fine tune the

feature pyramid and the optical flow. We show that our syn-

thesis approach, empowered by softmax splatting, achieves

new state-of-the-art results for video frame interpolation.

1. Introduction

Video frame interpolation is a classic problem in com-

puter vision with many practical applications. It can, for

example, be used to convert the frame rate of a video to the

refresh rate of the monitor that is used for playback, which

is beneficial for human perception [24, 25]. Frame inter-

polation can also help in video editing tasks, such as tem-

porally consistent color modifications, by propagating the

changes that were made in a few keyframes to the remain-

ing frames [33]. Frame interpolation can also support inter-

frame compression for videos [49], serve as an auxiliary

task for optical flow estimation [30, 50], or generate train-

ing data to learn how to synthesize motion blur [6]. While

these applications employ frame interpolation in the tempo-

ral domain, it can also be used to synthesize novel views in

space by interpolating between given viewpoints [23].

Approaches for video frame interpolation can be cate-

gorized as flow-based, kernel-based, and phase-based. We

adopt the flow-based paradigm since it has proven to work

well in quantitative benchmarks [2]. One common approach

for these methods is to estimate the optical flow Ft�0 and

Ft�1 between two input frames I0 and I1 from the perspec-

tive of the frame It that is ought to be synthesized. The

interpolation result can then be obtained by backward warp-

ing I0 according to Ft�0 and I1 according to Ft�1 [20].

While it is intuitive, this approach makes it difficult to use

an off-the-shelf optical flow estimator and prevents synthe-

sizing frames at an arbitrary t in a natural manner. To ad-

dress these concerns, Jiang et al. [22] and Bao et al. [3]

approximate Ft�0 and Ft�1 from F0�1 and F1�0.
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Different from backward warping, Niklaus et al. [37] di-

rectly forward-warp I0 according to t · F0�1 and I1 accord-

ing to (1 − t) · F1�0, which avoids having to approximate

Ft�0 and Ft�1. Another aspect of their approach is to warp

not only the images but also the corresponding context in-

formation, which a synthesis network can use to make better

predictions. However, their forward warping uses the equiv-

alent of z-buffering in order to handle cases where multiple

source pixels map to the same target location. It is thus un-

clear how to fully differentiate this operation due to the z-

buffering [36]. We propose softmax splatting to address this

limitation, which allows us to jointly supervise all inputs to

the forward warping. As a consequence, we are able to ex-

tend the idea of warping a generic context map to learning

and warping a task-specific feature pyramid. Furthermore,

we are able to supervise not only the optical flow estimator

but also the metric that weights the importance of differ-

ent pixels when they are warped to the same location. This

approach, which is enabled by our proposed softmax splat-

ting, achieves new state-of-the-art results and ranks first in

the Middlebury benchmark for frame interpolation.

In short, we propose softmax splatting to perform differ-

entiable forward warping and show its effectiveness on the

application of frame interpolation. An interesting research

question that softmax splatting addresses is how to handle

different source pixels that map to the same target location

in a differentiable way. Softmax splatting enables us to train

and use task-specific feature pyramids for image synthesis.

Furthermore, softmax splatting not only allows us to fine-

tune an off-the-shelf optical flow estimator for video frame

interpolation, it also enables us to supervise the metric that

is used to disambiguate cases where multiple source pixels

map to the same forward-warped target location.

2. Related Work

With the introduction of spatial transformer networks,

Jaderberg et al. [20] proposed differentiable image sam-

pling. Since then, this technique has found broad adoption

in the form of backward warping to synthesize an image

IA from an image IB given a correspondence FA�B for

each pixel in IA to its location in IB . Prominent examples

where this approach has been used include unsupervised

depth estimation [13, 31, 54], unsupervised optical flow

prediction [32, 47, 52], optical flow prediction [18, 42, 45],

novel view synthesis [8, 27, 55], video frame interpola-

tion [3, 22, 28, 29], and video enhancement [7, 46, 51].

In contrast, performing forward warping to synthesize

IB from IA based on FA�B has seen less adoption with

deep learning, partly due to additional challenges such as

multiple source pixels in IA possibly being mapped to the

same target location in IB . For optical flow estimation,

Wang et al. [47] forward-warp an image filled with ones

to obtain an occlusion mask. However, they sum up con-

forward warping / splatting backward warping / sampling

Figure 2: Splatting versus sampling, the blue pixels remain

static while the red ones move down in a shearing manner.

With splatting, the output is subject to holes and multiple

source pixels can map to the same target pixel. On the up-

side, splatting makes it possible to scale the transform.

tributions of all the pixels that are mapped to the same out-

put pixel without a mechanism to remove possible outliers,

which limits the applicability of this technique for image

synthesis. For frame interpolation, Niklaus et al. [37] use

the equivalent of z-buffering which is well motivated but

not differentiable [36]. Bao et al. [3] linearly weight the op-

tical flow according to a depth estimate as an approach for

dealing with multiple source pixels mapping to the same

target location. However, adding a bias to the depth esti-

mation affects the result of this linearly weighted warping

and leads to negative side effects. In contrast, our proposed

softmax splatting is not subject to any of these concerns.

We demonstrate the effectiveness of our proposed soft-

max splatting on the example of frame interpolation. Re-

search on frame interpolation has seen a recent resurgence,

with multiple papers proposing kernel-based [3, 4, 38, 39],

flow-based [3, 4, 22, 28, 29, 37, 41, 43, 51], and phase-

based [34, 35] approaches. We base our approach on the

one from Niklaus et al. [37] who estimate optical flow be-

tween two input images in both directions, extract generic

contextual information from the input images using pre-

trained filters, forward-warp the images together with their

context maps according to optical flow, and finally employ

a synthesis network to obtain the interpolation result. En-

abled by softmax splatting, we extend their framework to

warping task-specific feature pyramids for image synthesis

in an end-to-end manner. This includes fine-tuning the off-

the-shelf optical flow estimator for video frame interpola-

tion and supervising the metric that is used to disambiguate

cases where multiple pixels map to the same location.

For image synthesis, Niklaus et al. [37] warp context in-

formation from a pre-trained feature extractor that a synthe-

sis network can use to make better predictions. Bao et al. [3]

subsequently refined this approach through end-to-end su-

pervision of the feature extractor. In contrast, we extract

and warp feature pyramids which allows the synthesis net-

work to make use of a multi-scale representation for better

interpolation results. Our use of feature pyramids for im-

age synthesis is inspired by recent work on video analysis.

For video semantic segmentation, Gadde et al. [12] warp

features that were obtained when processing the preceding
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summation splatting
−→
Σ average splatting

−→
Φ linear splatting

−→
∗ softmax splatting −→

σ

Figure 3: Given two images I0 and I1 as well as an optical flow estimate F0�1, this figure shows an example of warping I0 to

It according to F0�t = t · F0�1 with four different forward warping approaches. The summation warping
−→
Σ handles cases

where multiple pixels in I0 map to the same target location in It by taking their sum, which leads to brightness inconsistencies.

The average warping
−→
Φ takes their mean instead and is able to maintain the overall appearance of I0 but blends overlapping

regions. The linear splatting
−→∗ weights the pixels in I0 before warping them but still fails to clearly separate the front of the

car from the grass in the background. In contrast, our proposed softmax splatting −→σ shows the expected behavior with the

car correctly occluding the background. Please see the arXiv version to be able to view this figure as a video.

frame in order to support the segmentation of the current

frame. For optical flow estimation, Hui et al. [18] and Sun et

al. [45] extend this idea of warping features and employ

it across multiple scales in the form of feature pyramids.

These approaches do not target image synthesis though.

Temporal consistency is a common concern when syn-

thesizing images in time [1, 16, 17, 26]. For frame interpo-

lation, Jiang et al. [22] collect a specialized training dataset

with frame-nonuples and supervise their network on seven

intermediate frames at a time in order to ensure temporally

consistent results. In the same vein, Liu et al. [28] and

Reda et al. [43] utilize cycle consistency to better supervise

their model. In comparison, our proposed softmax splat-

ting leads to temporally consistent results without requiring

a specialized training dataset or cycle-consistent training.

3. Softmax Splatting for Frame Interpolation

Given two frames I0 and I1, frame interpolation aims

to synthesize an intermediate frame It where t ∈ (0, 1) de-

fines the desired temporal position. To address this problem,

we first use an off-the-shelf optical flow method to estimate

the optical flow F0�1 and F1�0 between the input frames in

both directions. We then use forward warping in the form of

softmax splatting−→σ to warp I0 according to F0�t = t·F0�1

and I1 according to F1�t = (1− t) · F1�0 as follows.

It ≈
−→σ (I0, F0�t) =

−→σ (I0, t · F0�1) (1)

It ≈
−→σ (I1, F1�t) =

−→σ (I1, (1− t) · F1�0) (2)

This is in contrast to backward warping ←−ω , which would

require Ft�0 and Ft�1 but computing this t-centric optical

flow from F0�1 and F1�0 is complicated and subject to ap-

proximations [3]. We then combine these intermediate re-

sults to obtain It using a synthesis network. More specif-

ically, we not only warp the input frame in color- but also

feature-space across multiple resolutions which enables the

synthesis network to make better predictions.

We subsequently first introduce forward warping via

softmax splatting and then show how it enables us to es-

tablish new state-of-the-art results for frame interpolation.

3.1. Forward Warping via Softmax Splatting

Backward warping is a common technique that has found

broad adoption in tasks like unsupervised depth estimation

or optical flow prediction [20]. It is well supported by many

deep learning frameworks. In contrast, forward warping an

image I0 to It according to F0�t is not supported by these

frameworks. We attribute this lack of support to the fact

that there is no definitive way of performing forward warp-

ing. Forward warping is subject to multiple pixels in I0
being able to possibly map to the same target pixel in It
and there are various possibilities to address this ambigu-

ity. We thus subsequently introduce common approaches

to handle this mapping-ambiguity and discuss their limita-

tions. We then propose softmax splatting which addresses

these inherent limitations. Please note that we use the terms

“forward warping” and “splatting” interchangeably.

Summation splatting. A straightforward approach of han-

dling the aforementioned mapping-ambiguity is to sum all

contributions. We define this summation splatting
−→
Σ as fol-

lows, where IΣt is the sum of all contributions from I0 to It
according to F0�t subject to the bilinear kernel b.

let u = p−
(

q + F0�t[q]
)

(3)

b(u) = max(0, 1− |ux|) ·max(0, 1− |uy|) (4)

IΣt [p] =
∑

∀q∈I0

b(u) · I0[q] (5)

−→
Σ (I0, F0�t) = IΣt (6)

As shown in Figure 3, this summation splatting leads to

brightness inconsistencies in overlapping regions like the

front of the car. Furthermore, the bilinear kernel b leads to
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pixels in It that only receive partial contributions from the

pixels in I0 which yet again leads to brightness inconsis-

tencies like on the street. However, we use this summation

splatting as the basis of all subsequent forward warping ap-

proaches. The relevant derivatives are as follows.

let u = p−
(

q + F0�t[q]
)

(7)

∂IΣt [p]

∂I0[q]
= b(u) (8)

∂IΣt [p]

∂F x
0�t[q]

=
∂b(u)

∂F x
0�t

· I0[q] (9)

∂b(u)

∂F x
0�t

= max(0, 1− |uy|) ·

{

0, if |ux| ≥ 1

−sgn(ux), else
(10)

and analogous for the y component of F0�t. It is not easy

to obtain these through automatic differentiation since few

frameworks support the underlying scatter nd function

that is necessary to implement this operator. We hence pro-

vide a PyTorch reference implementation1 of this summa-

tion splatting
−→
Σ which is written in CUDA for efficiency.

Average splatting. To address the brightness inconsisten-

cies that occur with summation splatting, we need to nor-

malize IΣt . To do so, we can reuse the definition of
−→
Σ and

determine average splatting
−→
Φ as follows.

−→
Φ (I0, F0�t) =

−→
Σ (I0, F0�t)
−→
Σ (1, F0�t)

(11)

As shown in Figure 3, this approach handles the brightness

inconsistencies and maintains the appearance of I0. How-

ever, this technique averages overlapping regions like at the

front of the car with the grass in the background.

Linear splatting. In an effort to better separate overlapping

regions, one could try to linearly weight I0 by an impor-

tance mask Z and define linear splatting
−→∗ as follows.

−→∗ (I0, F0�t) =

−→
Σ (Z · I0, F0�t)
−→
Σ (Z,F0�t)

(12)

where Z could, for example, relate to the depth of each

pixel [3]. As shown in Figure 3, this approach can better

separate the front of the car from the grass in the back-

ground. It is not invariant to translations with respect to

Z though. If Z represents the inverse depth then there will

be a clear separation if the car is at Z = 1/1 and the back-

ground is at Z = 1/10. But, if the car is at Z = 1/101 and

the background is at Z = 1/110 then they will be averaged

again despite being equally far apart in terms of depth.

1http://sniklaus.com/softsplat

Softmax splatting. To clearly separate overlapping regions

according to an importance mask Z with translational in-

variance, we propose softmax splatting −→σ as follows.

−→σ (I0, F0�t) =

−→
Σ (exp(Z) · I0, F0�t)
−→
Σ (exp(Z), F0�t)

(13)

where Z could, for example, relate to the depth of each

pixel [3]. As shown in Figure 3, this approach is able to

clearly separate the front of the car from the background

without any remaining traces of grass. Furthermore, it

shares resemblance to the softmax function. It is hence in-

variant to translations β with respect to Z, which is a par-

ticularly important property when mapping multiple pixels

to the same location. If Z represents depth, then the car and

the background in Figure 3 are treated equally whether the

car is at Z = 1 and the background is at Z = 10 or the car

is at Z = 101 and the background is at Z = 110. It is not

invariant to scale though and multiplying Z by α will affect

how well overlapping regions will be separated. A small α
yields averaging whereas a large α yields z-buffering. This

parameter can be learned via end-to-end training.

Importance metric. We use Z to weight pixels in I0 in

order to resolve cases where multiple pixels from I0 map

to the same target pixel in It. This Z could, for exam-

ple, represent depth [3]. However, obtaining such a depth

estimate is computationally expensive and inherently chal-

lenging which makes it prone to inaccuracies. We thus use

brightness constancy as a measure of occlusion [2], which

can be obtained via backward warping←−ω as follows.

Z = α · ‖I0 −
←−ω (I1, F0�1)‖1 (14)

Since our proposed softmax splatting is fully differentiable,

we can not only learn α (initially set to −1) but also use a

small neural network υ to further refine this metric.

Z = υ
(

I0,−‖I0 −
←−ω (I1, F0�1)‖1

)

(15)

One could also obtain Z directly from υ(I0) but we were

unable to make this υ converge. Lastly, when applying soft-

max splatting to tasks different from frame interpolation,

the importance metric may be adjusted accordingly.

Efficiency. PyTorch’s backward warping requires 1.1 ms to

warp a full-HD image on a Titan X with a synthetic flow

drawn from N (0, 102). In contrast, our implementation of

softmax splatting requires 3.7 ms since we need to compute

Z and handle race conditions during warping.

3.2. Feature Pyramids for Image Synthesis

We adopt the video frame interpolation pipeline from

Niklaus et al. [37] who, given two input frames I0 and

I1, first estimate the inter-frame motion F0�1 and F1�0 us-

ing an off-the-shelf optical flow method. They then extract
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Figure 4: An overview of our frame interpolation framework. Given two input frames I0 and I1, we first estimate the

bidirectional optical flow between them. We then extract their feature pyramids and forward-warp them together with the

input frames to the target temporal position t ∈ (0, 1) according to the optical flow. Using softmax splatting enables end-to-

end training and thus allows the feature pyramid extractor to learn to gather features that are important for image synthesis.

The warped input frames and feature pyramids are then fed to a synthesis network to generate the interpolation result It.

generic contextual information from the input images using

a pre-defined filter ψ and forward-warp −→ω the images to-

gether with their context maps according to t ·F0�1 = F0�t

and (1 − t) · F1�0 = F1�t, before employing a synthesis

network φ to obtain the interpolation result It.

It = φ
(

−→ω
(

{I0, ψ (I0)}, F0�t

)

,−→ω
(

{I1, ψ (I1)}, F1�t

)

)

This approach is conceptually simple and has been proven

to work well. However, Niklaus et al. were not able to su-

pervise the context extractor ψ and instead used conv1 of

ResNet-18 [15] due to the limitations of their forward warp-

ing−→ω approach. This limitation makes it an ideal candidate

to show the benefits of our proposed softmax splatting.

Our proposed softmax splatting allows us to supervise ψ,

enabling it to learn to extract features that are important for

image synthesis. Furthermore, we extend this idea by ex-

tracting and warping features at multiple scales in the form

of feature pyramids. This allows the synthesis network φ to

further improve its predictions. Please see Figure 4 for an

overview of our video frame interpolation framework. We

will subsequently discuss its individual components.

Optical flow estimator. We use an off-the-shelf optical

flow method to make use of the ongoing achievements in

research on correspondence estimation. Specifically, we

use PWC-Net [45] and show that FlowNet2 [19] and Lite-

FlowNet [18] perform equally well within our evaluation.

In accordance with the findings of Xue et al. [51], we addi-

tionally fine-tune PWC-Net for frame interpolation.

Feature pyramid extractor. The architecture of our fea-

ture pyramid extractor is shown in Figure 5. Our proposed

softmax splatting enables us to supervise this feature pyra-

mid extractor in an end-to-end manner, allowing it to learn

to extract features that are useful for the subsequent image

type features kernel stride padding

Input − − − −

Conv2d 3 → 32 3× 3 1× 1 1× 1

PReLU − − − −

Conv2d 32 → 32 3× 3 1× 1 1× 1

PReLU − − − −

Conv2d 32 → 64 3× 3 2× 2 1× 1

PReLU − − − −

Conv2d 64 → 64 3× 3 1× 1 1× 1

PReLU − − − −

Conv2d 64 → 96 3× 3 2× 2 1× 1

PReLU − − − −

Conv2d 96 → 96 3× 3 1× 1 1× 1

PReLU − − − −

Figure 5: The architecture of our feature pyramid extractor.

The feature visualization was obtained using PCA and is

only serving an aesthetic purpose. See our evaluation for an

analysis of the feature pyramid space for image synthesis.

synthesis. As shown in our evaluation, this approach leads

to significant improvements in the quality of the interpo-

lation result. We also show that the interpolation quality

degrades if we use fewer levels of features.

Image synthesis network. The synthesis network gener-

ates the interpolation result guided by the warped input im-

ages and their corresponding feature pyramids. We employ

a GridNet [11] architecture with three rows and six columns

for this task. To avoid checkerboard artifacts [40], we adopt

the modifications proposed by Niklaus et al. [37]. The Grid-

Net architecture is a generalization of U-Nets and is thus

well suited for the task of image synthesis.

Importance metric. Our proposed softmax splatting uses

an importance metric Z which is used to resolve cases

where multiple pixels forward-warp to the same target lo-
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cation. We use brightness constancy to compute this met-

ric as outlined in Section 3.1. Furthermore, we refine this

occlusion estimate using a small U-Net consisting of three

levels, which is trained end-to-end with the feature pyramid

extractor and the image synthesis network.

Training. We adopt the training from Niklaus et al. [37].

We thus train two versions of our model to account for the

perception-distortion tradeoff [5], one trained on color loss

LLap which performs well in standard benchmarks and one

trained on perceptual loss LF which retains more details

in difficult cases. However, instead of using a proprietary

training dataset, we use frame-triples from the training por-

tion of the publicly available Vimeo-90k dataset [51].

Efficiency. With an Nvidia Titan X, we are able to synthe-

size a 720p frame in 0.357 seconds as well as a 1080p frame

in 0.807 seconds. The parameters of our entire pipeline

amount to 31 megabytes when stored.

4. Experiments

We evaluate our method, which utilizes softmax splat-

ting to improve an existing frame interpolation approach,

and compare it to state-of-the-art methods quantitatively

and qualitatively on publicly available datasets. To support

examining the visual quality of the frame interpolation re-

sults, we additionally provide a supplementary video.

Methods. We compare our approach to several state-of-

the-art frame interpolation methods for which open source

implementations from the respective authors are publicly

available. This includes SepConv [39], ToFlow [51],

CyclicGen [28], and DAIN [3]. We also include the closed

source CtxSyn [37] approach wherever possible.

Datasets. We perform the quantitative evaluation on com-

mon datasets for frame interpolation. This includes the

Vimeo-90k [51] test dataset as well as the samples from

the Middlebury benchmark with publicly-available ground

truth interpolation results [2]. When comparing our ap-

proach to other state-of-the-art methods, we additionally in-

corporate samples from UCF101 [29, 44] and Xiph2.

Metrics. We follow recent work on frame interpolation and

use PSNR and SSIM [48] for all quantitative comparisons.

We additionally incorporate the LPIPS [53] metric which

strives to measure perceptual similarity. While higher val-

ues indicate better results in terms of PSNR and SSIM,

lower values indicate better results with the LPIPS metric.

4.1. Ablation Experiments

We show the effectiveness of our proposed softmax

splatting by improving the context-aware frame interpola-

tion from Niklaus et al. [37]. We thus not only need to

2https://media.xiph.org/video/derf

Vimeo-90k [51] Middlebury [2]

PSNR

↑

SSIM

↑

LPIPS

↓

PSNR

↑

SSIM

↑

LPIPS

↓

CtxSyn 34.39 0.961 0.024 36.93 0.964 0.016

Ours - CtxSyn-like 34.85 0.963 0.025 37.02 0.966 0.018

Ours - summation splatting 35.09 0.965 0.024 37.47 0.968 0.018

Ours - average splatting 35.29 0.966 0.023 37.53 0.969 0.017

Ours - linear splatting 35.26 0.966 0.024 37.73 0.968 0.017

Ours - softmax splatting 35.54 0.967 0.024 37.81 0.969 0.017

Ours - pre-defined Z 35.54 0.967 0.024 37.81 0.969 0.017

Ours - fine-tuned Z 35.59 0.967 0.024 37.97 0.970 0.017

Ours - 1 feature level 35.08 0.965 0.024 37.32 0.968 0.018

Ours - 2 feature levels 35.37 0.966 0.024 37.79 0.970 0.016

Ours - 3 feature levels 35.59 0.967 0.024 37.97 0.970 0.017

Ours - 4 feature levels 35.69 0.968 0.023 37.99 0.971 0.016

Ours - FlowNet2 35.83 0.969 0.022 37.67 0.970 0.016

Ours - LiteFlowNet 35.59 0.968 0.024 37.83 0.970 0.017

Ours - PWC-Net 35.59 0.967 0.024 37.97 0.970 0.017

Ours - PWC-Net-ft 36.10 0.970 0.021 38.42 0.971 0.016

Ours - LLap 36.10 0.970 0.021 38.42 0.971 0.016

Ours - LF 35.48 0.964 0.013 37.55 0.965 0.008

Table 1: Ablation experiments to quantitatively analyze the

effect of the different components of our approach.

compare softmax splatting to alternative ways of perform-

ing differentiable forward warping, we also need to analyze

the improvements that softmax splatting enabled.

Context-aware synthesis. Since we adopt the framework

of Niklaus et al. [37], we first need to verify that we can

match their performance. We thus replace our feature pyra-

mid extractor with the conv1 layer of ResNet-18 [15] and

we do not fine-tune the utilized PWC-Net for frame interpo-

lation. This leaves the training dataset as well as the softmax

splatting as the only significant differences. As shown in

Table 1 (first section), our implementation performs slightly

better in terms of PSNR on the Middlebury examples. It is

significantly better in terms of PSNR on the Vimeo-90k test

data though, but this is to be expected since we supervise on

the Vimeo-90k training data. We can thus confirm that the

basis for our approach truthfully replicates CtxSyn.

Softmax splatting for frame interpolation. We discussed

various ways of performing differentiable forward warping

in Section 3.1 and outlined their limitations. We then pro-

posed softmax splatting to address these limitations. To an-

alyze the effectiveness of softmax splatting, we train four

versions of our approach, each one using a different forward

warping technique. As shown in Table 1 (second section),

summation splatting performs worst and softmax splatting

performs best in terms of PSNR. Notice that the PSNR of

average splatting is better than linear splatting on the Mid-
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Figure 6: Feature response visualization for different task-

specific feature pyramids on the image from Figure 3 using

the visualization technique from Erhan et al. [10].

dlebury examples but worse on the Vimeo-90k test data. We

attribute this erratic behavior of linear splatting to its lack of

translational invariance. These findings support the motiva-

tions behind our proposed softmax splatting.

Importance metric. Our proposed softmax splatting uses

an importance metricZ to resolve cases where multiple pix-

els forward-warp to the same target location. We use bright-

ness constancy [2] to obtain this metric. Since softmax

splatting is fully differentiable, we can use a small U-Net

to fine-tune this metric which, as shown in Table 1 (third

section), leads to slight improvements in terms of PSNR.

This demonstrates that softmax splatting can effectively su-

pervise Z and that brightness constancy works well as the

importance metric for video frame interpolation.

Feature pyramids for image synthesis. Softmax splat-

ting enables us to synthesize images from warped feature

pyramids, effectively extending the interpolation frame-

work from Niklaus et al. [37]. In doing so, the softmax

splatting enables end-to-end training of the feature pyramid

extractor, allowing it to learn to gather features that are im-

portant for image synthesis. As shown in Table 1 (fourth

section), the quality of the interpolation results improves

when using more feature levels. Notice the diminishing re-

turns when using more feature levels, with four levels of

features overfitting on the Vimeo-90k dataset. We thus use

three levels of features for our approach. We examine the

difference between feature pyramids for frame interpolation

and those for motion estimation by visualizing their feature

responses [10]. Specifically, we maximize the activations

of the last layer of our feature pyramid extractor as well as

equivalent layers of PWC-Net [45] and LiteFlowNet [18]

by altering the input image. Figure 6 shows representative

feature activations, indicating that our feature pyramid fo-

cuses on fine details which are important to synthesize high-
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Figure 7: Assessment of the temporal consistency of our

approach on the high frame-rate Sintel dataset [21].

quality results while the feature pyramids for optical flow

exhibit large patterns to account for large displacements.

Optical flow estimation. To analyze how well our ap-

proach performs with different correspondence estimates,

we consider three diverse state-of-the-art optical flow meth-

ods [18, 19, 45], each trained on FlyingChairs [9]. As

shown in Table 1 (fifth section), they all perform similarly

well. Due to softmax splatting being fully differentiable, we

are further able to fine-tune the optical flow estimation for

the task of frame interpolation [51]. Specifically, we fine-

tune PWC-Net and see additional improvements with this

PWC-Net-ft that has been optimized for the task of frame

interpolation. We thus use PWC-Net-ft for our approach.

Perception-distortion tradeoff. We train two versions of

our model, one trained on color loss and one trained on

perceptual loss, in order to account for the perception-

distortion tradeoff [5]. As shown in Table 1 (sixth section),

the model trained using color loss LLap performs best in

terms of PSNR and SSIM whereas the one trained using per-

ceptual loss LF performs best in terms of LPIPS. We further

note that the LF-trained model better recovers fine details in

challenging cases, making it preferable in practice.

Temporal consistency. Since we use forward warping to

compensate for motion, we can interpolate frames at an

arbitrary temporal position despite only supervising our

model at t = 0.5. To analyze the temporal consistency of

this approach, we perform a benchmark on a high frame-

rate version of the Sintel dataset [21]. Specifically, we in-

terpolate frames 1 through 31 from frame 0 and frame 32 on

all of its 13 scenes. We include DAIN for reference since it

is also able to interpolate frames at an arbitrary t. As shown

in Figure 7, DAIN degrades around frame 8 and frame 24

whereas our approach via softmax splatting does not.

4.2. Quantitative Evaluation

We compare our approach to state-of-the-art frame inter-

polation methods on common datasets. Since these datasets

are all low resolution, we also incorporate 4K video clips

from Xiph which are commonly used to assess video com-

pression. Specifically, we selected the eight 4K clips with
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Vimeo-90k [51] Middlebury [2] UCF101 - DVF [29] Xiph - 2K Xiph - “4K”

training

dataset
PSNR

↑

SSIM

↑

LPIPS

↓

PSNR

↑

SSIM

↑

LPIPS

↓

PSNR

↑

SSIM

↑

LPIPS

↓

PSNR

↑

SSIM

↑

LPIPS

↓

PSNR

↑

SSIM

↑

LPIPS

↓

SepConv - L1 proprietary 33.80 0.956 0.027 35.73 0.959 0.017 34.79 0.947 0.029 34.77 0.929 0.067 32.06 0.880 0.169

SepConv - LF proprietary 33.45 0.951 0.019 35.03 0.954 0.013 34.69 0.945 0.024 34.47 0.921 0.041 31.68 0.863 0.097

ToFlow Vimeo-90k 33.73 0.952 0.027 35.29 0.956 0.024 34.58 0.947 0.027 33.93 0.922 0.061 30.74 0.856 0.132

CyclicGen UCF101 32.10 0.923 0.058 33.46 0.931 0.046 35.11 0.950 0.030 33.00 0.901 0.083 30.26 0.836 0.142

CtxSyn - LLap proprietary 34.39 0.961 0.024 36.93 0.964 0.016 34.62 0.949 0.031 35.71 0.936 0.073 32.98 0.890 0.175

CtxSyn - LF proprietary 33.76 0.955 0.017 35.95 0.959 0.013 34.01 0.941 0.024 35.16 0.921 0.035 32.36 0.857 0.081

DAIN Vimeo-90k 34.70 0.964 0.022 36.70 0.965 0.017 35.00 0.950 0.028 35.95 0.940 0.084 33.49 0.895 0.170

Ours - LLap Vimeo-90k 36.10 0.970 0.021 38.42 0.971 0.016 35.39 0.952 0.033 36.62 0.944 0.107 33.60 0.901 0.234

Ours - LF Vimeo-90k 35.48 0.964 0.013 37.55 0.965 0.008 35.10 0.948 0.022 35.74 0.921 0.029 32.50 0.856 0.071

Table 2: Quantitative comparison of various state-of-the-art methods for video frame interpolation.

the most amount of inter-frame motion and extracted the

first 100 frames from each clip. We then either resized the

4K frames to 2K or took a 2K center crop from them be-

fore interpolating the even frames from the odd ones. Since

cropping preserves the inter-frame per-pixel motion, this

“4K” approach allows us to approximate interpolating at 4K

while actually interpolating at 2K instead. Directly process-

ing 4K frames would have been unreasonable since DAIN,

for example, already requires 16.7 gigabytes of memory to

process 2K frames. In comparison, our approach only re-

quires 5.9 gigabytes to process 2K frames which can be

halved by using half-precision floating point operations.

As shown in Table 2, our LLap-trained model outper-

forms all other methods in terms of PSNR and SSIM

whereas our LF -trained model performs best in terms of

LPIPS. Please note that on the Xiph dataset, all methods

are subject to a significant degradation across all metrics

when interpolating the “4K” frames instead of the ones that

were resized to 2K. This shows that frame interpolation at

high resolution remains a challenging problem. For com-

pleteness, we also show the per-clip metrics for the samples

from Xiph in the supplementary material. We also submit-

ted the results of our LLap-trained model to the Middlebury

benchmark [2]. Our approach currently ranks first in this

benchmark as shown in our supplementary material.

4.3. Qualitative Evaluation

Since videos are at the heart of this work, we provide a

qualitative comparison in the supplementary video. These

support our quantitative evaluation and show difficult exam-

ples where our approach yields high-quality results whereas

competing techniques are subject to artifacts.

4.4. Discussion

Our proposed softmax splatting enables us to extend and

significantly improve the approach from Niklaus et al. [37].

Specifically, softmax splatting enables end-to-end training

which allows us to not only employ and optimize feature

pyramids for image synthesis but also to fine-tune the op-

tical flow estimator [51]. Our evaluation shows that these

changes significantly improve the interpolation quality.

Another relevant approach is from Bao et al. [3]. They

forward-warp the optical flow and then backward warp the

input images to the target location according to the warped

optical flow. However, they use linear splatting and nearest

neighbor interpolation. In comparison, our approach em-

ploys softmax splatting which is translational invariant and

yields better results than linear splatting. Our approach is

also conceptually simpler due to not warping the flow and

not incorporating depth- or kernel-estimates. In spite of its

simplicity, our approach compared favorably in the bench-

mark and, unlike DAIN, is temporally consistent.

The success of adversarial training as well as cycle con-

sistency in image generation shows that more advanced

supervision schemes can lead to improved synthesis re-

sults [14, 28, 43, 56]. Such orthogonal developments could

be used to further improve our approach in the future.

5. Conclusion

In this paper, we presented softmax splatting for differ-

entiable forward warping and demonstrated its effectiveness

on the application of frame interpolation. The key research

question that softmax splatting addresses is how to han-

dle cases where different source pixels forward-warp to the

same target location in a differentiable way. Further, we

show that feature pyramids can successfully be employed

for high-quality image synthesis, which is an aspect of fea-

ture pyramids that has not been explored yet. Our proposed

frame interpolation pipeline, which is enabled by softmax

splatting and conceptually simple, compares favorably in

benchmarks and achieves new state-of-the-art results.
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