Abstract

In this paper, we present a novel cross-consistency based semi-supervised approach for semantic segmentation. Consistency training has proven to be a powerful semi-supervised learning framework for leveraging unlabeled data under the cluster assumption, in which the decision boundary should lie in low density regions. In this work, we first observe that for semantic segmentation, the low density regions are more apparent within the hidden representations than within the inputs. We thus propose cross-consistency training, where an invariance of the predictions is enforced over different perturbations applied to the outputs of the encoder. Concretely, a shared encoder and a main decoder are trained in a supervised manner using the available labeled examples. To leverage the unlabeled examples, we enforce a consistency between the main decoder's predictions and those of the auxiliary decoders, taking as inputs different perturbed versions of the encoder's output, and consequently, improving the encoder's representations. The proposed method is simple and can easily be extended to use additional training signal, such as image-level labels or pixel-level labels across different domains. We perform an ablation study to tease apart the effectiveness of each component, and conduct extensive experiments to demonstrate that our method achieves state-of-the-art results in several datasets. Code is available at https://github.com/yassouali/CCT

1. Introduction

In recent years, with the wide adoption of deep supervised learning within the computer vision community, significant strides were made across various visual tasks yielding impressive results. However, training deep learning models requires a large amount of labeled data which acquisition is often costly and time consuming. In semantic segmentation, given how expensive and laborious the acquisition of pixel-level labels is, with a cost that is 15 times and 60 times larger than that of region-level and image-level labels respectively [33], the need for data efficient semantic segmentation methods is even more evident.

As a result, a growing attention is drawn on deep Semi-Supervised learning (SSL) to take advantage of a large amount of unlabeled data and limit the need for labeled examples. The current dominant SSL methods in deep learning are consistency training [43, 29, 50, 36], pseudo labeling [30], entropy minimization [17] and bootstrapping [42]. Some newly introduced techniques are based on generative modeling [28, 49].

However, the recent progress in SSL was confined to classification tasks, and its application in semantic segmentation is still limited. Dominant approaches [22, 53, 52, 31] focus on weakly-supervised learning which principle is to generate pseudo pixel-level labels by leveraging the weak labels, that can then be used, together with the limited strongly labeled examples, to train a segmentation network in a supervised manner. Generative Adversarial Networks (GANs) were also adapted for SSL setting [49, 23] by extending the generic GAN framework to pixel-level predictions. The discriminator is then jointly trained with an adversarial loss and a supervised loss over the labeled examples.
Nevertheless, these approaches suffer from some limitations. Weakly-supervised approaches require weakly labeled examples along with pixel-level labels, hence, they do not exploit the unlabeled data to extract additional training signal. Methods based on adversarial training exploit the unlabeled data, but can be harder to train.

To address these limitations, we propose a simple consistency based semi-supervised method for semantic segmentation. The objective in consistency training is to enforce an invariance of the model’s predictions over small perturbations applied to the inputs. As a result, the learned model will be robust to such small changes. The effectiveness of consistency training depends heavily on the behavior of the data distribution, i.e., the cluster assumption, where the classes must be separated by low density regions. In semantic segmentation, we do not observe the presence of low density regions separating the classes within the inputs, but rather within the encoder’s outputs. Based on this observation, we propose to enforce the consistency over different forms of perturbations applied to the encoder’s output. Specifically, we consider a shared encoder and a main decoder that are trained using the labeled examples. To leverage unlabeled data, we then consider multiple auxiliary decoders whose inputs are perturbed versions of the output of the shared encoder. The consistency is imposed between the main decoder’s predictions and that of the auxiliary decoders (see Fig. 1). This way, the shared encoder’s representation is enhanced by using the additional training signal extracted from the unlabeled data. The added auxiliary decoders have a negligible amount of parameters compared to the encoder. Additionally, during inference, only the main decoder is used, reducing the computation overhead both in training and inference.

The proposed method is simple and efficient, it is also flexible since it can easily be extended to use additional weak labels and pixel-level labels across different domains in a semi-supervised domain adaption setting. With extensive experiments, we demonstrate the effectiveness of our approach on PASCAL VOC [12] in a semi-supervised setting, and CityScapes, CamVid [3] and SUN [48] in a semi-supervised domain adaption setting. We obtain competitive results across different datasets and training settings.

Concretely, our contributions are four-fold:

• We propose a cross-consistency training (CCT) method for semi-supervised semantic segmentation, where the invariance of the predictions is enforced over different perturbations injected into the encoder’s output.

• We propose and conduct an exhaustive study of various types of perturbations.

• We extend our approach to use weakly-labeled data, and exploit pixel-level labels across different domains to jointly train the segmentation network.

• We demonstrate the effectiveness of our approach with an extensive and detailed experimental results, including a comparison with the state-of-the-art, as well as an in-depth analysis of our approach with a detailed ablation study.

2. Related Work

Semi-Supervised Learning. Recently, many efforts have been made to adapt classic SSL methods to deep learning, such as pseudo labeling [30], entropy minimization [17] and graph based methods [34, 26] in order to overcome this weakness. In this work, we focus mainly on consistency training. We refer the reader to [5] for a detailed overview of the field. Consistency training methods are based on the assumption that, if a realistic form of perturbation was applied to the unlabeled examples, the predictions should not change significantly. Favoring models with decision boundaries that reside in low density regions, giving consistent predictions for similar inputs. For example, II-Model [29] enforces a consistency over two perturbed versions of the inputs under different data augmentations and dropout. A weighted moving average of either the previous predictions (i.e., Temporal Ensembling [29]), or the model’s parameters (i.e., Mean Teacher [50]), can be used to obtain more stable predictions over the unlabeled examples. Instead of relying on random perturbations, Virtual Adversarial Training (VAT) [36] approximates the perturbations that will alter the model’s predictions the most.

Similarly, the proposed method enforces a consistency of predictions between the main decoder and the auxiliary decoders over different perturbations, that are applied to the encoder’s outputs rather than the inputs. Our work is also loosely related to Multi-View learning [60] and Cross-View training [7], where each input to the auxiliary decoders can be view as an alternate, but corrupt representation of the unlabeled examples.

Semi-Supervised Semantic Segmentation. A significant number of approaches use a limited number pixel-level labels together with a larger number of inexact annotations, e.g., region-level [47, 9] or image-level labels [31, 61, 53, 32]. For image-level based weak-supervision, primary localization maps are generated using class activation mapping (CAM) [61]. After refining the generated maps, they can then be used to train a segmentation network together with the available pixel-level labels in a SSL setting.

Generative modeling can also be used for semi-supervised semantic segmentation [49, 23] to take advantage of the unlabeled examples. Under a GAN framework, the discriminator’s predictions are extended over pixel classes, and can then be jointly trained with a Cross-Entropy loss over the labeled examples and an adversarial loss over the whole dataset.
In comparison, the proposed method exploits the unlabeled examples by enforcing a consistency over multiple perturbations on the hidden representations level. Enhancing the encoder’s representation and the overall performance, with a small additional cost in terms of computation and memory requirements.

Recently, CowMix [13], a concurrent method was introduced. CowMix, using MixUp [36], enforces a consistency between the mixed outputs and the prediction over the mixed inputs. In this context, CCT differs as follows: (1) CowMix, as traditional consistency regularization methods, applies the perturbations to the inputs, but uses MixUp as a high-dimensional perturbation to overcome the absence of the cluster assumption. (2) Requires multiple forward passes though the network for one training iteration. (3) Adapting CowMix to other settings (e.g., over multiple domains, using weak labels) may require significant changes. CCT is efficient and can easily be extended to other settings.

Domain Adaptation. In many real world cases, the existing discrepancy between the distribution of training data and that of testing data will often hinder the performances. Domain adaptation aims to rectify this mismatch and tune the models for a better generalization at test time [40]. Various generative and discriminative domain adaptation methods have been proposed for classification [16, 14, 15, 4] and semantic segmentation [21, 58, 44, 24] tasks.

In this work, we show that enforcing a consistency across different domains can push the model toward better generalization, even in the extreme case of non-overlapping label spaces.

3. Method

3.1. The cluster assumption in semantic segmentation

We start with our observation and analysis of the cluster assumption in semantic segmentation, motivating the proposal of our cross-consistency training approach. A simple way to examine it is to estimate the local smoothness by measuring the local variations between the value of each pixel and its local neighbors. To this end, we compute the average euclidean distance at each spatial location and its 8 intermediate neighbors, for both the inputs and the hidden representations (i.e., the ResNet’s [20] outputs of a DeepLab v3 [6] trained on COCO [33]). For the inputs, following [13], we compute the average distance of a patch centered at a given spatial location and its neighbors to simulate a realistic receptive field. For the hidden representations, we first upsample the feature map to the input size, and then compute the average distance between the neighboring activations (2048-dimensional feature vectors). The results are illustrated in Fig. 2. We observe that the cluster assumption is violated at the input level, given that the low density regions do not align with the class boundaries. On the contrary, for the encoder’s outputs, the cluster assumption is maintained where the class boundaries have high average distance, thus corresponding to low density regions. This observation motivates the following approach, in which the perturbations are applied to the encoder’s outputs rather than the inputs.

3.2. Cross-Consistency Training for semantic segmentation

3.2.1 Problem Definition

In SSL, we are provided with a small set of labeled training examples and a larger set of unlabeled training examples. Let \(D_l = \{ (x^l_1, y^l_1), \ldots, (x^l_n, y^l_n) \} \) represent the \(n \) labeled examples and \(D_u = \{ x^u_1, \ldots, x^u_m \} \) represent the \(m \) unlabeled examples, with \(x^u_i \) as the \(i \)-th unlabeled input image, and \(x^l_i \) as the \(i \)-th labeled input image with spatial dimensions \(H \times W \) and its corresponding pixel-level label \(y_i \in \mathbb{R}^{C \times H \times W} \), where \(C \) is the number of classes.

As discussed in the introduction, the objective is to exploit the larger number of unlabeled examples (\(m \gg n \)) to train a segmentation network \(f \), to perform well on the test data drawn from the same distribution as the training data. In this work, our architecture (see Fig. 3) is composed of a shared encoder \(h \) and a main decoder \(g \), which constitute the segmentation network \(f = g \circ h \). We also introduce a set of \(K \) auxiliary decoders \(g^k_u \), with \(k \in [1, K] \). While the segmentation network \(f \) is trained on the labeled set \(D_l \) in a traditional supervised manner, the auxiliary networks \(g^k_u \) are trained on the unlabeled set \(D_u \) by enforcing a consistency of predictions between the main decoder and the auxiliary decoders. Each auxiliary decoder takes as input a perturbed version of the encoder’s output, and the main encoder is fed the uncorrupted intermediate representation. This way, the representation learning of the encoder \(h \) is further enhanced using the unlabeled examples, and subsequently, that of the segmentation network \(f \).

3.2.2 Cross-Consistency Training

As stated above, to extract additional training signal from the unlabeled set \(D_u \), we rely on enforcing a consistency between the outputs of the main decoder \(g_m \), and those of auxiliary decoders \(g^k_u \). Formally, for a labeled training example \(x^l_i \), and its pixel-level label \(y_i \), the segmentation network \(f \) is trained using a Cross-Entropy (CE) based supervised loss \(\mathcal{L}_s \):

\[
\mathcal{L}_s = \frac{1}{|D_l|} \sum_{x^l_i, y_i \in D_l} H(y_i, f(x^l_i))
\]

with \(H(\cdot, \cdot) \) as the CE. For an unlabeled example \(x^u_i \), an intermediate representation of the input is computed using
the shared encoder $z_i = h(x_i^u)^\star$. Let us consider R stochastic perturbations functions, denoted as p_r with $r \in [1, R]$, where one perturbation function can be assigned to multiple auxiliary decoders. With various perturbation settings, we generate K perturbed versions \tilde{z}_i^k of the intermediate representation z_i, so that the k-th perturbed version is to be fed to the k-th auxiliary decoder. For consistency, we consider the perturbation function as part of the auxiliary decoder, (i.e., g_i^k can be seen as $g_i^k \circ p_r$). The training objective is then to minimize the unsupervised loss L_u, which measures the discrepancy between the main decoder’s output and that of the auxiliary decoders:

$$L_u = \frac{1}{|D_u|} \frac{1}{K} \sum_{x_i^u \in D_u} \sum_{k=1}^{K} d(g(z_i), g_i^k(z_i))$$ (2)

with $d(\ldots)$ as a distance measure between two output probability distributions (i.e., the outputs of a softmax function applied over the channel dimension). In this work, we choose to use mean squared error (MSE) as a distance measure.

The combined loss L for consistency based SSL is then computed as:

$$L = L_u + \omega_u L_u$$ (3)

* Throughout the paper, z always refers to the output of the encoder corresponding to an unlabeled input image x^u.

Figure 3. **Illustration of our approach.** For one training iteration, we sample a labeled input image x^l and its pixel-level label y together with an unlabeled image x^u. We pass both images through the encoder and main decoder, obtaining two main predictions \hat{y}^l and \hat{y}^u. We compute the supervised loss using the pixel-level label y and \hat{y}^l. We apply various perturbations to x, the output of the encoder for x^u, and generate auxiliary predictions \tilde{y}^u_k using the perturbed versions \tilde{z}^k. The unsupervised loss is then computed between the outputs of the auxiliary decoders and that of the main decoder.

where ω_u is an unsupervised loss weighting function. Following [29], to avoid using the initial noisy predictions of the main encoder, ω_u ramps up starting from zero along a Gaussian curve up to a fixed weight λ_u. Concretely, at each training iteration, an equal number of examples are sampled from the labeled D_l and unlabeled D_u sets. The supervised loss is computed using the main encoder’s output and pixel-level labels. For the unlabeled examples, we compute the MSE between the prediction of each auxiliary decoder and that of the main decoder. The total loss is then computed and back-propagated to train the segmentation network f and the auxiliary networks $g_i^k \circ h$. Note that the unsupervised loss L_u is not back-propagated through the main-decoder g, only the labeled examples are used to train g.

3.2.3 Perturbation functions

An important factor in consistency training is the perturbations to apply to the hidden representation, i.e., the encoder’s output z. We propose three types of perturbation functions p_r: feature based, prediction based and random.

Feature based perturbations. They consist of either injecting noise into or dropping some of the activations of encoder’s output feature map z.

- F-Noise: we uniformly sample a noise tensor $N \sim \mathcal{U}(-0.3, 0.3)$ of the same size as z. After adjusting its amplitude by multiplying it with z, the noise is then injected into the encoder’s output z to get $\tilde{z} = (z \odot N) + z$. This way, the injected noise is proportional to each activation.
- F-Drop: we first uniformly sample a threshold \(\gamma \sim U(0.6, 0.9) \). After summing over the channel dimension and normalizing the feature map \(z \) to get \(z' \), we generate a mask \(M_{\text{drop}} = \{ z' < \gamma \} \), which is then used to obtain the perturbed version \(\tilde{z} = z \odot M_{\text{drop}} \). This way, we mask 10\% to 40\% of the most active regions in the feature map.

Prediction based perturbations. They consist of adding perturbations based on the main decoder’s prediction \(\hat{y} = g(z) \) or that of the auxiliary decoders. We consider masking based perturbations (Con-Msk, Obj-Msk and G-Cutout) in addition to adversarial perturbations (I-VAT).

- Guided Masking: Given the importance of context relationships for complex scene understanding [37], the network might be too reliant on these relationships. To limit them, we create two perturbed versions of \(z \) by masking the detected objects (Obj-Msk) and the context (Con-Msk). Using \(\hat{y} \), we generate an object mask \(M_{\text{obj}} \) to mask the detected foreground objects and a context mask \(M_{\text{con}} = 1 - M_{\text{obj}} \), which are then applied to \(z \).

- Guided Cutout (G-Cutout): in order to reduce the reliance on specific parts of the objects, and inspired by Cutout [11] that randomly masks some parts of the input image, we first find the possible spatial extent (i.e., bounding box) of each detected object using \(\hat{y} \). We then zero-out a random crop within each object’s bounding box from the corresponding feature map \(z \).

- Intermediate VAT (I-VAT): to further push the output distribution to be isotropically smooth around each data point, we investigate using VAT [36] as a perturbation function to be applied to \(z \) instead of the unlabeled inputs. For a given auxiliary decoder, we find the adversarial perturbation \(r_{adv} \), that will alter its prediction the most. The noise is then injected into \(z \) to obtain the perturbed version \(\tilde{z} = r_{adv} + z \).

Random perturbations. (DropOut) Spatial dropout [51] is also applied to \(z \) as a random perturbation.

3.2.4 Practical considerations

A each training iteration, we sample an equal number of labeled and unlabeled samples. As a consequence, we iterate on the set \(D_t \) more times than on its unlabeled counterpart \(D_u \), thus risking an overfitting of the labeled set \(D_t \).

Avoiding Overfitting. Motivated by [41] who observed improved results by sampling only 6\% of the hardest pixels, and [54] who showed an improvement when gradually releasing the supervised training signal in a SSL setting, we propose an annealed version of the bootstrapped-CE (ab-CE) in [41]. With an output \(f(x_i') \in \mathbb{R}^{C \times H \times W} \) in the form of a probability distribution over the pixels, we only compute the supervised loss over the pixels with a probability less than a threshold \(\eta \):

\[
L_s = \frac{1}{|D_t|} \sum_{x_i', y_i \in D_t} \{ f(x_i') < \eta \} H(y_i, f(x_i'))
\]

To release the supervised training signal, the threshold parameter \(\eta \) is gradually increased from \(\frac{1}{2} \) to 0.9 during the beginning of training, with \(C \) as the number of output classes.

3.3 Exploiting weak-labels

In some cases, we might be provided with additional training data that is less expensive to acquire compared to pixel-level labels, e.g., image-level labels. Formally, instead of an unlabeled set \(D_u \), we are provided with a weakly labeled set \(D_w \). They consist of \(\{ (x_i^w, y_i^w), \ldots, (x_i^w, y_i^w) \} \) alongside a pixel-level labeled set \(D_l \), with \(y_i^w \) is the \(i \)-th image-level label corresponding to the \(i \)-th weakly labeled input image \(x_i^w \).

The objective is to extract additional information from the weak labeled set \(D_w \) to further enhance the representations of the encoder \(h \). To this end, we add a classification branch \(g_c \) consisting of a global average pooling layer followed by a classification layer, and pretrain the encoder for a classification task using binary CE loss.

Following previous works [1, 31, 22], the pretrained encoder and the added classification branch can then be exploited to generate pseudo pixel-level labels \(y_p \). We start by generating the CAMs \(M \) as in [61]. Using \(M \in \mathbb{R}^{C \times H \times W} \), we can then generate pseudo labels \(y_p \), with a background \(\theta_{bg} \) and a foreground \(\theta_{fg} \) thresholds. The pixels with attention scores less than \(\theta_{bg} \) (e.g., 0.05) are considered as background. For the pixels with an attention score larger than \(\theta_{fg} \) (e.g., 0.30), they are assigned the class with the maximal attention score, and the rest of the pixels are ignored. After generating \(y_p \), we conduct a final refinement step using dense CRF [27].

In addition to considering \(D_w \) as an unlabeled set and imposing a consistency over its examples, the pseudo-labels are used to train the auxiliary networks \(g^k_c \circ h \) using a weakly supervised loss \(L_w \). In this case, the loss in Eq. (3) becomes:

\[
\mathcal{L} = L_s + \omega_u L_u + \omega_w L_w
\]

With

\[
L_w = \frac{1}{|D_w|} \sum_{x_i^w \in D_w} \sum_{k=1}^{K} H(y_p, g^k_c(z_i))
\]
3.4. Cross-Consistency Training on Multiple Domains

In this section, we extend the propose framework to a semi-supervised domain adaption setting. We consider the case of two datasets \(\{D^{(1)}, D^{(2)}\} \) with partially or fully non-overlapping label spaces, each one contains a set of labeled and unlabeled examples \(D^{(i)} = \{D^{l(i)}, D^{u(i)}\} \). The objective is to simultaneously train a segmentation network to do well on the test data of both datasets, which is drawn from the different distributions.

Our assumption is that enforcing a consistency over both unlabeled sets \(D^{u(1)} \) and \(D^{u(2)} \) might impose an invariance of the encoder’s representations across the two domains. To this end, on top of the shared encoder \(h \), we add domain specific main decoder \(g^{(i)} \) and auxiliary decoders \(g^{u(i)} \). Specifically, as illustrated in Fig. 4, we add two main decoders and \(2K \) auxiliary decoders on top of the encoder \(h \). During training, we alternate between the two datasets, at each iteration, sampling an equal number of labeled and unlabeled examples from each one, computing the loss in Eq. (3) and training the shared encoder and the corresponding main and auxiliary decoders.

4. Experiments

To evaluate the proposed method and investigate its effectiveness in different settings, we carry out detailed experiments. In Section 4.4, we present an extensive ablation study to highlight the contribution of each component within the proposed framework, and compare it to state-of-the-art methods in a semi-supervised setting. Additionally, in Section 4.5 we apply the proposed method in a semi-supervised domain adaptation setting and show performance above baseline methods.

4.1. Network Architecture

Encoder. For the following experiments, the encoder is based on a ResNet-50 [20] pretrained on ImageNet [10] provided by [55] and a PSP module [59]. Following previous works [59, 22, 1], the last two strided convolutions of ResNet are replaced with dilated convolutions.

Decoders. For the decoders, taking the efficiency and the number of parameters into consideration, we choose to only use \(1 \times 1 \) convolutions. After an initial \(1 \times 1 \) convolution to adapt the depth to the number of classes \(C \), we apply a series of three sub-pixel convolutions [45] with ReLU non-linearities to upsample the outputs to original input size.

4.2. Datasets and Evaluation Metrics

Datasets. In a semi-supervised setting, we evaluate the proposed method on PASCAL VOC [12], consisting of 21 classes (with the background included) and three splits, training, validation and testing, with of 1464, 1449 and 1456 images respectively. Following the common practice [22, 59], we augment the training set with additional images from [19]. Note that the pixel-level labels are only extracted from the original training set.

For semi-supervised domain adaption, for partially overlapping label spaces, we train on both Cityscapes [8] and CamVid [3]. Cityscapes is a finely annotated autonomous driving dataset with 19 classes. We are provided with three splits, training, validation and testing with 2973, 500 and 1525 images respectively. CamVid contains 367 training, 101 validation and 233 testing images. Although originally the dataset is labeled with 38 classes, we use the 11 classes version [2]. For experiments over non-overlapping labels spaces, we train on Cityscapes and SUN RGB-D [48]. SUN RGB-D is an indoor segmentation dataset with 38 classes containing two splits, training and validation, with 5285 and 5050 images respectively. Similar to [24], we train on the 13 classes version [18].

Evaluation Metrics. We report the results using mIoU (i.e., mean of class-wise intersection over union) for all the datasets.

4.3. Implementation Details

Training Settings. The implementation is based on the PyTorch 1.1 [39] framework. For optimization, we train for 50 epochs using SGD with a learning rate of 0.01 and a momentum of 0.9. During training, the learning rate is annealed following the poly learning rate policy, where at each iteration, the base learning rate is multiplied by \(1 - \left(\frac{\text{iter}}{\text{max_iter}}\right)^{\text{power}} \) with power = 0.9.

For PASCAL VOC, we take crops of size \(321 \times 321 \) and apply random rescaling in the range of \([0.5, 2.0] \) and random horizontal flip. For Cityscapes, CamVid and SUN RGB-D, following [24, 23], we resize the input images to \(512 \times 1024, 360 \times 480 \) and \(480 \times 640 \) respectively, without any data-augmentation.

Reproducibility All the experiments are conducted on a V-100 GPUs. The implementation is available at https://github.com/yassouali/CCT.
Figure 5. Ablation Studies on CamVid with 20, 50 and 100 labeled images. With different types of perturbations and a variable number of auxiliary decoders \(K \), we compare the individual and the combined effectiveness of the perturbations to the baseline in which the model is trained only on the labeled examples. CCT full refers to using all of the 7 perturbations, i.e. the number of auxiliary decoder is \(K \times 7 \).

Figure 6. Ablation study on PASCAL VOC. Ablation study results with 1000 labeled examples using different perturbations and various numbers of auxiliary decoders \(K \).

Inference Settings. For PASCAL VOC, Cityscapes and SUN RGB-D, we report the results obtained on the validation set, and on the test set of CamVid dataset.

4.4. Semi-Supervised Setting

4.4.1 Ablation Studies

The proposed method consists of several types of perturbations and a variable number of auxiliary decoders. We thus start by studying the effect of the perturbation functions with different numbers of auxiliary decoders, in order to provide additional insight into their individual performance and their combined effectiveness. Specifically, we measure the effect of different numbers of auxiliary decoders \(K \) (i.e., \(K = 2, 4, 6 \) and 8) of a given perturbation type. We refer to this setting of our method as “CCT \{perturbation type\}”, with seven possible perturbations. We also measure the combined effect of all perturbations resulting in \(K \times 7 \) auxiliary decoders in total, and refer to it as “CCT full”. Additionally, “CCT full+ab-CE” indicates the usage of the annealed-bootstrapped CE as a supervised loss function. We compare them to the baseline, in which the model is trained only using the labeled examples.

CamVid. We carried out the ablation on CamVid with 20, 50 and 100 labels; the results are shown in Fig. 5. We find that each perturbation outperforms the baseline, with the most dramatic differences in the 20-label setting with up to 21 points. We also surprisingly observe an insignificant overall performance gap among different perturbations, confirming the effectiveness of enforcing the consistency over the hidden representations for semantic segmentation, and highlighting the versatility of CCT and its success with numerous perturbations. Increasing \(K \) results in a modest improvement overall, with the smallest change for Con-Msk and Obj-Msk due to their lack of stochasticity. Interestingly, we also observe a slight improvement when combining all of the perturbations, indicating that the encoder is able to generate representations that are consistent over many perturbations, and subsequently, improving the overall performance. Additionally, gradually releasing the training signal using ab-CE helps increase the performance with up to 8%, which confirms that overfitting of the labeled examples can cause a significant drop in performance.

PASCAL VOC. In order to investigate the success of CCT on larger datasets, we conduct additional ablation experiments on PASCAL VOC using 1000 labeled examples. The results are summarized in Fig. 6. We see similar re-

<table>
<thead>
<tr>
<th>Method</th>
<th>Pixel-level Labeled Examples</th>
<th>Image-level Labeled Examples</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSSL [38]</td>
<td>1.5k</td>
<td>9k</td>
<td>64.6</td>
</tr>
<tr>
<td>GAIN [32]</td>
<td>1.5k</td>
<td>9k</td>
<td>60.5</td>
</tr>
<tr>
<td>MDC [53]</td>
<td>1.5k</td>
<td>9k</td>
<td>65.7</td>
</tr>
<tr>
<td>DSRG [22]</td>
<td>1.5k</td>
<td>9k</td>
<td>64.3</td>
</tr>
<tr>
<td>Souly et al. [49]</td>
<td>1.5k</td>
<td>9k</td>
<td>65.8</td>
</tr>
<tr>
<td>FickleNet [31]</td>
<td>1.5k</td>
<td>9k</td>
<td>65.8</td>
</tr>
<tr>
<td>Souly et al. [49]</td>
<td>1.5k</td>
<td>-</td>
<td>64.1</td>
</tr>
<tr>
<td>Hung et al. [23]</td>
<td>1.5k</td>
<td>-</td>
<td>68.4</td>
</tr>
<tr>
<td>CCT</td>
<td>1k</td>
<td>-</td>
<td>64.0</td>
</tr>
<tr>
<td>CCT</td>
<td>1.5k</td>
<td>-</td>
<td>69.4</td>
</tr>
<tr>
<td>CCT</td>
<td>1.5k</td>
<td>9k</td>
<td>73.2</td>
</tr>
</tbody>
</table>

Table 1. Comparison with the-state-of-the-art. CCT performance on PASCAL VOC compared to other semi-supervised approaches.
sults, where the proposed method makes further improvement compared to the baseline with different perturbations, from 10 to 15 points. The combined perturbations yield a small increase in the performance, with the biggest difference with $K = 6$. Furthermore, similar to CamVid, when using the ab-CE loss, we see a significant gain with up to 7 points compared to CCT full.

Based on the conducted ablation studies, for the rest of the experiments, we use the setting of “CCT full” with $K = 2$ for Con-Msk and Obj-Msk due to their lack of stochasticity, $K = 2$ for I-VAT given its high computational cost, and $K = 6$ for the rest of the perturbations, and refer to it as “CCT”.

4.4.2 Comparison to Previous Work

To further explore the effectiveness of our framework, we quantitatively compare it with previous semi-supervised semantic segmentation methods on PASCAL VOC. Table 1 compares CCT with other semi-supervised approaches. Our approach outperforms previous works relying on the same level of supervision and even methods which exploit image-level labels. We also observe an increase of 3.8 points when using additional image-level labels, affirming the flexibility of CCT, and the possibility of using it with different types of labels without any learning conflicts.

4.5. Semi-Supervised Domain Adaptation Setting

In real world applications, we are often provided with pixel-level labels collected from various sources, thus distinct data distributions. To examine the effectiveness of CCT when applied to multiple domains with a variable degree of labels overlap, we train our model simultaneously on two datasets, Cityscapes (CS) + CamVid (CVD) for partially overlapping labels, and Cityscapes + SUN RGB-D (SUN) for the disjoint case.

![Table 3](image)

Table 3. CCT applied to CS+CVD. CCT performance when trained on both datasets Cityscapes (CS) and SUN RGB-D (SUN) datasets, for the case of non-overlapping label spaces.

Cityscapes + SUN RGB-D. For cross domain experiments, where the two domains have distinct labels spaces, we train on both Cityscapes and SUN RGB-D to demonstrate the capability of CCT to extract useful visual relationships and perform knowledge transfer between dissimilar domains, even in completely different settings. The results are shown in Table 2. Interestingly, despite the distribution mismatch between the datasets, and the high number of labeled examples ($n = 1500$), CCT still provides a meaningful boost over the baseline with 5.9 points difference and 7.3 points compared to previous work. Showing that, by enforcing a consistency of predictions on the unlabeled sets of the two datasets over different perturbations, we can extract additional training signal and enhance the representation learning of the encoder, even in the extreme case with non-overlapping label spaces, without any performance drop when an invariance of representations across both datasets is enforced at the level of encoder’s outputs.

5. Conclusion

In this work, we present cross-consistency training (CCT), a simple, efficient and flexible method for a consistency based semi-supervised semantic segmentation, yielding state-of-the-art results. For future works, a possible direction is exploring the usage of other perturbations to be applied at different levels within the segmentation network. It would also be interesting to adapt and examine the effectiveness of CCT in other visual tasks and learning settings, such as unsupervised domain adaptation.

Acknowledgements. This work was supported by Ranstad corporate research chair. We would also like to thank Saclay-IA plateform of Université Paris-Saclay and Mésocentre computing center of CentraleSupélec and Ecole Normale Supérieure Paris-Saclay for providing the computational resources.
References

