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Abstract

Video anomaly detection is of critical practical impor-

tance to a variety of real applications because it allows

human attention to be focused on events that are likely to

be of interest, in spite of an otherwise overwhelming vol-

ume of video. We show that applying self-trained deep or-

dinal regression to video anomaly detection overcomes two

key limitations of existing methods, namely, 1) being highly

dependent on manually labeled normal training data; and

2) sub-optimal feature learning. By formulating a surro-

gate two-class ordinal regression task we devise an end-to-

end trainable video anomaly detection approach that en-

ables joint representation learning and anomaly scoring

without manually labeled normal/abnormal data. Experi-

ments on eight real-world video scenes show that our pro-

posed method outperforms state-of-the-art methods that re-

quire no labeled training data by a substantial margin,

and enables easy and accurate localization of the identified

anomalies. Furthermore, we demonstrate that our method

offers effective human-in-the-loop anomaly detection which

can be critical in applications where anomalies are rare and

the false-negative cost is high.

1. Introduction

Anomaly detection in video is the task of identifying

frames from a video sequence which depict events that de-

viate significantly from the norm. Identifying such anoma-

lous events, e.g., fires, traffic accidents or stampedes, can be

of great practical importance, particularly in guiding timely

responses. The task is made particularly challenging, by the

fact that anomalous events are rare, visually unbounded and

often unidentifiable before they occur. It is nonetheless crit-

ical in a wide variety of application areas, as it provides a

method for allowing human attention to be focused on the

events that are most likely to be of interest from within an

otherwise overwhelming volume of video.

The practical significance of the problem has seen many
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Figure 1 – Pipelines of (a) two-step and (b) end-to-end anomaly de-

tection. The two-step approach embodies separate feature extrac-

tion/learning and anomaly scoring methods, while the end-to-end ap-

proach unifies these two modules and directly learns the anomaly scores

from the raw inputs. Also, the former often requires a set of labeled

normal videos, whereas our approach requires no manual annotation of

normal/abnormal data.

methods for video anomaly detection developed. The ma-

jority of existing methods assume the availability of a la-

beled dataset depicting a set of ‘normal’ events. This in-

cludes the dictionary learning-based methods [4, 7, 26, 44]

and the more recently emerging deep learning-based meth-

ods [12,14,24,27,40,42]. This assumption significantly lim-

its their domain of application, not least because it means

that the system cannot be continuously re-trained without

human involvement, nor applied to database sifting [8]. To

address this issue, here we address what has been termed

‘unsupervised video anomaly detection’ [8, 40], which re-

quires identifying abnormal frames from a large volume of

video frames with no manually labeled normal/abnormal

training data. This version of the problem may be the only

viable approach in the many application domains where hu-

man labeling of video is extremely costly or impossible.

This includes, for example, large-scale video surveillance,

Internet video filtering, and industrial process safety moni-
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toring, because in all of these cases the definition of normal

events is diverse, constantly changing, and unpredictable.

Additionally, these methods often employ a two-step ap-

proach as shown in Figure 1(a). This approach first learns or

extracts feature representations from labeled normal train-

ing data and then employs a deterministic anomaly measure

to calculate the normal/anomaly scores based on the ex-

tracted/learned representations. This essentially separates

the feature learning/extraction and anomaly detection mod-

ules, leading to inflexible and sub-optimal anomaly scoring.

Some previous studies [8, 40] address a similar problem

setting to ours. Although labeled normal training data is

not required, their methods typically adopt a similar two-

step approach that first extracts features from test data and

builds anomaly scoring models upon the extracted features.

To address the aforementioned two issues, we introduce

an end-to-end approach to unsupervised video anomaly de-

tection based on self-trained ordinal regression. Applying

self-trained ordinal regression enables the development of a

weakly supervised approach to the problem that is amenable

to end-to-end training. End-to-end training, in turn, en-

ables the optimization of a feature learner that is tailored

specifically to anomaly detection in the target data, and an

anomaly scoring process that is tailored to the output of this

feature learner. The method is weakly supervised in that it is

initialized using a pre-trained model (e.g., ResNet-50 [13])

on relevant auxiliary labeled data and initial pseudo labels

of normality and abnormality generated using generic (that

is, not video specific) anomaly detectors.

To apply self-training ordinal regression we formulate

the problem as a surrogate two-class ordinal regression task,

for which an ordinal regression [10] model is defined to di-

rectly learn anomaly scores for pseudo normal and anoma-

lous frames in an iterative fashion, as shown in Figure

1(b). The initial pseudo normal and anomalous frames

can be determined based on existing unsupervised meth-

ods [8, 23, 36, 40]. The ordinal regression model stacks

differentiable feature representations and anomaly scoring

learners for end-to-end training. The key intuition underly-

ing this approach is as follows. Although existing methods

cannot produce well optimized anomaly scores, they gener-

ally achieve good accuracy in correctly identifying a subset

of normal and anomalous events. These identified normal

and anomalous events can be leveraged by the end-to-end

anomaly score learner to iteratively improve and optimize

the anomaly scores, resulting in significantly better detec-

tion performance compared to the initial detection.

We implement our formulation as a self-trained deep or-

dinal regression network, which is a synthesis of convolu-

tional network-based feature learning and fully connected

network-based anomaly scoring. This facilitates end-to-end

anomaly score optimization. Moreover, our model can of-

fer two important capabilities that are difficult to achieve

with existing methods. First, the nature of self-training

and end-to-end learning enables effective human-in-the-

loop anomaly detection. Human experts can easily interact

with our model by providing it with feedback on the de-

tected anomalies which the model can use to update itself

to quickly return more accurate detection results. This is

a critical capability, especially when the anomalies are rare

and the cost of false-negatives is high. Second, our method

can easily generate frame-level saliency maps to effectively

localize the identified anomalies. In summary, we make the

following two major contributions.

• We show that applying self-training ordinal regression

to video anomaly detection enables a novel formula-

tion of the problem that not only eliminates the need

for manually labeled training data, it enables end-to-

end training, thus improving detection accuracy.

• We present a novel end-to-end neural network-based

anomaly detection method. The method offers three

critical capabilities: i) it generates optimal anomaly

scores w.r.t. the given ordinal regression loss; ii) it en-

ables effective human-in-the-loop anomaly detection;

and iii) it offers easy and accurate localization of the

identified anomalies within the corresponding images.

These capabilities are analyzed through extensive ex-

periments on eight different scenes from three real-

world video datasets.

2. Related Work

Some popular video anomaly detection approaches in-

clude low-level feature extraction [3,21,22,28,30,41], dic-

tionary learning [4, 6, 7, 26, 44] and deep learning [2, 5,

12, 14, 24, 27, 34, 40, 42]. The low-level feature extrac-

tion approach focuses on extracting low-level appearance

[3], and/or dynamic features [21, 28, 30, 41], for profiling

normal behaviors. The dictionary learning-based approach

learns a dictionary of normal events and identifies the events

that cannot be well represented by the dictionary. The

dictionary learning may also be applied to low-level fea-

tures, such as histogram of gradient (HoG) or histogram of

optical flow (HoF) features [7, 44], and 3D gradient fea-

tures [26]. There have been other approaches that aim to

model normal events with compact representations, such as

hashing-based methods [43] and clustering [22, 38]. The

deep learning-based approach also aims to learn a model of

normal events [20]. Most deep learning-based methods use

reconstruction error to measure divergence of the test data

from a set of normal training videos [2,5,12,14,27,34,42].

Future frame prediction is an alternative deep-learning ap-

proach explored in [24]. The aforementioned approaches

[4, 5, 7, 12, 14, 21, 22, 24, 26, 27, 34, 38, 42–44] often require

manually labeled normal video samples to train their mod-

els. Unlike these approaches, our approach does not require
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manual annotation of normal/abnormal data.

Some recent work [8, 40] addressed a similar problem

setting to ours. Permutation tests are used in [8] to define

the anomaly scores by evaluating the discriminativeness of

a given frame in different groups of frames. Unmasking

[18] is exploited in [25, 40] to measure the anomalousness

by the classification accuracy changes resulting from un-

masking. These methods generally include two main steps:

feature extraction/learning and anomaly scoring, which are

performed separately. This simplifies the feature extrac-

tion/learning problem but leads to a feature transform that

is not optimized for the problem, or the data. By contrast,

our approach unifies these two steps to enable end-to-end

optimization of the whole anomaly identification process.

Studies have addressed the same problem setting in the ma-

chine learning community, such as current state-of-the-art

methods Sp [33, 36] and iForest [23]. Note that they oper-

ate on traditional features and their effectiveness on video

data is rarely explored.

Additionally, there has been some work for end-to-end

anomaly detection [11,32,37], but they require labeled nor-

mal and/or abnormal data for training.

3. Problem Formulation

The problem that we aim to address is end-to-end learn-

ing of anomaly scores for a set of video frames with no

manually labeled normal/abnormal data. Formally, given a

set of K video frames X = {x1,x2, · · · ,xK} with no class

label information, our goal is to learn an anomaly scoring

function φ : X 7→ R that directly assigns anomaly scores

to the video frames such that φ(xi) > φ(xj) if xi is an

anomalous frame and xj is a normal frame.

We formulate this problem as a self-training ordinal re-

gression task. Specifically, let C = {c1, c2} be augmented

scalar ordinal class labels with c1 > c2, A ⊂ X be a set of

anomalous frame candidates with each frame having an or-

dinal label c1, N ⊂ X (N∩A = ∅) be a set of normal frame

candidates with each frame having an ordinal label c2, then

the anomaly score learner φ can be formulated as

argmin
Θ

∑

x∈G

L
(

φ(x; Θ), yx
)

, (1)

where G = A ∪ N, L(·, ·) is a regression loss function and

yx = c1 , ∀x ∈ A and yx = c2 , ∀x ∈ N.

One critical idea in the ordinal regression theory is to

leverage the ordinal dependence in the supervision infor-

mation to learn an optimal sample ranking function [10,29].

To apply this idea to optimize the ranking of anomalies, we

devise the self-training ordinal regression. As c1 > c2,

optimizing the objective in Eqn. (1) will identify Θ∗ cor-

responding to a version of φ(x; Θ∗) that assigns scores to

X such that suspicious abnormal and normal samples have

anomaly scores as close to respective c1 and c2 as possible,

yielding an optimal anomaly ranking.

Since X contains high-dimensional samples, we often

need to map the data onto a low-dimensional space before

the anomaly scoring. Let ψ be a feature mapping function

with parameters Θr and η be an anomaly scoring function

with parameters Θs, then Eqn. (1) can break down into

argmin
Θr,Θs

∑

x∈G

L
(

η(ψ(x; Θr); Θs), yx
)

. (2)

To enable end-to-end training, we need to address two

main problems. First, it requires that φ and ψ can be simul-

taneously optimized. As is discussed in Section 4.2, deep

neural networks can be designed to address this problem.

Second, we need to generate A and N since they are un-

known in the first place. To tackle this problem, we first

initialize A and N using anomaly scores generated by some

existing unsupervised anomaly detection methods (see Sec-

tion 4.1), and we iteratively update A and N and retrain φ

until the best φ is achieved (see Section 4.3).

The key idea of this formulation is that existing anomaly

detection methods are able to identify frames that are clearly

members of A and N, but are unable to expand these sets to

accurately cover X. The proposed approach uses each es-

timate of A and N to further optimize the anomaly scores.

These scores then, in turn, help generate new, more accu-

rate, sets A and N. This iterative self-training achieves

much better detection performance and coverage than the

initial detection methods support.

It is important to note that the initial set A need not span

the anomalies in X, and may even erroneously contain el-

ements of N. The iterative process means that the model

implicitly defined by Θ is continually being refined. The

membership of A and N is thus constantly being updated to

improve their quality.

4. The Proposed Method

Our formulation is implemented as a self-training deep

neural network for ordinal regression. As shown in Fig-

ure 2, our method consists of three major modules. The

first module carries out the initial anomaly detection, which

yields the initial membership of A and N. These are then

fed into the end-to-end anomaly scoring module to optimize

Θ and thus the anomaly scores. A corresponding new set of

anomaly scores are then generated, which are used to up-

date the membership of A and N.

4.1. Initial Anomaly Detection

The role of the initial anomaly detection is to obtain a

set of frames that can be identified as belonging to A and N

with high probability. To achieve this, two state-of-the-art

unsupervised anomaly detection methods, Sp [33, 36] and
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Figure 2 – The proposed framework. Given a set of unlabeled videos, we first perform initial detection to generate pseudo anomalous and normal frame

sets. These sets are then used to train a (pre-trained) ResNet-50 model [13] and a fully connected network in a end-to-end fashion. The trained model is

then used to recompute the anomaly scores of all frames. The membership of A and N is updated accordingly, and the process repeated.

iForest [23], which are designed for feature vector-based

data, are employed to perform the initialization. Combin-

ing anomaly scores from different anomaly detectors allows

to identify anomalies with different characteristics and im-

proves the subsequent anomaly candidate selection. Sp is

a very simple yet effective and provable method, which de-

fines the anomaly score of a given example as the nearest

neighbor distance in a small random subsample of the full

dataset. Let f(·) be a function that extracts feature vectors

from a video frame and z = f(x), its anomaly score is

s1(z) = min
z̃∈S

d(z, z̃), (3)

where S ⊂ X is a random subset of X and d(·, ·) repre-

sents the Euclidean distance. To obtain statistically stable

performance, for each z, we use the average of a bootstrap

aggregating of m scores to be the final anomaly score [33].

iForest [23] is probably the most widely-used unsuper-

vised anomaly detection method for traditional general mul-

tidimensional data in recent years. It posits that anomalies

are susceptible to isolation and builds isolation trees on ran-

dom data subspaces to identify them. Each tree is grown by

using a random subsample until every data example is iso-

lated, where the feature and cut-point at each tree node are

randomly selected. The inverse of the path length traversed

from the root to a leaf node by x is used as its anomaly score

s2(z) = 2
E(h(z))
c(|S|) , (4)

where h(z) denotes the path length of z in S, E(h(z)) is the

average path length of z over n isolation trees, and c(·) is

the expected path length for a given subsample size.

We rescale the two sets of anomaly scores from these two

detectors into the same range and use their average as the

initial anomaly scores. We then use these anomaly scores

to include the most likely anomalous frames into the pseudo

anomaly set A and the most likely normal frames into the

pseudo normal set N (see Section 5.1 for detail).

4.2. End­to­end Anomaly Score Learner

The end-to-end anomaly score learner takes A and N as

inputs and learns to optimize the anomaly scores such that

the data inputs of similar behaviors as those in A (N) receive

large (small) scores. The score learner can be defined as

a function φ(·; Θ) : X 7→ R, which is a sequential stack

of a feature representation learner ψ(·; Θr) : X 7→ Q and

an anomaly score learner η(·; Θs) : Q 7→ R, where Q ∈
R

M is an intermediate feature representation space and Θ =
{Θr,Θs} contains all the parameters to be learned.

Specifically, the feature learner ψ(·; Θr) is specified as a

network with H ∈ N hidden layers and their weights Θr =
{W1,W2, · · · ,WH}, and can be represented as

q = ψ(x; Θr), (5)

where x ∈ X and q ∈ Q. Different backbones can be used

here. We implement ψ using ResNet-50 [13] due to its su-

perior capability of capturing frame appearance features.

The anomaly score learner η(·,Θs) : Q 7→ R is specified

as a fully connected two-layer neural network. The network

consists of a hidden layer with 100 units and an output layer

with a single linear unit:

η(q; Θs) = w⊺g(q;WH+1), (6)

where q ∈ Q, [·]⊺ is a matrix transpose operation, g(·)
maps the ResNet-50 features to the hidden layer and Θs =
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{WH+1,w} contains the weight parameters of this scoring

learner. Thus, φ(·; Θ) can be formally represented as

φ(x; Θ) = η
(

ψ(x; Θr); Θs

)

, (7)

which directly maps raw visual inputs to scalar anomaly

scores and can be trained in an end-to-end fashion by mini-

mizing the following loss function:

L
(

φ(x; Θ), yx
)

= |φ(x; Θ)− yx|, (8)

where yx = c1 when x ∈ A and yx = c2 when x ∈ N.

Since y takes two scalar ordinal values only, it is a two-class

ordinal regression.

The absolute loss is employed together with stochastic

gradient descent-based optimization to reduce the negative

effects brought by false pseudo labels in A and N. Minimiz-

ing this loss enforces an anomaly score close to c1 (c2) for

any frames having similar features as the frames in A (N),

resulting in larger anomaly scores assigned to anomalous

frames than normal frames.

4.3. Iterative Learning via Self­training

We further perform iterative learning using self-training

[47] to iteratively improve our anomaly detector. The

intuition is that the initial anomaly detection results can

pose limitations on the performance of our anomaly score

learner, since our score learner is dependent on the qual-

ity of pseudo normal and anomalous frames; on the other

hand, our end-to-end score optimization is expected to pro-

duce better anomaly scores than the initial anomaly scores,

so it can provide pseudo normal and anomalous frames of

better quality and in turn improve its self-performance.

Self-training, a.k.a. self-learning, is a classic semi-

supervised learning approach. It first trains a model using a

small labeled dataset and then applies the trained model to

unlabeled data to generate more reliable labeled data. Since

we do not have any labeled data, we present a simple strat-

egy to adapt the self-training to an unsupervised setting.

Particularly, at each iteration of the iterative learning, in-

stead of incrementally adding more labeled data, we use the

newly obtained pseudo labels, A and N, to replace the pre-

vious ones and then retrain the end-to-end anomaly learner

φ. The main reason for discarding the previous A and N is

because combining the previous and newly obtained pseudo

labels without supervision information can result in worse

pseudo labels. We found empirically that this simple strat-

egy worked very well on different datasets.

Each iteration outputs an optimized φ, so the iterative

learning results in a set of trained models. Similar to

sequential ensemble learning [46], we perform an aver-

age aggregation of all the sequentially output models to

achieve stable detection performance. Specifically, the fi-

nal anomaly score of a given x is defined as

score(x) =
1

t

t
∑

i=1

φi(x), (9)

where φi is the optimized model at the ith iteration.

5. Experiments

5.1. Implementation Details

The initial anomaly detectors, Sp and iForest, are im-

plemented using scikit-learn. They are used with recom-

mended settings as in [23, 33]. Since both Sp and iForest

only work on feature vectors, we need to transform video

data into feature vectors before applying them. Specifically,

we first extract features using the last dense layer of the pre-

trained ResNet-50 and then apply PCA to reduce the dimen-

sionality using the most important 100 components.

For the end-to-end anomaly score learner, the pre-trained

ResNet-501 is used as our feature learner; the fully con-

nected 100-unit hidden layer uses the ReLU activation func-

tion a(u) = max (0, u); the output layer contains a linear

unit; and c1 = 1 and c2 = 0 are used in the pseudo ordinal

class labels to guide the learning (our model also worked

well with other settings of c1 and c2 as long as c1 was suf-

ficiently larger than c2). The Stochastic Gradient Descent

(SGD) optimizer with a learning rate 0.005 is used through-

out all the experiments. The batch size and the number of

epochs are respectively set to 128 and 50 by default.

To obtain a set of reliable pseudo anomalous frames, we

need to determine A with a sufficiently high confidence

level. Particularly, we include the 10% most anomalous

frames into A according to their anomaly scores, because

anomaly scores often follow a Gaussian distribution [19]

and this decision threshold can provide an approximate 90%

confidence level of making false positive errors in such

cases. However, we may still include normal frames into

A. We further tackle this problem using a weighted random

sampling-based mini-batch generation method, i.e., sam-

pling examples from A with a probability positively pro-

portional to their anomaly scores. To generate the pseudo

normal frame set N, we select the 20% most normal frames

based on the anomaly scores. This can always help to

achieve a high-quality N because of the overwhelming pres-

ence of normal frames in the real-word datasets. These two

cutoff thresholds are used by default as they consistently

obtain substantially improved performance on datasets with

diverse anomaly rates (see Table 1 and Figure 5 for detail).

In the iterative learning, extensive results showed that

our model could often be substantially improved in the first

multiple iterations and then plateaued out. Thus, we per-

form the iterative learning for five iterations by default.

1ResNet-50 is used since this work examines appearance-based anoma-

lies only, which is one of the most common anomalies in video data.
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5.2. Datasets

Three real-world datasets are used in our experiments:

• UCSD [28]. This data is one of the most challeng-

ing anomaly detection datasets. It contains the UCSD

Pedestrian 1 data (Ped1) and the UCSD Pedestrian 2

data (Ped2). Ped1 consists of 34 training and 36 test

videos, while Ped2 contains 16 training and 12 test

videos. The anomalies are vehicles, bicycles, skate

borders and wheelchairs crossing the pedestrian areas.

• Subway [3]. This is one of the largest datasets for

video anomaly detection. It includes two videos: the

Entrance gate video of 96 minutes and the Exit gate

video of 43 minutes. The anomalies are passengers

walking towards a wrong direction or escaping tickets.

• UMN [1]. The UMN dataset contains three different

scenes, each with 1,453, 4,144, and 2,144 frames, re-

spectively. In each scene, the normal activity is people

casually walking around while the anomalous activity

is people running in all directions.

Note that anomalies are rare events in real-world applica-

tions, but this is violated if only the test set of these datasets

are used, because these test sets can contain a large percent-

age of anomalous events, e.g., nearly 50% anomalies in the

UCSD test sets. Such test sets are not applicable in our set-

ting. We address this problem by merging the training and

test sets, and train and evaluate our model on the full dataset

with the ground truth used in the evaluation only. This ap-

plies to the competing methods unless stated otherwise.

5.3. Performance Evaluation Metrics

Following previous work [8, 24, 27, 36, 37, 40], the area

under the ROC curve (AUC) is used as the evaluation met-

ric. AUC is calculated using the frame-level anomaly scores

and ground truth. The equal error rate (EER) has also been

used as the evaluation metric in some previous work, but we

agree with [8] that this metric can be misleading for many

real-world applications where the anomalies are very rare.

Therefore, we do not use the EER in our evaluation.

5.4. Effectiveness in Real­world Datasets

As shown in Table 1, we first examine the performance

of our method by comparing to 17 state-of-the-art methods.

On all of the scenes, our method is consistently the best

performer among the unsupervised methods [8, 23, 36] that

are evaluated using the same evaluation protocol. Specifi-

cally, compared to Sp + iForest [23, 36] that provides ini-

tial anomaly detection results for our method, our method

achieves about 2%-15% AUC improvement. It is impres-

sive that we obtain more than 15% improvement on UCSD-

Ped1 and UCSD-Ped2 where Sp + iForest works less effec-

tively, and that we can also obtain remarkable 8%-12% im-

provement on different scenes of the UMN data where Sp +

iForest performs very well. This demonstrates our method’s

capability in producing significantly better anomaly scores

than the initial scores when the initial detectors perform ei-

ther fairly well or very well. To have a fair and straightfor-

ward comparison with the discriminative framework-based

method [8], our method is compared with its two variants:

the first variant, namely Del Giorno et al. [8] #1 in Table

1, uses ResNet-50 and PCA to extract features as the in-

put to the discriminative framework; and the second variant,

namely Del Giorno et al. [8] #2 in Table 1, uses the features

extracted from the last dense layer in our trained model. The

results show that our method achieves about 5%-25% AUC

improvement over both cases of Del Giorno et al. [8] on all

the datasets.

Compared to the unmasking framework [40], our method

performs substantially better on the challenging cases

UCSD-Ped1, Subway-Entrance, Subway-Exit and UMN-

Scene2 by a margin of respective 3%, 17%, 7% and 12%,

and performs comparably better on the other datasets.

The unmasking method is improved by a two-sample test

method in [25]. Our method retains similar improvement

over this variant on all scenes except UCSD-Ped2 and

Subway-Exit. Note the results of the unmasking method

and its variant are respectively taken from [40] and [25]

based on an evaluation protocol different from ours, i.e.,

they are evaluated on the test data rather than the full data.

Compared to the upper block methods, it is very impres-

sive that our method 1) achieves large improvement over

several of these methods, such as Kim et al. [17], Mahade-

van et al. [28] and Mehran et al. [30] on the UCSD data

and Cong et al. [7] on the Subway and UMN datasets;

and 2) performs comparably well to the best methods

[15, 16, 38, 43] on the UMN data. However, it is clear

that our AUC score is 10%-22% lower than the methods

[24, 38, 43] on the UCSD data, showing the substantial gap

between these two types of methods on the very challenging

data. Note that the upper block competing methods are also

based on a different setting from ours and taken here for a

high-level comparison only.

5.5. Human­in­the­loop Anomaly Detection

Existing methods are lack of explicit prior knowledge

of anomalies. As a result, many anomalous events they

identify are data noises. This section examines whether our

method can effectively interact with human experts to lever-

age their feedback on the anomalies of their interest to iter-

atively enhance our model and reduce such false positives.

We simulate the interaction as follows. First, our model

presents a small set of l top-ranked anomalous frames to

an expert. The expert then picks up two sets of k frames

(k ≪ l), with one set of k frames believed to be the anoma-

lies of interest and another set to be normal events. These

frames are employed to fine-tune our model with 20 epochs.
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Table 1 – Frame-level AUC performance. Our method is compared with 12 methods that require labeled normal data in the upper block and five methods

that require no labeled normal/abnormal data in the bottom block. The best performance in each block is boldfaced.

UCSD Subway UMN

Training Data Method Ped1 Ped2 Entrance Exit Scene1 Scene2 Scene3 All Scenes

Labeled normal data

Kim et al. [17] 59.0% 69.3% - - - - - -

Mahadevan et al. [28] 81.8% 82.9% - - - - - -

Mehran et al. [30] 67.5% 55.6% - - - - - 96.0%

Cong et al. [7] - - 80.0% 83.0% 99.5% 97.5% 96.4% 97.8%

Xu et al. [42] 92.1% 90.8% - - - - - -

Sun et al. [38] 93.8% 94.1% - - 99.8% 99.3% 99.9% 99.7%

Zhang et al. [43] 87.0% 91.0% - - 99.2% 98.3% 99.9% 99.7%

Liu et al. [24] 83.1% 95.4% - - - - - -

Nguyen et al. [31] - 96.2% - - - - - -

Dong et al. [9] - 94.1% - - - - - -

Ionescu et al. [15] - 97.8% - - - - - 99.6%

Ionescu et al. [16] - - 93.5% 95.1% 99.9% 98.2% 99.8% 99.3%

No labeled data

Ionescu et al. [40] 68.4% 82.2% 70.6% 85.7% 99.3% 87.7% 98.2% 95.1%

Liu et al. [25] 69.0% 87.5% 71.6% 93.1% - - - 95.2%

Del Giorno et al. [8] #1 50.3% 63.0% 70.7% 86.8% 82.5% 83.5% 87.4% 76.5%

Del Giorno et al. [8] #2 59.6% 57.6% 74.6% 87.2% 80.2% 88.3% 77.1% 84.8%

Sp + iForest [23, 36] 56.3% 67.5% 80.5% 91.0% 87.3% 88.1% 91.5% 87.1%

Our method 71.7% 83.2% 88.1% 92.7% 99.9% 99.9% 99.7% 97.4%

After that, an updated anomaly ranking is again presented

to the expert for the feedback. This human-machine interac-

tion can repeat until the expert obtains the most satisfactory

anomaly ranking results. To better exploit the feedback, we

also include the temporally adjacent frames of the selected

frames with the same label (e.g., the adjacent 5 frames to

the selected frame) into our fine-tuning process.

Figure 3 shows empirical results on two representative

datasets, UCSD-Ped1 and Subway-Exit, with l = ⌊0.1N⌋
and k = 5. UCSD-Ped1 represents a challenging scene with

large improvement space, while Subway-Exit represents a

less challenging scene yet with small improvement space.

Our method can well leverage the limited human feedback

per interaction to gradually and consistently reduce the false

positive errors, achieving more than 6% AUC improvement

on both datasets after 5-round interactions.
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Figure 3 – ROC curves of our human-in-the-loop anomaly detection. H-

M i indicates the results obtained in the i-th human-machine interaction.

Best viewed in color.

5.6. Localizing the Identified Anomalies

The end-to-end learning of anomaly scores also en-

ables us to leverage existing deep neural network inter-

pretation techniques to localize and understand the anoma-

lous patches within a given frame that are responsible for

large anomaly scores. Here we adapt the state-of-the-art

method, class activation map (CAM) [45], to achieve this

goal. Particularly, for a given frame x, let pk(i, j) be the

activation of an unit k in the last convolutional layer at a

spatial location (i, j) and wk be the weight for the unit k

w.r.t. anomaly scoring, then based on [45] we can obtain

φ(x) =
∑

i,j M(i, j), where M(i, j) =
∑

k wkpk(i, j) is

the class activation map. The frame-level saliency map can

then be obtained by upsampling the class activation map

to the size of the input frame x. The CAM-based saliency

maps corresponding to some exemplar anomalies are shown

in Figure 4. We can see that the regions corresponding to the

anomalous events of the frames are well highlighted with

high activation values in all four different scenes. Although

our method may be also distracted by normal patches in

some cases, such as the upper patch in Figure 4(b), it is very

impressive for an unsupervised anomaly detection method

to achieve such effective anomalous region localization.

5.7. Ablation Study

Initial Anomaly Detection. The stability of labeling

pseudo anomalies and normal data using the two fixed cut-

off thresholds is examined by looking into the AUC perfor-

mance on datasets with different anomaly rates, including

5%, 10%, 15% and 20%. The results on Ped1 and Ped2

are shown in Figure 5, with Sp + iForest used as baseline.

This experiment is not applicable on the other datasets as

their anomaly rates are too small. The results show that, de-

spite the anomaly rate varies significantly across the exam-

ined cases, our method with the default cut-offs can consis-

tently achieve substantial AUC improvement over the base-
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(a) (b) 

(d) (c) 

Figure 4 – Manually labeled exemplar anomalies in the original in-

puts (red rectangles on the left) and the corresponding CAM [45] based

saliency maps yielded by our method (right). Anomalies in subfigures

(a) and (b) are respectively vehicles and bikes crossing the pedestrian ar-

eas in the UCSD data. The anomaly in subfigure (c) is from the Subway-

Exit data, a passenger walking towards a wrong direction. Subfigure (d)

shows the anomaly from the UMN data, people running in all directions.

line that we use to generate initial pseudo labels. This frees

us from tuning the cutoffs on different scenarios. Note that

the increasing performance with increasing anomaly rates is

mainly due to the fact that it becomes easier to obtain better

AUC performance when the anomaly rate is larger.

0.05 0.10 0.15 0.20
Anomaly Rate

0.5

0.6

0.7

0.8

AU
C

UCSD-Ped1

Baseline
Our method

0.05 0.10 0.15 0.20
Anomaly Rate

0.6

0.7

0.8

AU
C

UCSD-Ped2

Baseline
Our method

Figure 5 – AUC performance w.r.t. different anomaly rates.

Network Architecture. We replace ResNet-50 with

VGG [35] and 3DConv [39] to examine the use of different

architectures. The results are shown in Table 2. It is clear

that our method can work very well using different popu-

lar backbones with either shallower or higher-dimensional

convolutional architectures. This indicates that our perfor-

mance is not dependent on specific backbones.

Table 2 – AUC performance of using different architectures.

Backbone Ped1 Ped2 Entrance Exit UMN

VGG 70.4% 80.0% 86.5% 90.3% 97.4%

3DConv 70.1% 82.6% 87.3% 93.6% 98.1%

ResNet-50 71.7% 83.2% 88.1% 92.7% 97.4%

Self-training. To examine the self-training module, Fig-

ure 6 shows the AUC results of our method at each iteration

during self-training. Our performance gets larger improve-

ment with increasing iterations in the first few iterations on

most datasets and then becomes stable at the 4th or 5th it-

eration. This shows that the self-training approach can iter-

atively improve the performance of our method. However,

it should be noted that the performance of our method is

bounded at some points when no extra information is pro-

vided, so we stop the iterative learning after a few iterations.

We found empirically that five iterations are often sufficient

to reach the possibly best performance on different datasets.

Ped1 Ped2 Entrance Exit Scene1 Scene2 Scene3 All Scenes
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1
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Initial t=1 t=2 t=3 t=4 t=5

Figure 6 – AUC performance of our method at each iteration. ‘t = i’

indicates our model with i iterations.

End-to-end Anomaly Score Learner. The importance

of the end-to-end anomaly score learning is manifested by

comparing the results of our method to Del Giorno et al. [8]

#2 in Table 1. The anomaly scoring of our method and Del

Giorno et al. [8] #2 take exactly the same feature inputs, but

our method achieves consistently large improvement over

Del Giorno et al. [8] #2 on all the datasets. This is because

the input features are optimized as an integrated part in

our end-to-end score learning, resulting in optimal anomaly

scores; whereas the two-step methods like Del Giorno et

al. [8] #2 on one hand rely on the quality of input fea-

ture representations while on the other hand cannot unify

the feature extractor/learner and anomaly scoring, leading

to much less effective performance.

6. Conclusions

We have shown that framing video anomaly detection as

a self-training deep ordinal regression task overcomes some

of the key limitations of existing approaches to this impor-

tant problem. We additionally devised an end-to-end trained

approach that outperforms the current state-of-the-art by a

significant margin. Two key insights gained are that (1)

the end-to-end learning enables better optimized anomaly

scores than the two-step approach and (2) the self-training

ordinal regression approach can be leveraged by our end-

to-end anomaly score learner to iteratively enhance detec-

tion performance. Furthermore, our method offers some

crucial capabilities, including human-in-the-loop anomaly

detection and accurate anomaly localization. We are work-

ing on incorporating other features such as motion features

into our model to identify other types of anomalies.
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