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Abstract

3D object detection is an important scene understanding

task in autonomous driving and virtual reality. Approaches

based on LiDAR technology have high performance, but Li-

DAR is expensive. Considering more general scenes, where

there is no LiDAR data in the 3D datasets, we propose a

3D object detection approach from stereo vision which does

not rely on LiDAR data either as input or as supervision in

training, but solely takes RGB images with corresponding

annotated 3D bounding boxes as training data. As depth es-

timation of object is the key factor affecting the performance

of 3D object detection, we introduce an Instance-Depth-

Aware (IDA) module which accurately predicts the depth

of the 3D bounding box’s center by instance-depth aware-

ness, disparity adaptation and matching cost reweighting.

Moreover, our model is an end-to-end learning framework

which does not require multiple stages or postprocessing al-

gorithm. We provide detailed experiments on KITTI bench-

mark and achieve impressive improvements compared with

the existing image-based methods. Our code is available at

https://github.com/swords123/IDA-3D.

1. Introduction

Three-dimensional object detection is one of the most

important scene understanding tasks that has many appli-

cations such as autonomous driving and virtual reality. It

classifies objects and estimates oriented 3D bounding boxes

of physical objects from input sensor data. According to the

type of sensor, 3D object detection can be divided into point

cloud-based methods [6, 5, 11, 21, 30, 24, 16, 15, 28, 13],

monocular image-based methods [3, 20, 19, 27, 12, 22, 1,

25, 18] and binocular image-based methods [4, 14, 23, 25].

Three-dimensional object detection based on point cloud-

s such as those from LiDAR can achieve the best perfor-

mance, but LiDAR sensors are the most expensive. More-
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over, some 3D datasets do not provide LiDAR data, such

as PASCAL3D+ [26], which annotates 3D bounding boxes

by means of the CAD model. Monocular cameras are the

cheapest and most convenient to install, but 3D detection

using only a single image inherently lacks reliable depth in-

formation. Binocular cameras are not expensive and can

provide denser information for small objects in the distance

compared to LiDAR and inherently provide absolute depth

information compared to monocular cameras. We therefore

focus on stereo-based 3D object detection in this paper.

Stereo-based 3D object detection takes stereo pairs of

images as input and oriented 3D bounding boxes of objects

as output. Since the depth error from stereo vision increas-

es quadratically with distance, 3D object detection without

depth maps in the training process is a difficult task if solely

relying on the annotated 3D bounding boxes [4, 14]. Cur-

rently, stereo-based 3D object detection without supervised

depth still lags behind in localizing objects. We hope to

bridge the gap between two kinds of methods, with and

without depth-data supervision, so that the performance of

3D object detection with only annotated 3D bounding boxes

of physical objects can approach the performance of those

that use depth images as supervision.

In this work, we propose a 3D object detection approach

from stereo vision that does not rely on LiDAR data either

as input or as supervision during training but solely takes

RGB images with corresponding annotated 3D bounding

boxes as training data. It first extracts the objects from the

background by stereo Region Proposal Network (RPN) to

remove its interference on 3D object detection. Because

depth estimation of an object instance is the key factor af-

fecting the performance of 3D object detection, we design

a separate instance-depth-aware (IDA) module that predicts

the center depth of an object’s 3D bounding box. Unlike

previous stereo-based methods that compute the correspon-

dence of each pixel between two images [10, 2], we measure

the correspondence of each instance, paying more attention

to the global spatial information of the object. To reduce

the error of depth estimation for a distant object, we adap-

tively adjust the range of disparity levels in the cost volume

13015



according to the location of the object and transform the

uniform quantization of the disparity level into nonunifor-

m quantization. The matching cost is also reweighted to

make depth estimation more discriminative by penalizing

the depth levels that are not unique for an object instance

and promoting the depth levels that have high probabilities.

The overview of the proposed architecture is illustrated in

Fig. 1.

Our main contributions are listed as follows:

• We propose a stereo-based end-to-end learning frame-

work for 3D object detection that does not rely on depth

images either as input or for training and does not require

multistage or postprocessing algorithms.

• We introduce an instance-depth-aware (IDA) module

that accurately predicts the depth of the 3D bounding box’s

center by instance-depth awareness, disparity adaptation

and matching cost reweighting, thus improving the accu-

racy of 3D object detection.

• We provide detailed experiments on the KITTI 3D

dataset [7] and achieve state-of-the-art performance com-

pared with the stereo-based methods without depth map su-

pervision.

2. Related Work

There are two scenarios for 3D object detection: indoor

and outdoor. This work briefly reviews the recent litera-

ture on outdoor autonomous driving based on LiDAR point

clouds, monocular images and stereo images.

Point Clouds for 3D Object Detection. Because LiDAR

can provide the three-dimensional information of objects, it

is naturally used as input to detect 3D objects and is cur-

rently the most accurate method for 3D object detection.

LiDAR data on 3D object detection can be represented in

various ways, including direct 3D point clouds [21, 24], 3D

volumetric forms [30, 6], and 2D-front-view or bird’s-eye-

view images [13, 11, 16, 15, 28, 5]. Point clouds and vol-

umetric forms can fully utilize the 3D information of the

object and have a one-to-one relation with the 3D pose.

However, they are both high-dimensional and computation-

al inefficient methods. To reduce the high dimensionality

of 3D representations, some works project 3D point clouds

to front-view or birds-eye-view images, leveraging mature

convolutional networks for 3D object localization.

Monocular Images for 3D Object Detection. Because

monocular cameras are cheaper and more flexible to install

than LiDAR or stereo cameras, 3D object detection using

monocular cameras naturally becomes a requirement for in-

dustry and academia. Some recent techniques [3, 19, 12, 20]

extend the state-of-the-art 2D object detector to regress the

orientation of the object’s 3D bounding box and its dimen-

sions by transferring 2D detection, orientation, and scale

estimation into 3D space. Others [27, 22, 1] localize 3D ob-

jects from a monocular RGB image via geometric reason-

ing in both the observed 2D projection and the unobserved

depth dimension. Because monocular image inherently has

scale ambiguity in depth estimation and the error in depth

estimation increases greatly with distance, its performance

is not as good as the other two methods.

Stereo Pairs of Images for 3D Object Detection. 3D ob-

ject detection relying on LiDAR has achieved high accu-

racy. However, LiDAR sensors are expensive and there-

fore cannot enable intelligent driving systems to be used

by millions of users. With the development of deep learn-

ing methods, there is hope that the accuracy of 3D object

detection based on stereo vision will be improved. Stereo-

based 3D object detection methods usually create 2D or 3D

object proposals with extra geometric constraints [4, 14],

which are then used to regress the object pose. 3DOP [4]

makes use of the 3D point cloud features estimated from a

stereo camera pair to estimate each 3D candidate proposal

by a greedy algorithm; then, a 3D object detection network

taking 3D object proposals as input is presented to predic-

t accurate 3D bounding boxes. Stereo R-CNN [14] uses a

coarse-to-fine 3D bounding box estimation method, where

a stereo RPN is exploited to predict 2D left-right boxes, s-

parse keypoints, viewpoints, and object dimensions for cal-

culating a coarse 3D object bounding box; then, the Stereo

R-CNN recovers the accurate 3D bounding box by a region-

based photometric alignment using left and right RoIs.

The accuracy of depth-based 3D object detection relies

heavily on the quality of depth estimation. Some work-

s have focused on stereo-based depth estimation to obtain

the true 3D bounding box of objects. For example, Li-

DAR data have been incorporated into the training step as

supervision for depth estimation [25, 29], which is called

pseudo-LiDAR [25]. Pseudo-LiDAR introduces a two-step

approach for stereo-based 3D object detection. It first esti-

mates the depth map from stereo vision using the supervised

depth information generated by LiDAR and then converts

the depth map into a 3D point cloud and takes advantage of

existing LiDAR-based models for 3D object detection.

Different from the above methods, considering that some

3D datasets, such as PASCAL3D+ [26], do not have LiDAR

data, we only take RGB images with corresponding anno-

tated 3D bounding boxes as training data, and propose an

entire instance depth aware 3D object detection approach.

Our approach is closely related to recent work [14] that us-

es solely training data of RGB images and corresponding

annotated 3D bounding boxes. This prior work defines four

semantic keypoints indicating the four corners at the bot-

tom of the 3D bounding box. The 3D box can be solved

by minimizing the reprojection error of the 2D boxes by

perspective keypoints in the first stage; then, the method
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Figure 1. Overview of the proposed IDA-3D. Top: Stereo RPN takes a pair of left and right images as input and outputs corresponding left-

right proposal pairs. After stereo RPN, we predict position, dimensions and orientation of 3D bounding box. Bottom: Instance-depth-aware

module builds a 4D cost volume and performs 3DCNN to estimate the depth of a 3D bounding box center.

solves the disparity of the 3D bounding box center for fur-

ther dense 3D-box alignment in the second stage. In con-

trast to this prior work, our approach achieves better per-

formance in 3D object detection by designing a novel end-

to-end instance-depth-aware module that directly predicts

the single-variable depth z of the 3D bounding box’s cen-

ter, rather than making predictions by additional keypoints

and dense 3D box alignment. Instead of pixel-level post-

processing, our instance depth estimation module makes the

features extracted by the 3D convolution focus on the objec-

t by end-to-end training, reducing the interference of clut-

tered background on the depth estimation of object.

3. Method

We propose a stereo 3D object detection approach where

the training data are solely RGB images with correspond-

ing annotated 3D bounding boxes, without taking depth ob-

tained from LiDAR as input or as intermediate supervision.

Rather than design any step of the stereo algorithm by hand,

we learn an end-to-end mapping from an image pair to ob-

ject 3D bounding boxes using deep learning. Instead of con-

structing a machine learning architecture as a black box, we

recognize that the 3D object detection error stems entire-

ly from the error in depth estimation z of a 3D bounding

box center, thus we separately design a regression model to

obtain the instance depth. In this paper, the coordinate z

of a 3D bounding box center is also called instance depth.

Furthermore, we guide architecture design of object depth

estimation by instance-depth awareness, disparity adapta-

tion and matching cost reweighting. Therefore, we learn an

effective Instance-Depth-Aware 3D Object Detection mod-

el (IDA-3D). Our architecture is illustrated in Fig. 1. In the

remainder of this section, we discuss each component in de-

tail.

3.1. Overview of Object Instance Detection

We first extract a pair of Regions of Interest (RoI) for

each object in the left and right images with the stereo RP-

N module inspired by [14], the purpose of which is to avoid

the complex matching of all pixels between the left and right

images and eliminate the adverse effect of background on

object detection. The stereo RPN creates an union RoI for

each object whose size and location are the same on the left

and right images so that the union RoI ensures the starting

points of each pair of RoIs. After applying RoIAlign [8]

on left and right feature maps respectively, the left and right

RoI features are then concatenated and fed into the stereo

regression network to predict position, orientation and di-

mensions of 3D bounding box respectively, where the posi-

tion of the 3D bounding box can be represented by its center

position (x, y, z). Since the 3D depth of object center has a

large dynamic range and its deviation accounts for the ma-

jority of the difference in 3D object detection, we separately

design the IDA module to obtain the depth of a 3D bound-
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Name Layer Setting Output Dimension

input D × 16× 16× 96

conv0
3× 3× 3, 64

3×3×3, 128
D × 16× 16× 128

maxpool0
maxpooling

stride=(1,2,2)
D × 8× 8× 128

conv1
3×3×3, 128

3×3×3, 128
D × 8× 8× 128

maxpool1
maxpooling

stride=(1,2,2)
D × 4× 4× 128

conv2
3× 3× 3, 64

3× 3× 3, 1
D × 4× 4

avgpool
avgpooling

stride=(4, 4)
D × 1× 1

Table 1. Parameters of the proposed IDA model. D denotes the

number of depth levels.

ing box center which is also called instance depth in this

paper. In stereo regression network, we also predict the 2D

bounding box as the input of IDA module during inference.

3.2. Instance Disparity (Depth) Estimation

Unlike previous stereo networks that regress the dispar-

ity of each pixel between a rectified stereo images, we are

specifically interested in computing the disparity of each in-

stance to locate its position. Instead of computing the corre-

spondence of each pixel between two images, we measure

the correspondence of the same instance between two im-

ages, paying more attention to the global spatial informa-

tion of the object. Therefore, after forming a cost volume of

dimensionality disparity×height×width×feature size

by concatenating the left and right feature maps across each

disparity level, we employ two consecutive 3D convolution

layers, each followed by a 3D max-pooling layer, to learn

and perform down sampling on feature representations from

the cost volume. Since disparity is inversely proportional to

depth and both represent the position of an object, we trans-

form the disparity into depth representation after formulat-

ing cost volume. Relying on the networks regularization,

the down sampled features by 3D CNN are finally merged

into depth probability of the 3D box center. By performing

the sum of each depth z weighted by its normalized prob-

ability, the depth of a 3D box center is finally obtained, as

shown in Eq. 1, where N denotes the number of depth levels

and P (i) the normalized probability.

ẑ =

N
∑

i=0

zi × P (i) (1)

We train our model with supervised learning using

ground truth depth of 3D box center, where supervised re-

gression loss is defined using the error between the ground

d
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Figure 2. Relation between disparity and depth.

truth depth(z) and the model’s predicted depth (ẑ) in Eq. 2:

L (z, ẑ) = smoothL1 (ẑ − z) (2)

As shown in IDA module in Fig. 1, if the disparity level

of a car is di, when its left and right feature maps shift to

the opposite direction, the two feature maps match exactly

at di, as shown by the red mark in 4D cost volume. The

IDA module output the maximum probability at Zi, where

Zi is the depth value corresponding to di.

Our model parameters are shown in Table 1. Fig. 3 takes

the depth estimation of a car as an example to visualize this

process, where the bright yellow and dark blue color in the

feature maps indicate stronger activation and the lower ac-

tivation respectively. Given the features of cost volume as

input, it can be seen that the feature maps extracted by our

network are gradually changed from low-level features of

the car to high-level global features of its center depth prob-

ability. Meanwhile, the depth level that is unique for the car

results in the highest probability as shown at the bottom of

the figure. This phenomenon illustrates that the proposed

model is effective to learn the probability of correct depth

level for an object instance.

3.3. Instance Disparity (Depth) Adaptation

Most previous works optimize the accuracy of disparity

estimation. However, for the same disparity error, the er-

ror in depth increases quadratically with distance. It means

that the influence of the disparity error in depth estimation

of a far-away object is greater than a nearby one. This is the

key factor that leads to poor 3D object detection. In order

to adapt the model and loss function to lay more emphasis

on a far-away object, we change the disparity level in cost

volume from uniform quantization to nonuniform quantiza-

tion where the farther the object is, the less the partition cell

between two consecutive disparity levels. In this way, the

depth of a distant object can be more precisely estimated.

The nonuniform quantization or disparity is shown in Fig.

2. We take advantage of nonuniform disparity quantization

13018



Figure 3. Global spatial information extraction process. Feature maps are sampled at a channel and sorted by the depth level. The bright

yellow color in the feature map indicates stronger activation, while dark blue indicates the lower activation.

Reweighted

Non-weighted

Figure 4. A graphical depiction of the matching cost reweighting

which we propose in this work. The two cost curves along each

depth level before and after reweighting are respectively shown in

black and red.

converted from uniform depth quantization via the follow-

ing transform (fu: horizontal focal length, b: baseline of

binocular camera),

D =
fu × b

z
(3)

In addition to the nonuniform quantization, we don’t

have to estimate the depth in the range of 0-80m since the

depth of a car is inversely proportional to its size in the im-

age. Given camera intrinsic parameters, we can roughly cal-

culate the range according to the width of the union box in

the image. We therefore reduce the searching range in depth

estimation to [zmin, zmax], where zmin and zmax represen-

t the minimum and maximum depth values of each object

respectively. Such depth adaption minimizes the average

partition cell of quantization for a fixed number of disparity

levels, thus improving depth estimation.

3.4. Matching Cost Reweighting

As Eq. 1 indicates that the depth of a 3D box center is

a weighted average of all depth levels, not the most likely,

which may lead to non-discriminative depth estimation. To

penalize the depth levels that are not unique for an object

instance and promote the depth levels that have high prob-

abilities, we reweight the matching cost. The reweighting

is split into two parts, with the first part (shown in the 4D

cost volume of Fig. 1) in 4D volume packing a difference

feature map between the left and right feature maps across

each disparity level and second part (shown in the 3DCN-

N in Fig. 1) in 3DCNN employing attention mechanism on

depth. The 4D volume with these residual feature maps will

make the subsequent 3D CNN take into account the differ-

ence between left and right feature maps in a certain depth

level and refine depth estimation, while disparity attention

mechanism sets the weight ri for each channel. The corre-

lation score ri that is obtained by calculating the correlation

between left and right feature maps on each disparity is de-

fined as:

ri = cos < F l
i , F

r
i >=

F l
i · F

r
i

∥

∥F l
i

∥

∥ · ‖F r
i ‖

(4)

where ri is the weight for the ith channel, cos is the co-

sine similarity function, and F l
i , F r

i are the ith pair of fea-

ture maps in the cost volume. The two cost curves along

each depth level before and after reweighting are respec-

tively shown in black color and red color in Fig. 4. We can

see that the gradient of the reweighted curve is steeper than

that of the non-weighted curve which shows the increased

probability of correct instance depth.

3.5. 3D Object Detection

In addition to the instance depth estimation, we also need

to estimate the horizontal and vertical coordinates (x, y) of

the object center, object stereo bounding boxes, dimensions

and viewpoint angle to complete the task of 3D object de-

tection. We design a six-parallel fully-connected network

with the concatenated left and right RoI features as input.

After the depth of the instance is determined, the coordi-

nates (x, y) of the object center in the left cameras coordi-

nate system can be calculated according to its projections
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θ

Figure 5. Relation between object orientation θ and the viewpoint

angle α.

(u, v) on the left and right image pairs as follows,

x =
(u− cu)× z

fu
y =

(v − cv)× z

fv
(5)

where (cu, cv) denotes the camera center and fu, fv are the

horizontal and vertical focal length. From Eq. 5, we can ob-

serve that the estimation of the horizontal and vertical posi-

tion of the 3D box center is affected by the result of depth

estimation, which indicates the significant role of depth es-

timation in object detection. Because of no translation in

the vertical coordinate (y) between the left and right cen-

ter of an object instance, this branch estimates the offset

(∆ul,∆v,∆ur) to the groundtruth directly.

For the orientation regression as shown in Fig. 5, we es-

timate the viewpoint angle which accounts for the change in

appearance using the method similar to Multibin in [20].

The orientation angle θ can be calculated by Eq. 6, which

illustrates that the result of depth estimation affects the ori-

entation as well.

θ = α+ tan−1 x

z
(6)

For the dimension regression, we produce dimension off-

sets (∆h,∆w,∆l) to the mean class sizes (h̄, w̄, l̄), which

are the mean dimensions over all objects of the given class.

The dimensions of 3D bounding box can be calculated via

the following transformation,

h = h̄e∆h w = w̄e∆w l = l̄e∆l (7)

3.6. Implementation Details

The whole multi-task loss can be formulated as:

L = w1Lrpn + w2L2Dbox + w3L
(u,v)
3D + w4L

z
3D

+ w5Ldim + w6Lα

(8)

where the Lrpn and L2Dbox denote the loss of 2D boxes on

stereo RPN module and stereo regression module respec-

tively, L
(u,v)
3D is the regression loss for the projection of ob-

ject instance centers and Lz
3D the instance depth of objects,

Ldim the offset regression loss for the 3D bounding box

dimensions, Lα the orientation loss which includes a classi-

fication loss for the discrete angle bins and a regression loss

for the angle bin offsets, w1-w6 the trade-off parameters to

balance the whole multi-task loss.

We employ two weight-share ResNet50 [9] with FPN

[17] architecture as the feature extractor. In the training

stage, we flip the images in the training set, exchange the

left and right image and mirror the 2D boxes annotation,

viewpoint angle and 2D projection of centroid at the same

time for data augmentation. For the IDA module, we di-

vide the depth between zmax and zmin into 24 levels for the

estimation of the object center depth. We use the 2D box-

es obtained from the RPN module as the input to the IDA

module, as this module can provide more samples for train-

ing. While during inference, we use the 2D boxes obtained

from the 2D regression module as input of IDA module be-

cause it provides fewer boxes with more precision which

can reduce the computation cost. We train our network us-

ing SGD optimizer with the initial learning rate 0.02, the

momentum 0.9 and the weight decay 0.0005. Meanwhile,

we set the batch size to 4 on two NVIDIA 2080Ti GPUs and

train 80000 iterations with about 26 hours.

4. Experiment

We evaluate our approach on the KITTI 3D object detec-

tion dataset which contains 7481 training images and 7581

testing images. We follow the same training and validation

splits as [4], each contains 3712 and 3769 images respec-

tively. We report 3D average precision (AP3D) and birds-

eye-view average precision (APbev) on car category with

the IoU thresholds at 0.5 and 0.7, where each category is

divided into easy, moderate, and hard case according to the

2D box height, occlusion and truncation levels. In Sec. 4.1,

we give our results and make comparisons to monocular-

based [3, 1, 18] and stereo-based methods [4, 23, 14] quan-

titively. Qualitive results are given in Sec. 4.2.

4.1. Results of Instance­Depth­Aware Approach

We conduct experiments both qualitatively and quantita-

tively. For comparison, we summarize the main results from

monocular to binocular methods in Table 2. Our method

outperforms previous monocular-based methods across al-

l IoU thresholds by a significant margin in easy, moderate

and hard cases. Comparing to stereo-based methods, we ob-

tain the highest AP3D and APbev at 0.5 IoU and 0.7 IoU.

Taking an AP3D of 60.04% using IoU = 0.5 in hard case

as an example, our method yields consistent improvemen-

t over other methods, 3DOP (30.09%), TLNet (37.99%)

and Stereo R-CNN (57.24%). Results in other cases fol-

low similar trends which indicate the consistent detection

performance of our approach. Specifically, the result of our

method APbev = 67.3% in hard case at 0.5 IoU outperform-
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Method Sensor
IoU = 0.5 IoU = 0.7

Easy Mode Hard Easy Mode Hard

Mono3D [3] M 30.50/25.19 22.39/18.20 19.16/15.52 5.22/2.53 5.19/2.31 4.13/2.31

M3D-RPN [1] M 55.37/48.96 42.49/39.57 35.29/33.01 25.94/20.27 21.18/17.06 17.90/15.21

Xinzhu et al. [18] M 72.64/68.86 51.82/49.19 44.21/42.24 43.75/32.23 28.39/21.09 23.87/17.26

3DOP [4] S 55.04/46.04 41.25/34.63 34.55/30.09 12.63/6.55 9.49/5.07 7.59/4.10

TLNet [23] S 62.46/59.51 45.99/43.71 41.92/37.99 29.22/18.15 21.88/14.26 18.83/13.72

Stereo R-CNN [14] S 87.13/85.84 74.11/66.28 58.93/57.24 68.50/54.11 48.30/36.69 41.47/31.07

ours S 88.05/87.08 76.69/74.57 67.29/60.01 70.68/54.97 50.21/37.45 42.93/32.23

Table 2. APbev / AP3D (in %) of the car category on KITTI validation set, where S denotes binocular image pair as input and M denotes

monocular image as input.

Method
APbev / AP3d (IoU = 0.7)

Easy Mode Hard

ours 70.68/54.97 50.21/37.45 42.93/32.23

PL+FP [25] 69.7/54.9 48.1/36.4 41.8/31.1

PL+AVOD [25] 74.0/56.7 54.7/37.9 47.3/34.3

Table 3. APbev / AP3D (in %) of the car category on KITTI vali-

dation set between Pseudo-LiDAR [25] and our method.

s Stereo R-CNN (58.93%), achieving significant improve-

ment over 8.37%. Similar observation can be seen in AP3D

(ours/Stereo R-CNN = 74.57%/66.28%) with 8.29% perfor-

mance improvement. This may be due to the nonunifor-

m quantization strategy in IDA module which makes our

method more robust for the distant objects by reducing the

depth estimation error.

We also compare our approach to the Pseudo-LiDAR

[25] of stereo version which follows a two-stage network:

i) depth map estimation via PSMNet [2], ii) 3D bounding

box regression via F-PointNet [21] or AVOD [11]. Howev-

er, it is unfair to compare our approach with Pseudo-LiDAR

since we do not use the depth map as intermediate supervi-

sion. Our method still achieves comparable performance as

shown in Table 3. Besides, our method has less complexity

because we form an end-to-end network with a light-weight

IDA module compared to PSMNet and obtains a high speed

of > 12 frames per second on one NVIDIA 2080Ti GPU.

Ablation Study on the Disparity Adaptation. In order to

verify the benefits of our disparity adaptation strategy, we e-

valuate the depth estimation error according to the distance

using different disparity quantization strategies. The results

of depth error are shown in Fig. 6. The error is calculated

as the mean differences between the predicted 3D locations

and the ground truth for detections with 2D IoU > 0.5. As

expected, using nonuniform quantization strategy leads to

more reduction of depth estimation error as the distance in-
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Figure 6. The depth estimation error from different disparity quan-

tization strategies.

Method Metric
IoU = 0.7

Easy Mode Hard

Uniform
APbev 46.59 32.35 29.58

AP3D 34.57 23.40 21.19

Nonuniform
APbev 67.01 49.17 42.23

AP3D 52.16 36.40 30.93

Nonuniform

+ Adaption

APbev 70.68 50.21 42.93

AP3D 54.97 37.45 32.23

Table 4. The benefits of the disparity quantization strategy.

crease. For the objects 50m away, it can be seen from the

histogram that nonuniform quantization has a greater im-

pact on the accuracy of depth estimation. This phenomenon

proves our analysis that the distant objects, which have

less interval between two consecutive disparity levels, can

achieve better results of depth estimation. Since the depth

estimation of object instance is the key factor affecting the

performance of 3D object detection, our nonuniform quan-

tization strategy performs significant improvements com-

pared to uniform quantization strategy. The detailed statis-

tics can be found in the first two rows of Table 4.
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(a) (b) (c)

Figure 7. Quantitative results on several scenes in KITTI dataset. At the first row are the ground truth 3D boxes and the predicted 3D boxes

projected to the image plane. We also show the detection results on point cloud in order to facilitate observation. The predicted results are

shown in yellow and the ground truth are shown in blue.

Diff. Att.
APbev / AP3d (IoU = 0.7)

Easy Mode Hard

X X 70.68/54.97 50.21/37.45 42.93/32.23

X × 67.08/52.17 49.90/36.85 42.65/31.99

× X 67.52/52.03 48.51/35.47 41.86/29.88

× × 66.25/51.82 47.41/35.60 40.88/30.18

Table 5. Improvements of the matching cost reweighting.

Applying the same amount of depth quantization lev-

els, smaller search range means better performance in in-

stance depth estimation. Therefore, we adaptively reduce

the search range of disparity via the size of objects in 2D

images as described in Sec. 3.3. As expected, the adaptive

strategy provides more precise disparity quantization and

thus achieves better performance in 3D bounding box esti-

mation as shown in the last row of the Table 4.

Ablation Study on the Matching Cost Reweighting. Ta-

ble 5 shows the effect of the matching cost reweighting s-

trategy. In our approach, we use two strategies to control

and promote the peak of depth probability. The first strate-

gy is concatenating a difference feature map between a left

and right feature map with original cost volume, which is

represented by Diff. in Table 5. And the second strategy is

employing attention mechanism in 3DCNN, which is repre-

sented by Att. in Table 5. We conduct ablation experiments

within our framework to verify the contributions of each

strategy. Through Att. and Diff., we penalize the depth lev-

els that are not unique for an object instance and promote

the depth levels that have high probability. As a result, our

method obtains performance improvements by combining

two strategies together.

4.2. Qualitative Results

Fig. 7 shows qualitative detection results on several

scenes in KITTI dataset. It can be observed that in the com-

mon street scenes, our method can accurately detect object-

s in the scene and the detected 3D boxes are well aligned

on both the front-view images and point cloud. Especially

when the objects are very far-away from the cameras, our

method is still able to obtain accurate detection results as

shown in (a) and (b), which benefits from our IDA mod-

ule. In the cases that too many vehicles are occurred in the

scene or heavily occluded by others, our method also has

the potential to successfully locate these objects as shown

in (c).

5. Conclusion

In this work, we propose an end-to-end learning frame-

work for 3D object detection based on stereo images in

autonomous driving. It does not rely on depth images ei-

ther as input or for training and does not require multi-

stage or postprocessing algorithms. A stereo RPN mod-

ule is introduced to produce a pair of union RoI to avoid

complex matching of the same object in a left-right image

pair and reduce the interference of background on depth

estimation. Without dense depth maps as supervision, the

specially designed instance-depth-aware (IDA) module fo-

cuses on objects and directly performs the instance depth

regression. Moreover, our approach pays more attention on

far-away objects by disparity adaptation and matching cost

reweighting. Our approach has a lightweight network archi-

tecture and achieves impressive improvements over the ex-

isting image-based performance. Comparing to some meth-

ods with depth map supervision, our approach obtains com-

parable performance as well.
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