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Abstract

Training with more data has always been the most stable

and effective way of improving performance in deep learn-

ing era. As the largest object detection dataset so far, Open

Images brings great opportunities and challenges for object

detection in general and sophisticated scenarios. However,

owing to its semi-automatic collecting and labeling pipeline

to deal with the huge data scale, Open Images dataset suf-

fers from label-related problems that objects may explicitly

or implicitly have multiple labels and the label distribution

is extremely imbalanced. In this work, we quantitatively an-

alyze these label problems and provide a simple but effec-

tive solution. We design a concurrent softmax to handle the

multi-label problems in object detection and propose a soft-

sampling methods with hybrid training scheduler to deal

with the label imbalance. Overall, our method yields a dra-

matic improvement of 3.34 points, leading to the best single

model with 60.90 mAP on the public object detection test

set of Open Images. And our ensembling result achieves

67.17 mAP, which is 4.29 points higher than the best result

of Open Images public test 2018.

1. Introduction

Data is playing a primary and decisive role in deep learn-

ing. With the advent of ImageNet dataset [8], deep neural

network [15] becomes well exploited for the first time, and

an unimaginable number of works in deep learning sprung

up. Some recent works [24, 39] also prove that larger

quantities of data with labels of low quality(like hashtags)

could surpass the state-of-the-art methods by a large mar-

gin. Throughout the history of deep learning, it could be
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easily learned that the development of an area is closely re-

lated to the data.

In the past years, great progresses have also been

achieved in the field of object detection. Some generic ob-

ject detection datasets with annotations of high quality like

Pascal VOC [9] and MS COCO [21] greatly boost the devel-

opment of object detection, giving birth to plenty of amaz-

ing methods [29, 28, 22, 20]. However, these datasets are

quite small in today’s view, and begin to limit the advance-

ment of object detection area to some degree. Attempts

are frequently made to focus on atomic problems on these

datasets instead of exploring object detection in harder sce-

narios.

Recently, Open Images dataset is published in terms of

1.7 million images with 12.4 million boxes annotated of 500

categories. This unseals the limits of data-hungry methods

and may stimulate research to bring object detection to more

general and sophisticated situations. However, accurately

annotating data of such scale is labor intensive that manual

labeling is almost infeasible. The annotating procedure of

Open Images dataset is completed with strong assistance of

deep learning that candidate labels are generated by models

and verified by humans. This inevitably weakens the qual-

ity of labels because of the uncertainty of models and the

knowledge limitation of human individuals, which leads to

several major problems.

Objects in Open Image dataset may explicitly or implic-

itly have multiple labels, which differs from the traditional

object detection. The object classes in Open Images form

a hierarchy that most objects may hold a leaf label and all

the corresponding parent labels. However, due to the anno-

tation quality, there are cases that objects are only labeled

as parent classes and leaf classes are absent. Apart from hi-

erarchical labels, objects in Open Images dataset may also

hold several leaf classes like car and toy. Another annoying

case is that objects of similar classes are frequently anno-
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Figure 1: Example of multi-label annotations in Open Images dataset. (a)(b) are cases that objects are explicitly annotated

with multiple labels. In (a), a car toy is labeled as car and toy at the same time. In (b), an apple is hierarchically labeled as

apple and fruit. (c)(d) are cases that objects implicitly have multiple labels. In (c), apples are only labeled as fruit. In (d),

flashlights are always randomly labeled as torch or flashlight.

tated as each other in both training and validation set, for

example, torch and flashlight, as shown in 1.

As images of Open Images dataset are collected from

open source in the wild, the label distribution is extremely

imbalanced that both very frequent and infrequent classes

are included. Hence, methods for balancing label distri-

bution are requested to be applied to train detectors better.

Nevertheless, earlier methods like over-sampling tends to

impose over-fitting on infrequent categories and fail to fully

use the data of frequent categories.

In this work, we engage in solving these major prob-

lems in large-scale object detection. We design a concur-

rent softmax to deal with explicitly and implicitly multi-

label problem. We propose a soft-balance method together

with a hybrid training scheduler to mitigate the over-fitting

on infrequent categories and better exploit data of frequent

categories. Our methods yield a total gain of 3.34 points,

leading to a 60.90 mAP single model result on the pub-

lic test-challenge set of Open Images, which is 5.09 points

higher than the single model result of the first place method

[1] on the public test-challenge set last year. More impor-

tantly, our overall system achieves a 67.17 mAP, which is

4.29 points higher than their ensembled results.

2. Related Works

Object Detection. Generic object detection is a funda-

mental and challenging problem in computer vision, and

plenty of works [29, 28, 22, 20, 7, 23, 3, 19, 27] in this

area come out in recent years. Faster-RCNN [29] first pro-

poses an end-to-end two-stage framework for object detec-

tion and lays a strong foundation for successive methods.

In [7], deformable convolution is proposed to adaptively

sample input features to deal with objects of various scales

and shapes. [19, 27] utilize dilated convolutions to enlarge

the effective receptive fields of detectors to better recognize

objects of large scale. [3, 23] focus on predicting boxes of

higher quality to accommodate the COCO metric.

However, most works are still exploring in datasets like

Pascal VOC and MS COCO, which are small by modern

standards. Only a few works [25, 38, 1, 10] have been

proposed to deal with large-scale object detection dataset

like Open Images [16]. Wu et al. [38] proposes a soft box-

sampling method to cope with the partial label problem in

large scale dataset. In [25], a part-aware sampling method

is designed to capture the relations between entity and parts

to help recognize part objects.

Multi-Label Recognition. There have been many amaz-

ing attempts [11, 34, 40, 18, 33, 37, 5] to solve the multi-

label classification problem from different aspects. One

simple and intuitive approach [2] is to transform the multi-

label classification into multiple binary classification prob-

lems and fuse the results, but this neglects relationships

between labels. Some works [13, 17, 33, 36] embed de-

pendencies among labels with deep learning to improve the

performance of multi-label recognition. In [18, 33, 37, 5],

graph structures are utilized to model the label dependen-

cies. Gong et al. [11] uses a ranking based learning strategy

and reweights losses of different labels to achieve better ac-

curacy. Wang et al. [34] proposes a CNN-RNN framework

to embed labels into latent space to capture the correlation

between them.

Imbalanced Label Distribution. There have been many

efforts on handling long-tailed label distribution through

data based resampling strategies [31, 10, 4, 26, 41, 24] or

loss-based methods [6, 14, 35]. In [31, 10, 26], class-aware

sampling is applied that each mini-batch is filled as uniform

as possible with respect to different classes. [4, 41] ex-

pand samples of minor classes through synthesizing new

data. Dhruv et al. [24] computes a replication factor for

each image based on the distribution of hashtags and dupli-

cates images the prescribed number of times.

As for loss-based methods, loss weights are assigned to

samples of different classes to match the imbalanced label

distribution. In [14, 35], samples are re-weighted by inverse

class frequency, while Yin et al. [6] calculates the effective

49059710



number of each class to re-balance the loss. In OHEM [32]

and focal loss [20], difficulty of samples are evaluated in

term of losses and hard samples are assigned higher loss

weights.

3. Problem Setting

Open Images dataset is currently the largest released ob-

ject detection dataset to the best of our knowledge. It con-

tains 12 million annotated instances for 500 categories on

1.7 million images. Considering its large size, it is unfea-

sible to manually annotate such huge number of images on

500 categories Owing to its scale size and annotation styles,

we argue that there are three major problems regarding this

kind of dataset, apart from the missing annotation problem

which has been discussed in [38, 25].

Objects may explicitly have multiple labels. As objects in

physical world always contain rich categorical attributes on

different levels, the 500 categories in Open Images dataset

form a class hierarchy of 5 levels, with 443 of the nodes

as leaf classes and 57 of the nodes as parent classes. It is

likely that some objects hold multiple labels including leaf

labels and parent labels, like apple and fruit as shown in

Figure 1b. Another case is that an object could easily have

multiple leaf labels. For instance, a car-toy is labeled as toy

and car at the same time as shown in Figure 1a. This hap-

pens frequently in dataset and all leaf labels are requested

to be predicted during evaluation. Different from previous

single-label object detection, how to deal with multiple la-

bels is one of the crucial factors for object detection in this

dataset.

Objects may implicitly have multiple labels. Other than

the explicit multi-label problem, there is also the implicit

multi-label problem caused by the limited and inconsistent

knowledge of human annotators. There remain many pairs

of leaf categories that are hard to distinguish, and labels of

these pairs are mixed up randomly. We analyze the propor-

tion that an object of a leaf class is labeled as another, and

find that there are at least 115 pairs of severely confused

categories(confusion ratio ≥ 0.1). We display the top-55
confused pairs in Figure 3a, and find many categories heav-

ily confused. For instance, nearly 65% of the torches are

labeled as flashlight and 50% of the leopards are labeled as

cheetah.

Besides, labels of leaf and parent classes are always not

complete so that a large amount of objects are only an-

notated with parent labels without leaf label. As shown

in Figure 1c, an apple is sometimes labeled as apple and

sometimes labeled as fruit without the leaf annotation. We

demonstrate the ratio of leaf annotations and parent annota-

tions lacking leaf annotations in Figure 3b. This implicit co-

existence phenomenon also happens frequently and needs

to be taken into consideration, otherwise the detectors may

learn the false signals.

Imbalanced label distribution. To build such a huge

dataset, images are collected from open source in the wild.

As on can expect, Open Images dataset suffers from ex-

tremely imbalanced label distribution that both infrequent

and very frequent categories are included. As shown in Fig-

ure 2, the most frequent category owns nearly 30k times

the training images of the most infrequent category. Naive

re-balance strategy, such as widely used class-aware sam-

pling [10] which uniformly samples training images of dif-

ferent categories could not cope with such extreme imbal-

ance, and may lead to two consequences:

1) For frequent categories, they are not trained sufficiently,

for the reason that most of their training samples have never

been seen and are wasted.

2) For infrequent categories, the excessive over-sampling on

them may cause severe over-fitting and degrade the gener-

alizability of recognition on these classes.

Once adopting the class-aware sampling, category like

person is extremely undersampled that 99.13% of the in-

stances are neglected, while category like pressure cooker

is immensely oversampled that each instance is seen for 252
more times averagely within an epoch.

4. Methodology

In this part, we explore methods to deal with the la-

bel related problems in large scale object detection. First,

we design a concurrent softmax to handle both the explicit

and implicit multi-label issues jointly. Second, we pro-

pose a soft-balance sampling together with a hybrid train-

ing scheduler to deal with the extremely imbalanced label

distribution.

4.1. Multi­Label Object Detection

As one of the most widely used loss function in deep

learning, the form of softmax loss about a bounding box b
is presented as follows:

Lcls(b) = −
C
∑

i=1

yi log(σi), with σi =
ezi

∑C

j=1 e
zj
, (1)

where zi denotes the response of the i-th class, yi denotes

the label and C means the number of categories. It behaves

well in single label recognition where
∑

yi = 1. However,

things are different when it comes to multi-label recogni-

tion.

In the conventional object detection training scheme,

each bounding box is assigned only one label during train-

ing ignoring other ground-truth labels. If we force to as-

sign all the m(m ≥ 1) ground-truth labels that belongs to

K = {k | k ∈ C, yk = 1} to bounding box during training,

scores of multiple labels would restrain each other. When

computing the gradient of each ground-truth label, it looks
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Figure 2: The imbalance magnitude of Open Images and MS COCO dataset. Imbalance magnitude means the number of the

images of the largest category divided by the smallest. (best viewed on high-resolution display)
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Figure 3: Implicit multi-label problem caused by confused

categories and absence of leaf classes.

like below:

∂Lcls

∂zi
=

{

mσi − 1, if i ∈ K;

mσi, if i /∈ K.
(2)

When mσi > 1 for i ∈ K, zi is optimized to become

lower even if i is one of the ground-truth labels, which is

the wrong optimization direction.

4.1.1 Concurrent Softmax

The concurrent softmax is designed to help solve the prob-

lem of recognizing objects with multiple labels in object

detection. During training, the concurrent softmax loss of a

predicted box b is presented as follows:

L∗
cls(b) = −

C
∑

i=1

yi log σ
∗
i ,

with σ∗
i =

ezi
∑C

j=1 (1− yj)(1− rij)ezj + ezi
,

(3)

where yi denotes the label of class i regarding the box b,
and rij denotes the concurrent rate of class i to class j. And

output of concurrent softmax during training is defined as:

∂L∗
cls

∂zi
=







σ∗
i − 1, if i ∈ K;
∑

j∈K

(1− rij)σ
∗
i , if i /∈ K. (4)

Unlike in softmax that responses of the ground-truth cat-

egories are suppressing all the others, we remove the sup-

pression effects between explicitly coexisting categories in

concurrent softmax. For instance, a bounding box is as-

signed multiple ground-truth labels K = {k | k ∈ C, yk =
1} during training. When computing the score of class

i ∈ K, influences of all the other ground-truth classes

j ∈ K \ {i} are neglected because of the (1 − yj) term,

and the score of each correct class is boosted. This avoids

the unnecessary large losses due to the multi-label problem,

and the gradients could focus on more valuable knowledge.

Apart from the explicit co-existence cases, there are still

implicit concurrent relationships remain to be settled. We

define a concurrent rate rij as the probability that an object

of class i is labeled as class j. The rij is calculated based

on the class annotations of training set and Figure 3a shows

the concurrent rates of confusion pairs. For hierarchical re-

lationships, rij is set 0 when i is leaf node with j as its

parent, and vice versa. With the (1− rij) term, suppression

effects between confusing pairs are weakened.
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The influence of multi-label object detection is also

prominent during inference. Different from the conven-

tional multi-label recognition tasks, the evaluation metric of

object detection is mean average precision(mAP). For each

category, detection results of all images are firstly collected

and ranked by scores to form a precision-recall curve, and

the average area of precision-recall curve is defined as the

mAP. In this way, the absolute value of box score matters,

because it may influence the rank of predicted box over the

entire dataset. Thus we also apply the concurrent softmax

during inference, and present it as follows:

σ†
i =

ezi
∑C

j=1 (1− rij)ezj
, (5)

where we abandon the (1−yj) term and keep the concurrent

rate term. Scores of categories in a hierarchy and scores of

similar categories would not suppress each other, and are

boosted effectively, which is desirable in object detection

task.

4.1.2 Compared with BCE loss

BCE is always a popular solution to mutl-label recognition,

but it does not work well on multi-label detection task. We

argue that sigmoid function fails to normalize scores and

declines the suppression effect between categories which is

desired when evaluated with mAP metric. We have tried

BCE loss and focal loss, but it turns out that they yield much

worse result even than the original softmax cross-entropy.

4.2. Soft­balance Sampling with Hybrid Training

As detailedly illuminated in 3, Open Images dataset suf-

fers from severely imbalanced label distribution. We de-

note by C the number of categories, N the number of total

training images, and ni the number of images containing

objects of the i-th class. Conventionally, images are sam-

pled in sequence without replacement for training in each

epoch, and the original probability Po of class i being sam-

pled is denoted as Po(i) =
ni

N
, which may greatly degrade

the recognition capability of model for infrequent classes.

A widely used technique, i.e., class-aware sampling men-

tioned in [31, 10, 26] is a naive solution to handle the class

imbalance problem, in which categories are sampled uni-

formly in each batch. The class-aware sampling probabil-

ity Pa of class i becomes Pa(i) = 1
C

. Yet this may cause

heavy over-fitting on infrequent categories and insufficient

training on frequent categories as aforementioned.

To alleviate the problems above, we firstly adjust the

sampling probability based on number of samples, which

we call soft-balance sampling. We first define the Pn(i) =
ni∑

C
i=j nj

as the approximation of non-balance sampling

probability Po(i) for convenience. Then the sampling prob-

ability of class-aware balance can be reformulated as:

Pa(i) =
1

C
=

1

CPn(i)
Pn(i) = αPn(i), (6)

where the α = 1
CPn(i)

can be regarded as a balance factor

that is inversely proportional to the number of categories

and the original sampling probability.

To reconcile the frequent and infrequent categories, we

introduce soft-balance sampling by adjusting the balance

factor with a new hyper-parameter λ:

Ps(i) = αλPn(i)

= Pa(i)
λPn(i)

(1−λ).
(7)

Note that λ = 0 corresponds to non-balance sampling and

λ = 1 corresponds to class-aware balance. The normalized

probability is:

P ∗
s (i) =

Ps(i)
∑C

j=1 Ps(j)
. (8)

This sampling strategy guarantees more sufficient training

on dominate categories and decreases the excessive sam-

pling frequency of infrequent categories.

Even with the soft-balance method, there are still many

samples of the frequent categories that are not sampled.

Thus we propose a hybrid training scheduler to further mit-

igate this problem. We firstly train detector using the con-

ventional strategy, which is sampling training images in se-

quence without replacement, and the equivalent sampling

probability is Po. Then we finetune the model with soft-

balance strategy to cover categories with very few samples.

This hybrid training schema exploits the effectiveness of

pretrained model for object detection task from Open Im-

ages itself rather than ImageNet. It ensures that all the im-

ages have been seen during training, and endows the model

with a better generalization ability.

5. Experiments

5.1. Dataset

To analyze the proposed concurrent softmax loss and

soft-balance with hybrid training, we conduct experiment

on Open Images challenge 2019 dataset. As an object de-

tection dataset in the wild, it contains 1.7 million images

with 12.4 million boxes of 500 categories in its challenge

split. The scale of training images is 15 times of the MS

COCO [21] and 3 times of the second largest object detec-

tion dataset Object365 [30].

Considering the huge size of Open Images dataset, we

split a mini Open Images dataset for our ablation study. The

mini Open Images dataset contains 115K training images

and 5K validation images named as mini-train and mini-val.
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All the images are sampled from Open Images challenge

2019 dataset with the ratio of each category unchanged. Fi-

nal results on full-val and public test-challenge in Open Im-

ages challenge 2019 dataset are also reported. We follow

the metric used in Open Images challenge which is a vari-

ant mAP at IoU 0.5, as all false positives not existing in

image-level labels1 are ignored.

5.2. Implementation Details

We train our detector with ResNet-50 backbone armed

with FPN. For the network configuration, we follow the set-

ting mentioned in Detectron. We use SGD with momentum

0.9 and weight decay 0.0001 to optimize parameters. The

initial learning rate is set to 0.00125 × batch size, and then

decreased by a factor of 10 at 4 and 6 epoch for 1× sched-

ule which has total 7 epochs. The input images are scaled

so that the length of the shorter edge is 800 and the longer

side is limited to 1333. Horizontal flipping is used as data

augmentation and sync-BN is adopted to speed up the con-

vergence.

5.3. Concurrent Softmax

We explore the influence of concurrent softmax in train-

ing and testing stage respectively in this ablation study. All

models are trained with mini-train and evaluated on mini-

val.

The impacts of concurrent softmax during training. Ta-

ble 1 shows the results of the proposed concurrent soft-

max compared with the vanilla softmax and other existing

methods during training stage. Concurrent softmax could

outperform softmax by 1.13 points with class-aware sam-

pling and 0.98 points with non-balance sampling. It is also

found that sigmoid with BCE and focal loss behaves poorly

in this case. We guess that they are incompatible with the

mAP metric in object detection as mentioned in 4.1.2. Our

method also outperforms dist-CE loss [24] and Co-BCE

loss [1].

The impacts of concurrent softmax during testing. We

also show results to demonstrate the effectiveness of con-

current softmax in testing stage in Table 2. Solely apply-

ing concurrent softmax brings 0.36 mAP improvement dur-

ing inference, while applying it in both training and test-

ing stage yields 1.50 points improvement totally. This also

proves the fact that suppression effects between leaf and

parent categories or confusing categories are harming the

performance of object detection in Open Images.

5.4. Soft­balance Sampling

Results. Table 3 presents the results of the proposed soft-

balance sampling and other balance method. As Open Im-

ages is a long-tailed dataset, many categories have few sam-

1In Open Images dataset, image-level labels consist of verified-exist

labels and verified-not-exist labels. The unverified categories are ignored

Table 1: The comparison of different loss functions method.

Models are trained in mini-train and evaluated on mini-val.

Loss Type Balance mAP

Focal Loss [20] ✓ 50.18

BCE Loss ✓ 54.29

Co-BCE Loss [1] ✓ 55.74

dist-CE Loss [24] ✓ 55.90

Softmax Loss 38.16

Concurrent Softmax Loss 39.14

Softmax Loss ✓ 55.45

Concurrent Softmax Loss ✓ 56.58

Table 2: The effectiveness of concurrent softmax during

testing. Models are trained in mini-train and evaluated on

mini-val.

Train Method Test Method mAP

Softmax Softmax 55.45

Softmax Concurrent Softmax 55.77

Concurrent Softmax Softmax 56.58

Concurrent Softmax Concurrent Softmax 56.95

Table 3: The comparison of different sampling methods.

Models are trained in mini-train and evaluated on mini-val.

Methods λ mAP

Non-balance - 38.16

Class-aware Sampling [10] - 55.45

Effective Number [6] - 45.72

Soft-balance

0.3 50.69

0.5 56.19

0.7 57.04

1.0 55.45

1.5 52.41

ples, so that non-balance training only achieves 38.16 mAP.

Class-aware sampling simply samples all categories data

uniformly at random, it remedy the data imbalance prob-

lem to a great extent and boost the performance to 55.45.

The effective number [6] is used to re-weight the classifi-

cation loss with the purpose of harmonizing the gradient

contribution from different categories. Comparing to the

non-balance method, the effective number improves the re-

sults by 7.56 points, but is worse than the class-aware sam-

pling. We argue that it is because the balance strategy ap-

plied on data level is more efficient than that of loss level.

Soft-balance with hyper-parameter λ allows us to transfer

from non-balance (λ = 0) to class-aware sampling (λ = 1).

Thus, we can find a point at which sufficient infrequent cat-
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Figure 4: Training curves of the proposed soft-balance sam-

pling. Soft-balance with λ = 0.7 achieves the best perfor-

mance.

egories data could be sampled to train the model and the

over-fitting problem does not happen yet. The soft-balance

with λ = 0.7 outperforms the class-aware sampling by 1.59

points.

The impacts of soft-balance during training. To investi-

gate why soft-balance is better, we show the training curves

of soft-balance with different λ in Figure 4. We can learn

that the small λ = 0.3 is hard to achieve a good perfor-

mance due to the data imbalance problem. But too large

λ = 1.5 also fails on accomplishing the best performance

comparing with the relatively smaller λ setting. Note that

the mAP of λ = 1.5 is much higher than that of λ = 0.5 in

the first learning rate stage (before epoch 4), but this situa-

tion reverses in subsequent train progress. This comparison

proves that λ = 1.5 provides more sufficient rare categories

data to train the model and achieve better performance in

the beginning, however, it run into a severe over-fitting in

the convergence stage. The results of λ = 1.0 and λ = 0.7
validate this rules again.

The impacts of soft-balance among categories. We fur-

ther study the performance of λ = 0.0, λ = 0.7, and

λ = 1.0 among categories in Figure 5, in which the chal-

lenge validation results of 500 categories are arranged from

large to few by their number of images. As shown in Fig-

ure 5a, the λ = 1.0 (orange line) outperforms the λ = 0.0
(blue line) on the later half categories which have few image

samples. Although λ = 1.0 solves the data insufficiency

of infrequent categories, it under-samples the frequent cat-

egories and causes the performance dropping on the for-

mer half categories. Figure 5b shows that λ = 0.7 (orange

line) alleviates the excessive under-sampling of the major

categories comparing to λ = 1.0 (blue line). On the other

hand, it mitigates the over-fitting problem of infrequent cat-

egories. Therefore, the performance of λ = 0.7 is almost

Table 4: The effect of training scheduler. The λ of the soft-

balance is set to 0.7. Non-balance I14 denotes the model

of epoch 14 trained with non-balance strategy from Im-

ageNet pretrain. Non-balance S20 denotes the model of

epoch 20 trained with non-balance strategy from scratch.

Soft-balance∗ means that concurrent softmax is adopted in

both training and testing stage. Models are trained on full-

train and evaluated on full-val.

Method Pretrain Epochs mAP

Non-balance

ImageNet 7 56.06

ImageNet 11 59.12

ImageNet 14 59.85

ImageNet 16 59.95

Scratch 20 60.70

Class-aware

Sampling

ImageNet 7 64.68

ImageNet 14 62.85

Non-balance I14 14+7 65.60

Non-balance S20 20+7 65.92

Soft-balance Non-balance S20 20+7 67.09

Soft-balance∗ Non-balance S20 20+7 68.23

always better than λ = 1.0 on the full category space.

5.5. Hybrid Training Scheduler

Table 4 summarizes the results of ResNeXt152 on Open

Images Challenge dataset trained with different training

scheduler. For the non-balance setting, the more epochs the

model trained, the better performance the model achieves.

And training a model from scratch yields better results than

finetuning from ImageNet pretrained model. These obser-

vations match similar conclusion in [12].

While class-aware sampling significantly boosts the per-

formance by 8.62 points using the ImageNet pretraining in

7 epochs setting, it suffers from over-fitting problem, as the

mAP of model trained with 14 epochs is lower than that

of 7 epochs. And frequent categories are still intensely

under-sampled even applying the balance sampling. With

hybrid training, class-aware sampling can achieve better

performance in both non-balance ImageNet pretraining and

non-balance scratch pretraining setting. Note that these im-

provements are not caused by more training epochs, be-

cause longer training schedule will decreases the perfor-

mance if with only ImageNet pretraining. By further using

soft-balance strategy, the hybrid training with non-balance

scratch is improved from 65.92 to 67.09 mAP.

5.6. Extension Results on Test­challenge Set

With the proposed concurrent softmax, soft-balance and

hybrid training scheduler, we achieve 67.17 mAP and 4.29

points absolute improvement compared to the first place en-
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(a) Non-balance (blue) versus Class-aware Sampling (orange) sorted by the number of images for most frequent 100 categories (left)

and most infrequent 100 categories (right).
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(b) Class-aware Sampling (blue) versus Soft-balance with λ = 0.7 (orange) sorted by the number of images for most frequent 100
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Figure 5: The comparison of sampling strategy among categories. (Best viewed on high-resolution display)

Table 5: Results with bells and whistles on Open Images

public test-challenge set.

Methods Ensemble Public Test

2018 1st [1] 55.81

Ours 60.90

2018 1st [1] ✓ 62.88

2018 2nd [10] ✓ 62.16

2018 3rd ✓ 61.70

Ours ✓ 67.17

Baseline (ResNeXt-152) 53.88

+Class-aware Sampling 57.56

+Concurrent Softmax Loss 58.60

+Soft-balance 59.86

+Hybrid Training Scheduler 60.90

+Other Tricks 62.34

+Ensemble ✓ 67.17

try on the public test-challenge set last year, as detailed in

Table 5. We train a ResNeXt-152 FPN with multi-scale

training and testing as our baseline which achieves 53.88

mAP. After using class-aware balance, the performance is

boosted to 57.56. With the help of proposed concurrent

softmax, the model achieves 58.60 mAP. The soft-balance

and the hybrid training scheduler lead to mAP gains of

1.26 and 1.04 points, respectively. By further using other

tricks including data augmentation, loss function search,

and heavier head, we achieve a best single model with a

mAP of 62.34. We use ResNeXt-101, ResNeXt-152, and

EfficientNet-B7 with various tricks for model ensembling.

The final mAP on Open Images public test-challenge set is

67.17.

6. Conclusion

In this paper, we investigate the multi-label problem and

the imbalanced label distribution problem in large-scale ob-

ject detection dataset , and introduce a simple but powerful

solution. We propose the concurrent softmax function to

deal with explicit and implicit multi-label problem in both

training and testing stage. Our soft-balance method together

with hybrid training scheduler could effectively deal with

the extremely imbalanced label distribution.
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