
Exploring Data Aggregation in Policy Learning

for Vision-based Urban Autonomous Driving

Aditya Prakash1 Aseem Behl∗1,2 Eshed Ohn-Bar∗1,3 Kashyap Chitta1,2 Andreas Geiger1,2

1Max Planck Institute for Intelligent Systems, Tübingen 2University of Tübingen 3Boston University
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Abstract

Data aggregation techniques can significantly improve

vision-based policy learning within a training environment,

e.g., learning to drive in a specific simulation condition.

However, as on-policy data is sequentially sampled and

added in an iterative manner, the policy can specialize

and overfit to the training conditions. For real-world ap-

plications, it is useful for the learned policy to general-

ize to novel scenarios that differ from the training condi-

tions. To improve policy learning while maintaining ro-

bustness when training end-to-end driving policies, we per-

form an extensive analysis of data aggregation techniques

in the CARLA environment. We demonstrate how the ma-

jority of them have poor generalization performance, and

develop a novel approach with empirically better general-

ization performance compared to existing techniques. Our

two key ideas are (1) to sample critical states from the col-

lected on-policy data based on the utility they provide to the

learned policy in terms of driving behavior, and (2) to incor-

porate a replay buffer which progressively focuses on the

high uncertainty regions of the policy’s state distribution.

We evaluate the proposed approach on the CARLA NoCrash

benchmark, focusing on the most challenging driving sce-

narios with dense pedestrian and vehicle traffic. Our ap-

proach improves driving success rate by 16% over state-

of-the-art, achieving 87% of the expert performance while

also reducing the collision rate by an order of magnitude

without the use of any additional modality, auxiliary tasks,

architectural modifications or reward from the environment.

1. Introduction

Autonomous driving research has been gaining traction

in industry and academia with the advancement in deep

learning, availability of simulators [20, 24, 50] and large

scale datasets [1,13,26,51,64,65]. While industrial research

∗indicates equal contribution, listed in alphabetical order

Figure 1: Overview. Top: Data Aggregation (DAgger).

Bottom: We propose a modified version of DAgger with

critical states and replay buffer for improved driving in

dense urban scenarios.

is mostly focused on modular approaches [19, 21, 22, 35]

that learn perception and control separately, researchers

in academia are turning their attention towards end-to-

end trainable systems [6, 9, 11, 12, 45, 63, 66] that can si-

multaneously learn both perception and control. In this

regard, camera-based end-to-end autonomous driving in-

volves learning a mapping from visual observations of the

road directly to a control output. Imitation learning re-

duces learning end-to-end policies for autonomous driving

to supervised learning. While this reduction enables lever-

aging recent advances in supervised learning, learning ro-

bust policies that generalize well to diverse environments is

still challenging. Even though conditional imitation learn-

ing (CILRS [12]) outperforms modular [38], affordance-

based [57] and reinforcement learning [40] approaches, the

performance of imitation learning deteriorates significantly

when evaluated across a broader spectrum of driving be-

haviors. This holds particularly true for urban driving [12]

where dense traffic, pedestrians and red traffic lights pose

challenges.

A primary challenge in imitation learning is that in

the presence of covariate shift [54], i.e., variation in the
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state distribution encountered by the policy, learned policies

quickly accumulate errors, leading to poor performance in

new environments. This is referred to as the compound-

ing error problem. DAgger [54] (Fig. 1) is a common data

aggregation technique for learning policies that can better

handle covariate shift and has been very effective in robotic

tasks [5, 18, 42, 46, 55]. We perform an extensive analy-

sis of DAgger for autonomous driving in CARLA [20] and

find that the performance of DAgger starts to drop as the

number of iterations increase, even in the training condi-

tions. Moreover, we observe that simple hand-engineered

modifications outperform DAgger in all the evaluation con-

ditions. This indicates that the aggregated on-policy data

contains redundant and non-informative states leading to

sub-optimal performance. Therefore, we utilize a sampling

mechanism to extract critical states from the generated on-

policy data which pose high utility to the learned policy.

While DAgger can guide the learning process of the driv-

ing policy, its aggregation process ignores potential issues

in data-driven learning, specifically bias and overfitting to

the aggregated data provided by the expert and the learned

policy. As a result, we observe DAgger to fail when gen-

eralizing to new environments. To enable learning a more

robust end-to-end policy, we propose to better guide the ag-

gregation process in DAgger with a sampling mechanism

and a replay buffer, and demonstrate significant gains.

Contributions: The primary contribution of our paper is a

comprehensive analysis of data aggregation techniques for

dense urban autonomous driving. We demonstrate the lim-

itations of DAgger in terms of its inability to capture crit-

ical states and generalize to new environments and present

a modified version of DAgger for collecting on-policy data

for training driving policies. We propose to sample criti-

cal states from the on-policy data based on the utility they

pose to the learned policy in terms of proper driving behav-

ior and include a replay buffer which progressively focuses

on the high uncertainty regions of the learned policy’s state

distribution. We experimentally validate that our approach

enables the driving policy to achieve 87% of the expert per-

formance and learn a better implicit visual representation of

the environment for urban driving.

Our code and trained models are provided at https://

github.com/autonomousvision/data aggregation.

2. Related Work

Imitation Learning (IL): IL for self-driving has its roots

in the pioneering work of [47]. IL uses expert demon-

strations to directly learn a policy that maps states to ac-

tions [2, 3, 36, 49]. In contrast to modular [38], affordance-

based [9,57] reinforcement learning [33,40], multi-task [39]

and planning [8, 66] approaches, IL can be trained end-

to-end in an off-line manner with expert data collected

in the real world or a simulated environment. More re-

cently, Codevilla et al. [11, 12] proposed a conditional IL

framework by utilizing high-level directional commands

and show that these models perform well in urban scenarios.

IL for sequential decision making tasks is addressed as a

supervised learning problem in which the policy is trained

under the state distribution induced by expert. However,

this is non-optimal since the learned policy influences the

future states that it encounters, which can be different com-

pared to the expert’s state distribution. This phenomenon,

referred to as covariate shift [54], leads to the compounding

error problem. In the context of dense urban driving, this

is even more prominent due to non-deterministic behavior

of dynamic agents. This problem can be addressed using

iterative on-policy [4, 5, 30, 52–54, 60] and off-policy [34]

methods, which we discuss next. We build upon these in

the conditional imitation learning framework and propose

modifications that lead to better empirical results.

DAgger: DAgger [54] is an iterative training algorithm

that collects on-policy data at each iteration based on the

current policy and trains the next policy on the aggregate

of collected datasets. Several variants of DAgger have been

proposed such as Q-DAgger [4], AggreVaTe [53], Aggre-

VaTeD [60], DAggerFM [5], SafeDAgger [67], MinDAg-

ger [44], which focus on improving sample complexity [5,

44, 60, 67] and minimizing cost-to-go of the expert [53] or

the policy [4]. DAgger has also been explored in the context

of autonomous driving [10] in off-road driving scenario [46]

and TORCS racing simulator [67]. However, we show that a

direct application of DAgger is not optimal for dense urban

driving and propose modifications that lead to better em-

pirical results. In this regard, Q-DAgger [4] and minDAg-

ger [44] are most related to our work since they also high-

light the limitations of the training data distribution induced

by DAgger. While the former focuses on decision tree poli-

cies for verifiability and the latter focuses on data efficiency

for discrete policies in static Minecraft environments, we in-

vestigate DAgger and its variants for end-to-end continuous

driving policies in highly dynamic urban environments.

SMILe: The Stochastic Mixing Iterative Learning Algo-

rithm (SMILe) [52] allows the learner to retrain under the

new state distribution induced by mixture of policies as it

is updated across successive iterations. It defines an effi-

cient dataset construction algorithm for the new state distri-

bution at each iteration using a sampling mechanism over

a mixture of policies, where the sampling proportion is in-

dependent of the policies. In contrast, our approach can be

considered as an adaptive version of SMILe where the sam-

pling proportion is dependent on the policies.

RAIL: Reduction-based Active Imitation Learning [30]

(RAIL) is an iterative training method that uses active learn-

ing algorithms to sample from on-policy data to improve
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sample complexity of the training dataset. Our approach

is similar, in principle, to RAIL but our focus is on improv-

ing performance rather than sample complexity. We explore

different sampling mechanisms and show that a variant of

RAIL fails on our task. Furthermore, we present a simpler

alternative which works better in practice.

DART: DART [34] is an iterative off-policy data pertur-

bation approach which optimizes a noise model to min-

imize covariate shift. However, we show that DART is

not effective in the case of autonomous driving since it is

computationally expensive and similar performances can be

achieved using hand-engineered perturbations. Instead, we

focus on iterative on-policy learning which leads to better

empirical results.

Critical States: A major challenge in sequential decision

making tasks is to facilitate effective exploration of critical

states [28] which are central for the policy to learn appropri-

ate task specific behavior. Several notions of critical states

based on mutual information [27, 43], uncertainty [25, 37,

58], reducing expected error [56, 62], diversity [14–17, 29]

and maximizing expected label changes [23, 31, 61] have

been effectively applied in computer vision [32, 41, 48, 59,

61]. In the context of dense urban driving, the critical states

constitute scenarios like proximity to vehicles and pedestri-

ans, following traffic regulations etc. These are crucial since

even a single failure can lead to fatal accidents. Therefore,

an effective exploration strategy for these critical states is

required to enable the driving policy to learn safe driving

behavior. We explore different sampling mechanisms to in-

corporate these critical states into our approach.

3. Method

In this section, we first describe imitation learning in the

context of autonomous driving. We then describe the orig-

inal Dataset Aggregation (DAgger) algorithm, followed by

our modifications that lead to significant performance gains.

3.1. Imitation Learning for Autonomous Driving

The goal of imitation learning (IL) is to learn a policy π

that imitates the behavior of an expert policy π∗:

IL : argmin
π

Es∼P (s|π) [L(π
∗(s), π(s))] (1)

where P (s|π) represents the state distribution induced by

driving policy π and L(·) represents the loss function. In

our autonomous driving application, the output of the policy

is a 3-dimensional continuous action vector (steer, throttle

and brake of the car) and we use an L1 loss for training.

The most simple approach for IL is Behavior Cloning

(BC) which is a supervised learning approach. In this

method, an expert policy is first rolled out in the environ-

ment to collect observations s∗ of all visited states and the

expert actions a∗. The policy π is trained in a supervised

manner using the collected dataset of state-action pairs:

BC : argmin
π

E(s∗,a∗∼P∗) [L(a
∗, π(s∗))] (2)

where P ∗ represents the state distribution provided by ex-

pert policy π∗ and L represents the loss function.

Behavior cloning assumes the state distribution to be

i.i.d. since the next state is sampled from the states observed

during expert demonstration which is independent from the

action predicted by the current policy. This leads to the

compounding error problem where the policy is unable to

recover from its mistakes when it encounters a state that is

not present in the expert’s state distribution. This problem

can be solved using iterative on-policy algorithms such as

DAgger which we discuss next.

3.2. Dataset Aggregation (DAgger)

DAgger is an iterative training algorithm that collects on-

policy trajectories at each iteration under the current policy

and trains the next policy under the aggregate of all col-

lected trajectories. The policy used to sample trajectories at

each iteration can be represented as π̃ = βπ∗ + (1 − β)π̂
where π∗ is the expert policy and π̂ is the learned policy.

Typically, β0 = 1 and is decreased in successive iterations.

DAgger effectively appends the current dataset with a set

of input states that the learned policy is likely to encounter

during its execution based on previous experiences. This

mitigates the compounding error problem in progressive it-

erations since the agent now has supervision from the expert

for the states where it deviates from the optimal behavior.

3.3. Critical States

The DAgger algorithm appends the entire generated on-

policy trajectory to the training dataset for the current iter-

ation. However, not all states in the trajectory present the

same utility for the driving policy. Specifically, states that

correspond to failure cases of the driving policy are most

relevant since they have maximum utility from the perspec-

tive of learning safe driving behavior. Therefore, we explore

different mechanisms for sampling these critical states.

Task-based: In the context of dense urban driving, tasks

such as making turns on intersections are more important

than driving straight on an empty road since most of the col-

lisions occur at intersection and turnings. CARLA provides

access to high level navigational commands - (1) turn left,

(2) turn right, (3) go straight (at intersection) and (4) fol-

low lane. For task-based sampling, we ignore the on-policy

data collected for ’follow lane’, focusing on the other three

situations, hence prioritizing sampling of intersections and

turns. We assign equal importance to (1), (2) and (3).

Policy-based: For policy-based sampling, we use the epis-

temic uncertainty in the prediction of the driving policy to
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sample critical states. To measure epistemic uncertainty, we

use test-time dropout with probability 0.5 and calculate the

variance in the predicted control [25]. The set of critical

states Sc is then given by

Sc =

{

sc ∈ S

∣

∣

∣

∣

H(sc, π, π
∗) > α ·max

s
H(s, π, π∗)

}

(3)

where S = {s | s ∼ P (s|π)} is the set of states sam-

pled from the state distribution P (s|π) and H(s, π, π∗) =
Var(π(s)) denotes the sampling criterion with Var(·) the

dropout variance over π and α < 1 chosen empirically.

Policy and Expert-based: In the presence of on-policy

expert supervision, we explore multiple strategies: (a) We

sample the on-policy states with the highest loss L(·),
thereby enforcing that the policy learns from its mistakes.

More formally, we obtain the set of critical states Sc in

Eq. (3) using S = {s | s ∼ P (s|π)} and H(s, π, π∗) =
L(π, π∗). (b) We rank the expert states based on the loss

incurred by the driving policy and sample the required

proportion of states with the highest loss. Here, we set

S = {s | s ∼ P (s|π∗)} and H(s, π, π∗) = L(π, π∗) in

Eq. (3). (c) We observe that most of the failure cases like

collisions and traffic light violations occur due to the in-

ability of the driving policy to brake adequately. Thus, we

sample based on deviations in the brake signal to identify

these failure cases. For this, we use S = {s | s ∼ P (s|π)}
and H(s, π, π∗) = Lb(π, π

∗) in Eq. (3) where Lb denotes

the (one-dimensional) brake component of the loss L.

3.4. Replay Buffer

Driving datasets have inherent bias [12] as most of the

driving consists of either a few simple behaviors (present

in expert’s state distribution) or complex reactions to rare

events (present in driving policy’s state distribution). Con-

sequently, this can lead to compounding errors in the for-

mer case and unexpected behaviors such as excessive stop-

ping in the latter which manifest more prominently as gen-

eralization issue when transferring to diverse environments.

Therefore, the optimal dataset distribution for training the

policy should be uniform across all modes of demonstra-

tions. This ensures diversity in the data and significantly

reduces dataset bias [14]. Driving scenarios such as mak-

ing proper turns at intersections, driving straight on a road,

are abundant in expert’s state distribution whereas scenarios

involving proximity to dynamic agents, traffic lights viola-

tions, are encountered in the learned policy’s state distribu-

tion. Therefore, it is important to control the proportion of

expert data and on-policy data used for training. We em-

ploy a fixed size replay buffer for this purpose which helps

the policy to progressively focus on weaker aspects of its

behavior thereby improving the driving performance. Our

Algorithm 1 DAgger with Critical States and Replay Buffer

Collect D0 using expert policy π∗

π̂0 = argmin π L(π, π
∗, D0)

Initialize replay buffer D ← D0

Let m = |D0|
for i = 1 to N do

Generate on-policy trajectories using π̂i−1

Get dataset Di = {(s, π
∗(s))} of visited states by π̂i−1

and actions given by expert

Get D′
i ← {(sc, π

∗(sc))} after sampling critical states

from Di

Combine datasets: D ← D ∪D′
i

while |D| > m do
Sample (s, π∗(s)) randomly from D ∩D0

D ← D − {(s, π∗(s))}
end

Train π̂i = argmin π L(π, π
∗, D) with policy initial-

ized from π̂i−1

end

return π̂N

complete approach1 is described in Algorithm 1 and Fig. 1.

3.5. Implementation Details

We build on the conditional imitation learning frame-

work2 of [12] using the open source CARLA simulator.

We make no changes to the architecture (ResNet 34-based

model) and use the code base provided by the authors

of [12]. We initialize the policy with a behavior cloning

policy trained on 10 hours of expert data. The size of the

replay buffer is kept fixed at 10 hours. At each iteration,

we generate ∼15 hours of on-policy trajectories and sam-

ple critical states using the previously defined methods. We

set the threshold α for sampling such that we generate ∼2

hours in the first iteration and keep it fixed in subsequent

iterations. Consequently, as the policy gets better in each

iteration, the total proportion of sampled on-policy data de-

creases since the threshold is fixed. We terminate the al-

gorithm when the total proportion of sampled trajectories

from the generated on-policy data falls below a predefined

threshold, set as 0.5 hours. At this stage, we can say that the

policy has learned proper driving behavior since the fail-

ure cases constitute very low proportion of the generated

on-policy trajectories and we use this policy for evaluation.

More details are provided in the supplementary and code.

4. Experiments

We conduct three types of experiments to validate our

approach. First, we analyze the driving performance of the

learned policy in dense urban setting and compare against

1Refer to the supplementary for theoretical analysis
2https://github.com/felipecode/coiltraine
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several baselines. Second, we conduct an infraction anal-

ysis to study different failure cases. Finally, we present a

variance analysis to examine the robustness of our pro-

posed approach against random training seeds.

Baselines: For analyzing the driving performance, we

compare our method against CILRS [12], DAgger [54],

SMILe [52] and DART [34] baselines. CILRS is the cur-

rent state-of-the-art on the NoCrash benchmark on CARLA

0.8.4. We run all algorithms under 2 initializations - pol-

icy trained with 10 hours of expert no-noise data and policy

trained with 10 hours of expert data with 20% triangular

perturbations [12] (denoted by +). All the algorithms used

in our experiments are shown in Table 1. We follow Algo-

rithm 3.1 of [54] and algorithm 4.1 of [52] for implement-

ing DAgger and SMILe respectively. For DART, we closely

follow the code provided by the authors of [34]. For our in-

fraction analysis, we focus on CILRS [12] since it is signif-

icantly better compared to other approaches and serves as

a strong baseline. For our variance study, we compare our

approach against CILRS [12] and DAgger [54].

Dataset: We use the CARLA [20] simulator as the en-

vironment for training and evaluation, specifically CARLA

0.8.4 which consists of two towns - Town 1 and Town 2.

We consider the dense urban setting of the challenging

NoCrash benchmark as our evaluation setting since it ac-

curately represents the complexities of urban driving. The

driving policy is trained with data collected in Town 1 with

4 different weathers and evaluated across different environ-

ments - Training, New Weather (NW), New Town (NT) and

New Town & Weather (NTW). The NoCrash benchmark

consists of 2 new weather conditions. Instead, we report re-

sults on all 10 new weather conditions for a comprehensive

evaluation of generalization ability. Therefore, our results

cover a total of 4 training conditions and 24 generalization

conditions of varying difficulty.

Metrics: For evaluation, we use the number of success-

fully completed episodes out of 100 (success rate) and in-

fraction related metrics. We consider 4 possible cases of

failure - collision with pedestrians, collision with vehicles,

collision with other static objects and timed out scenarios.

For our variance study, we report the standard deviation on

the success rate based on 5 random training seeds.

4.1. Driving Performance

DAgger: In this experiment, we try to examine if on-policy

data helps to improve driving performance, and see how

it fares when compared against triangular perturbations.

From Fig. 2, we observe that DAgger leads to improvement

when compared to no-noise model but achieves similar per-

formance as triangular perturbations. Moreover, the perfor-

mance of DAgger starts to drop after the second iteration

in the training conditions. This happens because as DAg-

ger continues to append on-policy data, the diversity of the

dataset does not grow fast enough compared to the growth

of the main mode of demonstrations, e.g., driving straight

in lane. Consequently, the performance decreases as more

data is collected since the driving policy is not able to learn

how to react in rare modes, e.g., close proximity to dynamic

agents. This result is in direct contrast to prior applications

of DAgger in robotics [5,18,42,46,55] and reflects the limi-

tation of DAgger in case of datasets having significant bias.

This observation is also consistent with [12] where the au-

thors show that additional data does not necessarily lead to

improvement in performance for urban autonomous driv-

ing. Further, we observe that the performance of DAgger in

the generalization conditions starts to drop after the second

iteration. This is expected since the aggregated on-policy

data is collected in the training conditions, thereby leading

to overfitting as the dataset size increases.

DAgger with Critical States (DA-CS): In this experiment,

we evaluate our first modification to examine if it is able

to mitigate the aforementioned issues. For the purpose of

subsequent analysis, we use deviation in brake as the sam-

pling mechanism since we observe that in most of the failure

cases, the policy is not able to brake adequately. The results

are shown in Table 2. In contrast to DAgger, DA-CS sig-

nificantly outperforms triangular perturbations in training

conditions, thereby affirming that the sampled critical states

contain useful information that facilitate improved driving

behavior. However, on the new weather condition, the per-

formance of DA-CS starts to decline. This indicates that the

policy is starting to overfit to the training conditions. Next,

we evaluate our second modification to alleviate this issue.

DAgger with Replay Buffer (DA-RB): The goal of this

experiment is to examine if the proposed replay buffer is

able to alleviate the aforementioned overfitting problem.

The results reported in Table 2 clearly show that the re-

play buffer helps to improve performance on new weather

thereby helping generalization. This reflects the importance

of controlling the proportion of expert data and on-policy

critical states while training the driving policy. We further

try to examine if the improved behavior due to triangular

perturbations is complementary to improved behavior due

to DA-RB. This is reflected in the increase in the success

rate of DA-RB+ compared to DA-RB (Table 2). This hap-

pens because the triangular perturbations model the drift of

the policy along the lateral direction, e.g., moving off road

whereas DA-RB focuses on the failure cases of the policy

in the longitudinal direction, e.g., collision with pedestrians

and vehicles, traffic light violations. By incorporating both

kinds of behavior in the training dataset and utilizing expert

supervision on these states, our approach enables the pol-

icy to learn accurate driving behavior, thereby alleviating
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Model Iterative Off-Policy On-Policy Perturbations Aggregation Sampling CS RB Ensemble

CILRS X

CILRS+
X X

DART X X X

DAgger X X X

DAgger+ X X X X

SMILe X X X X

SMILe+ X X X X X

DA-CS X X X X

DA-RB X X X X

DA-RB+
X X X X X

DA-RB+(E) X X X X X X

Table 1: Different algorithms used in our experiments. CS - Critical states, RB - Replay Buffer, Gray - our methods.
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Figure 2: Success rate of different methods across conditions. ‘+’ represents training with perturbed expert data.

the compounding error problem to a significant extent. We

provide driving videos of these scenarios in supplementary.

Comparison against CILRS, DAgger and SMILe on all

conditions: While all approaches are able to perform simi-

lar to CILRS+ on training conditions, we observe that most

of them fail to generalize to new environments as evident

by the drop in performance in Fig. 2. In contrast, DA-RB+

shows significant improvement against other methods when

generalizing to NW and NT conditions. While it does not

improve the success rate in NTW condition, it shows better

overall driving behavior, as reflected in the collision metrics

(Fig. 3). Further, we also evaluate an ensemble model of all

DA-RB+ iterations (DA-RB+(E)). The results (Table 3)

clearly show that ensemble helps in better generalization.
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DAgger DA-CS DA-RB DA-RB+

Train

Iter 1 46 47 47 47

Iter 2 46 50 60 63

Iter 3 36 57 58 63

New Weather

Iter 1 41 25 26 31

Iter 2 39 47 47 48

Iter 3 38 27 54 60

Table 2: Success rate of DAgger, DA-CS, DA-RB and

DA-RB+. Dense setting of Train, New Weather conditions.

Task CILRS+ DART DA-RB+ DA-RB+(E) Expert

(Ours) (Ours)

Train 45± 6 50± 1 62± 1 66 ± 5 71± 4
NW 39± 4 37± 2 60 ± 1 56± 1 72± 3
NT 23± 1 26± 2 34± 2 36 ± 3 41± 2
NTW 26± 2 21± 1 25± 1 35 ± 2 43± 2

Table 3: Success rate on dense setting of all conditions.

Mean and standard deviation over 3 evaluation runs. NW-

New Weather, NT-New Town, NTW-New Town & Weather,

DA-RB+(E) - ensemble of DA-RB+ over all iterations.

Comparison against DART: In this experiment, we exam-

ine if iterative off-policy perturbations can outperform itera-

tive on-policy approaches. In Fig. 2, we observe that DART

achieves similar performance to DAgger and SMILe on

most conditions, which is consistent with the results of [34].

However, DA-RB outperforms it significantly which shows

that on-policy algorithms are more adept at handling covari-

ate shift. This happens because critical states such as close

proximity to dynamic agents are not present in the expert’s

state distribution due to which off-policy approaches are not

able to learn appropriate response to these scenarios.

Comparison against Expert: Since our approach does not

make use of any additional modality, auxiliary task or re-

ward from the environment, the performance of the trained

policy is upper bounded by that of the expert. In this ex-

periment, we examine if our approach facilitates maximum

exploitation of the information contained in the data un-

der the given constraints. The results in Table 3 show that

DA-RB+(E) is able to achieve∼87% of the expert’s perfor-

mance over all evaluation conditions. This shows that our

approach enables the policy to learn accurate driving be-

havior. The expert results in Table 3 also highlight the chal-

lenging nature of driving in CARLA’s dense setting. This

is due to non-deterministic and non-optimal behavior of dy-

namic agents which leads to increased collisions and timed

out scenarios where multiple vehicles clog the road result-

ing in very little room for driving.
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Figure 3: Failure case analysis. We consider collision with

pedestrians, vehicles, other static objects and timed out sce-

narios on the dense setting of New Town & Weather.

4.2. Infraction Analysis

The goal of this experiment is to evaluate the qualitative

driving behavior of the learned policy which is reflected ac-

curately in terms of infractions. We consider 4 types of in-

fractions - collision with pedestrians, vehicles, other static

objects and timed out cases. We report the number of failed

episodes due to these infractions in NTW condition since

this helps to evaluate the qualitative behavior with respect

to generalization to new environment.

The results are shown in Fig. 3. We observe that

DA-RB+ leads to significant reduction in collision with dy-

namic agents compared to CILRS+. This indicates that

qualitative driving behavior of our model is superior to

CILRS+. We also report the number of episodes which

failed due to time out. While the major failure case in

case of CILRS+ is collision with vehicles, the policy trained

with our approach mostly gets timed out. This happens due

to 2 reasons: (1) since our agent is better at obeying traffic

lights, it stops for 5-8 seconds on an average in case of a red

light which significantly increases the probability of getting

timed out, (2) multiple vehicles clog the lane resulting in

very little room for driving. In contrast, CILRS+ frequently

collides with dynamic agents and violates traffic lights lead-

ing to reduced timed out cases but significantly higher col-

lisions. This shows that our approach enables the policy to

focus on the essential aspects of the scene, thereby learning

a better implicit representation of the urban environment.

4.3. Training Seed Variance

We further examine the robustness of the learned poli-

cies wrt. variance in the training seed, a common problem

in imitation learning [12]. For fair comparison, we use the

same 10 hours of expert data as base data for all approaches

and initialize the perception module with the weights of a

network pre-trained on ImageNet [12] in all cases. This re-
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CILRS+ DAgger+ DA-RB+

Iter 0 14.6± 3.4 14.6± 3.4 14.6± 3.4
Iter 1 - 15.2± 5.1 24.8± 1.9
Iter 2 - 13.2± 1.9 25.4± 1.5
Iter 3 - 17.8± 3.6 27.0± 0.9

Table 4: Training Seed Variance. Standard deviation of

the success rate wrt. 5 random training seeds on the dense

setting of New Town & Weather. Note that CILRS+ is a

non-iterative approach.

duces the variance due to data collector and random initial-

ization of the policy parameters, thereby ensuring that the

primary source of variance is randomness in the training

seed, in addition to the evaluation variance which is caused

by the random dynamics in the simulator. We train the be-

havior cloning policy with 5 random training seeds for each

of the approaches and report the standard deviation on suc-

cess rate on the dense setting of New Town & Weather.

The results in Table 4 show that DA-RB+ reduces the

standard deviation due to random training seeds in suc-

cessive iterations. This indicates that sampling the dataset

based on critical states is crucial for variance reduction. In

each iteration, we selectively sample critical states from

a mixture of distributions induced by the trained policies

in each of the previous iterations. In this context, Borsos

et al. [7] have previously shown that mixture of distributions

with adaptive importance sampling is effective in reducing

variance of online learning algorithms and our results vali-

date this theory in the context of urban autonomous driving.

4.4. Different Methods for Sampling Critical States

In this experiment, we present a comparative analysis of

different sampling methods3 (Section 3.3) to identify crit-

ical states. We consider 5 sampling methods - (1) Abso-

lute Error on brake, AEb (2) Absolute Error on all control

parameters (steer, control, brake), AEall (3) Uncertainty

in policy’s predictions, Unc, (4) Ranking of expert states

while sampling, Rank and (5) Intersection and turning sce-

narios, IT. To determine uncertainty, we run 100 instances

of model with dropout = 0.5 and compute the variance in

the predicted control. We initialize all methods with a pol-

icy trained on 10 hours of perturbed expert data (Base).

From Table 5, we observe that AEb performs best on

most of the conditions indicating that brake is able to cap-

ture critical states required for urban driving. This hap-

pens because deviation in brake is able to capture instances

where the agent is running a red light or approaching a

pedestrian or vehicle at very close distance, which are most

informative for urban driving. AEall is not as effective as

brake since it averages out the deviation in the controls. For

3Refer to the supplementary for statistics regarding data distribution

Task Base AEb AEall Unc Rank IT

Train 36 50 50 39 51 55

NW 40 57 48 36 54 51

NT 18 33 30 23 23 33

NTW 24 26 28 27 26 23

Table 5: Success rate of different sampling methods on

dense setting of all conditions. Unc - Uncertainty based

sampling, IT - Intersection & Turnings, NW - New Weather,

NT - New Town, NTW - New Town & New Weather.

example, a deviation of δ in each of the three controls and

a deviation of 3δ in just the brake will both results in a

mean of δ but the latter is more likely to lead to failure

cases and hence more important. Our implementation of

uncertainty-base sampling (Unc) corresponds to a variant of

RAIL [30] with Query-Based Committee (QBC) as the ac-

tive learning algorithm where the committee consists of 100
instances of behavior cloning policy with test-time dropout.

This approach does not take into account any task-based

or infraction-based information which leads to sub-optimal

performance. This indicates that high uncertainty in predic-

tion does not correlate with critical scenarios. Furthermore,

selectively sampling expert states (Rank) does not lead to

any improvement over on-policy data sampling, indicating

that the latter contains critical states relevant for improved

urban driving. Moreover, most of the collisions and traffic

light infractions occur at the intersections, therefore, sam-

pling the intersection & turning scenarios leads to signifi-

cant improvement compared to the Base model.

5. Conclusion

In this paper, we conduct a rigorous study of on-policy

data aggregation and sampling techniques in the context of

dense urban driving in CARLA. We empirically show that

DAgger is not optimal for this task and does not generalize

well to new environments. We propose two modifications

to the DAgger algorithm to alleviate the aforementioned is-

sues. Experiments demonstrate that our approach enables

the policy to generalize to new environments, reduces vari-

ance due to training seeds and helps in learning a better im-

plicit visual representation of the environment for dense ur-

ban driving. Based on our findings, we expect an extensive

study of active learning algorithms for autonomous driving

to be a promising direction for future research.

Acknowledgements: This work was supported by

the BMBF through the Tübingen AI Center (FKZ:
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