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Abstract

Trajectory forecasting and imputation are pivotal steps

towards understanding the movement of human and ob-

jects, which are quite challenging since the future trajec-

tories and missing values in a temporal sequence are full

of uncertainties, and the spatial-temporally contextual cor-

relation is hard to model. Yet, the relevance between se-

quence prediction and imputation is disregarded by existing

approaches. To this end, we propose a novel imitative non-

autoregressive modeling method to simultaneously handle

the trajectory prediction task and the missing value impu-

tation task. Specifically, our framework adopts an imita-

tion learning paradigm, which contains a recurrent condi-

tional variational autoencoder (RC-VAE) as a demonstra-

tor, and a non-autoregressive transformation model (NART)

as a learner. By jointly optimizing the two models, RC-VAE

can predict the future trajectory and capture the temporal

relationship in the sequence to supervise the NART learner.

As a result, NART learns from the demonstrator and imputes

the missing value in a non-autoregressive strategy. We con-

duct extensive experiments on three popular datasets, and

the results show that our model achieves state-of-the-art

performance across all the datasets.

1. Introduction

Owing to the increasing demands of emerging artificial

intelligence applications, trajectory forecasting and imputa-

tion have surged as the intriguing topics in related fields. As

illustrated in Figure 1, the sequence prediction task refers

to generating the future trajectory given the previous move-

ment, while sequence imputation aims to fill the missing

value in a sequence based on a few discrete observations.

∗Part of this work was done when M. Qi was visiting Baidu Research.

Figure 1. Trajectory forecasting and imputation. Given a 2D tra-

jectory history of several moving agents in a basketball match, we

need to (a) predict the future trajectories (i.e., given a few prior

continuous observations, predicting the next values), and (b) im-

pute the missing values (i.e., given some discrete observations, im-

puting the missing values). Circles and lines of different colors

refer to the position and movement of various players, where the

light-colored circles and dotted lines represent the missing values.

A large number of real-world issues can be leveraged as

the tasks of trajectory forecasting and imputation, such as

sports analysis [10, 23, 33], motion capture [37, 39], scene

understanding [32, 34], autonomous driving [25, 49], etc.

For example, robots or autonomous vehicles usually need

to predict the future movement of persons or cars, and then

promptly give feedback or take action. Meanwhile, due to

trajectory crossing or occlusion, how to reason the missing

value in a temporal sequence also plays a significant role in

many crucial applications. Hence, adding the capability of

foreseeing what will happen and complement the missing

value in a sequence are imperative. Unfortunately, so far,

there is still a lack of promising solutions to these problems.

Several efforts have been devoted into the tasks of tra-

jectory forecasting and imputation [1–3, 10, 13, 24, 51], of

which some methods adopt generative models (e.g., varia-

tional autoencoder (VAE) [10] or generative adversarial net-

works (GAN) [29, 46]) to generate future movement and

missing value, while others utilize intermediate variables
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or representations to capture long-term coordination by hi-

erarchical models [48, 51]. However, most of them typi-

cally focus on learning coarse disentangled latent variables,

neglecting the importance of extra fine-grained conditions

in the environment (e.g., context and identity). Moreover,

most current deep generative models are autoregressive, i.e.,

they model the value at the current time step depending on

the prior motion. Hence, they usually suffer from com-

pounding errors in long-range temporal sequence modeling.

Furthermore, there is currently no unified framework that

simultaneously handles trajectory forecasting and imputa-

tion. Although tremendous accomplishments have been

achieved to address such two tasks separately, all of the ex-

isting studies fail to take the relevance between two tasks

into consideration. In fact, sequence prediction can provide

the reasonable temporal dependence between the previous

and the future, which is also essential and significant for

imputing the missing value in a temporal sequence. Thus,

the aforementioned studies might be compromised due to

this point. In addition, how to transfer the beneficial spatial-

temporal information from the prediction model to help su-

pervise the imputation model remains an open challenge.

To address the aforementioned issues, we propose a

novel imitative non-autoregressive modeling framework for

future trajectories prediction and missing value imputa-

tion. Specifically, we present a recurrent conditional vari-

ational autoencoder (RC-VAE) to capture regressive rele-

vance in the sequence and generate future movement based

on prior observations. Meanwhile, we introduce a non-

autoregressive transformation model (NART) to translate

an incomplete sequence into a complete sequence. More-

over, our key insight is to leverage an imitative learning

strategy in the whole model, which especially inserts the

imitation learning module into each part and enables RC-

VAE as a demonstrator to supervise the NART learner. It is

also noteworthy that our framework can transfer the spatial-

temporal relevance through regressive modeling into a non-

autoregressive model by virtue of such a strategy. Our main

contributions are summarized as follows:

1) We propose a novel imitative non-autoregressive mod-

eling approach to simultaneously addressing trajectory pre-

diction and missing value imputation.

2) We introduce a new recurrent forward-backward ar-

chitecture and a non-autoregressive inference strategy to

learn long-term dependency and model the temporal dis-

tribution, respectively, which enable the proposed model to

generate future trajectories and impute missing values.

3) We adopt the idea of imitation learning to further en-

hance our proposed model, through a demonstrator to su-

pervise each decoding state of the learner.

4) Extensive experiments on three widely-adopted chal-

lenging benchmarks verify the superior performance of the

proposed model over the state-of-the-art methods.

2. Related Work

Trajectory Prediction and Imputation. How to predict

future motion trajectory [2, 4, 10, 17, 18, 21, 24, 27, 30, 42,

48, 50, 51] and impute missing value [6, 13, 29, 46, 47] in

sequences are very important yet challenging tasks. For in-

stance, Zheng et al. [51] proposed a deep hierarchical policy

model and Felsen et al. [10] utilized conditional variational

autoencoders to predict fine-grained multi-agent motions.

Previous studies of missing value imputation focused on

utilizing statistical methods, such as linear regression [3]

and k-nearest neighbors [13]. Recent researchers utilized

deep generative models to impute time series, e.g., recur-

rent neural networks [6, 47] and generative adversarial net-

works [29, 46]. However, such autoregressive models have

weaknesses in matching the generated data and the actual

values. In this work, we propose to leverage the imitation

learning into a non-autoregressive model to fulfill sequence

prediction and imputation.

Imitation Learning. Recently, there have been several ma-

jor advances in imitation learning [11,19,25,35,38,43,52],

showing strong learning abilities to mimic an agent’s be-

havior from a set of demonstration. Ziebart et al. [52] and

Finn et al. [11] solved imitation learning with the inverse re-

inforcement learning. Ho et al. [19] incorporated imitation

learning into adversarial training. In this work, we are the

first to propose a non-autoregressive model with imitation

learning for sequence prediction and imputation.

Generative Models. Nowadays, generative adversarial net-

works (GAN) [14] and variation autoencoder (VAE) [22]

have already captured increasing attention. Especially, VAE

generates new examples by regularizing the latent vari-

able for a mass of applications, such as image genera-

tion [15], sentences generation [5], and predicting future

motions in static or dynamic scenes [24, 41]. Very recently,

non-autoregressive models were also introduced to related

applications (e.g., natural language processing [16, 26, 44]

and speech synthesis [31]) because of their competitive ad-

vantages over autoregressive methods. We present a joint

framework with imitation learning to address trajectory pre-

diction and imputation, which can simultaneously take both

advantages of autoregressive and non-autoregressive mod-

els.

3. Preliminaries

Problem Definition. We define the problem of multi-agent

trajectory generation as follows. Given an observed set

Ω of agents over the time [t0, tq] and their correspond-

ing trajectories X
[t0,tq ]
Ω = X

[t0,tq ]
i |∀i∈Ω. And the trajec-

tory history of the i-th agent can be defined as X
[t0,tq ]
i =

{xt0
i , xt0+1

i , · · · , x
tq
i }, where each trajectory xt

i is repre-

sented as the 2D coordinates at time t. The goal of our

task is to generate or predict the future motion trajec-
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Figure 2. Overview of the proposed Imitative Non-Autoregressive Modeling framework. Our model mainly consists of two parts: the

upper part is a Recurrent Conditional Variation Autoencoder (RC-VAE) demonstrator that is utilized to predict the future motion given an

observed prior sequence, and the bottom part is a Non-Autoregressive Transformation Modeling (NART) learner that is leveraged to impute

the missing value given a few discrete observation. Notably, we introduce the imitation modules in two models, which enable the RC-VAE

demonstrator to supervise the NART learner in the decoding process.

tory of multiple agents from time tq+1 to time tv , that is

to learn the posterior distribution P (Y
(tq,tv ]
P |X

[t0,tq ]
Ω ,O),

where Y
(tq,tv ]
P = {Y

(tq,tv ]
j }|∀j∈P refers to the future trajec-

tory of a subset P of agents, P ∈ Ω, andO means the other

available input conditions. Following [10], we utilize the

identities and the future context as the extra conditions O,

of which ‘context’ denotes movements of defensive players

when predicting the future trajectories of offensive players,

and ‘identity’ indicates the team that each agent belongs to

and the role (i.e., defensive/offensive) of each agent.

The definition of the task of sequence imputation is as

follows: Let X = (x1, x2, · · · , xT ) denotes a sequence of

T observations, where xt ∈ R
D and D refer to the value of

each time step and the dimension of each trajectory, respec-

tively. Typically, some missing data exist in X , represented

by a masking sequence M = (m1,m2, · · · ,mT ). We set

the masking mt as zero if xt is missing. The aim of imputa-

tion is to replace or complete the missing data with logical

or reasonable values in a continuous temporal sequence.

Variational Autoencoders. Here, we review the definition

of variational autoencoders (VAE). In order to construct a

latent variable model, we define a latent factor generative

model by pθ(x, z) = p(z)pθ(x|z), where θ refers to the

parameters of the decoder and p(z) is the prior distribution

over latent variables z. The VAE is designed to maximize

the log-likelihood of data under such a latent variable model

by introducing a variational distribution, namely qφ(z|x),
which is utilized to encode the input data x and approximate

the posterior pθ(z|x) of the generative model. φ denotes the

parameters of the encoder. Hence, we approach a tractable

Evidence Lower Bound (ELBO) on likelihood as follows:

Eq log pθ(x) ≥ Eq log pθ(x)−DKL[qφ(z|x)||pθ(z|x)]

= Eq log pθ(x|z)−DKL[qφ(z|x)||pθ(z)].

(1)

4. Proposed Approach

4.1. Overview

Figure 2 illustrates the overall framework of our imi-

tative non-autoregressive modeling approach. We aim at

bringing the intuition of imitation learning to the non-

autoregressive model and adapt it to our scenario. In

our approach, a Recurrent Conditional Variational Au-

toencoder (RC-VAE) is employed to imitate a knowledge-

able demonstrator, and a Non-Autoregressive Transforma-

tion Model (NART) can be regarded as a learner. Through

the imitative learning strategy, the RC-VAE is expected to

offer efficient supervision and sufficient knowledge to the

decoding state of the NART. It is worth pointing out that
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the RC-VAE is utilized for trajectory prediction, while the

NART is employed for missing value imputation. In the

following parts, we will describe the details of the RC-VAE

demonstrator and the NART learner in our proposed frame-

work, respectively.

4.2. RC-VAE Demonstrator

We present a recurrent conditional variational autoen-

coder (RC-VAE) as the demonstrator. The encoder of RC-

VAE adopts several conditions as the input, and the decoder

has a crucial component, i.e., an imitation learning mod-

ule. The imitation learning module can emit actions at every

time step, which contains necessary temporally contextual

information regarded as the supervised guidance during the

training process of the NART leaner, and ‘action’ here can

be explained as ‘how to correctly decode the hidden vari-

able via the observed data’.

Architecture. In the RC-VAE demonstrator, the main goal

is to infer continuous time latent position and velocity tra-

jectories given the observed frames, and learn to model

high-order dynamics and capture uncertainties in the time

series. Thus, we adopt a variational RNN (VRNN) [7] as

our baseline model, which refers to a variational autoen-

coder (VAE) conditioned on the hidden state of an RNN

and can be trained by maximizing the ELBO in Eq. 1. The

encoder in our proposed RC-VAE demonstrator is devised

in a forward-backward manner. Meanwhile, we also adopt

the self-attention layers and feed-forward layers in encoder

and decoder that are similar to Transformer [40].

Forward-backward Encoder. Different from the tradi-

tional bi-directional RNN, we adopt a forward-backward

encoder. The encoder is a two-layer RNN, which maps the

observed input and masking sequence into two sets of hid-

den states, i.e., forward hidden states Hf = (hf
1 , · · · , h

f
T )

and backward hidden states Hb = (hb
1, · · · , h

b
T ), and the

distribution can be denoted as follows:

q(Hf |I) =
T∏

t=1

q(hf
t |h

f
<t, I≤t)

q(Hb|I) =
T∏

t=1

q(hb
t |h

b
>t, I≥t),

(2)

where hf
t and hb

t denote the encoded hidden state from his-

tory and the future, respectively, and I refers to the given

observation. Then we leverage a two-layer RNN including

a forward RNN (‘RNNf ’) and a backward RNN (‘RNNb’)

to parameterize the above distributions:

q(hf
t |h

f
<t, I≤t) = RNNf (h

f
t−1, It)

q(hb
t |h

b
>t, I≥t) = RNNb(h

b
t+1, It).

(3)

Training Phase. In the training stage, we need to minimize

the Kullback-Leibler (KL) divergence (DKL) in the varia-

tional module and the Euclidean distance of the predicted

trajectories and the ground truth, i.e., ||Y − Ŷ ||22 (where

Y = Y
(tq,tv ]
P means the ground truth, Ŷ refers to the pre-

diction value, and P denotes a subset of all agents needed

to forecast). Therefore, we construct the loss function as

follows:

LRC-VAE = ||Y − Ŷ ||22 + βDKL(Q||P ), (4)

where P (z|X
[t0,tq ]
Ω ,O) = N (0, 1) is a prior distribution,

Q(z = ẑ|X
[t0,tq ]
Ω ,O) ∼ N (µz,

∑
z) is the latent distribu-

tion modeled as a normal distribution, and ẑ is the sampled

latent variable. β is the weighting factor. In our proposed

model, we set β = 1 in all experiments.

Imitation Learning Module. In order to derive our frame-

work in an imitation learning fashion, we incorporate an

imitation learning module into the decoder. We define the

input of each decoder layer Sl = {sl1, s
l
2, · · · , s

l
T } as the

observed state, Al = {al1, a
l
2, · · · , a

l
T } ∈ A denotes an ac-

tion sequence in our imitation learning framework, where

l refers to the l-th layer in the decoder, A indicates a fi-

nite action space, and T means the time step. In our imita-

tion learning setting, the action distribution of the RC-VAE

demonstrator can then be utilized as training signal to the

NART learner.

For the purpose of predicting the action Al, we need to

consider the states Sl, and then map Sl to actions by the

policies πl. Let Π denote a policy class, in which each pol-

icy πl ∈ Π makes the decision to generate an action distri-

bution sequence Al given Sl. Meanwhile, let πl(slt) denote

the probability of the decision regarding the current state

or environment slt. Then, each action can be calculated as

follows:

at = argmax(πl(slt)), (5)

where

πl(slt) = softmax(FFN(slt)). (6)

Here FFN refers to the feed-forward layer [40]. In Eq. 5,

due to the non-differentiable problem, it is difficult to train

the policy with the discrete operation argmax(·) in an end-

to-end learning framework. To overcome such an issue, we

decide to compute the expectation of the action at’s embed-

ding as the action state:

elt = Eal
t∼πl(slt)

ξ(alt), (7)

where ξ(alt) ∈ R
K refers to the embedding of the action

alt, and K is the dimension of embedding vector. Then, the

states of the next layer can be calculated depended on the

current output state of the previous layer and the emitted

expectation of action:

sl+1
t = Decoder(elt + slt). (8)

Action Distribution Regularization. In the imitation

learning framework, one common challenge is that unsu-

pervised clustering of actions can make the distribution of
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actions unbalanced. Inspired by [44,45], we adopt a method

to increase the utilization space. In order to evaluate the

cumulative activation level, we define ρ as the cumulative

history of each action category:

ρ← α · ρ+ (1− α)
T∑

t=1

π(st)/T, (9)

where the parameter α is set to 0.9 in our experiments. The

role of ρ is to redistribute the probability of policy π(st),
making the category assignment more balanced. After that,

we can do the re-normalization with π(st) based on the fol-

lowing:

π′(st) =
π(st)

2/ρ∑
j π(st)

2
j/ρj

. (10)

We draw the regularization objective as a KL divergence

between π(st) and the re-distributed π′(st),

Lπ =
∑

t

π′(st) log
π′(st)

π(st)
. (11)

4.3. NART learner

Inspired by the emerging non-autoregressive translation

models [16, 28], we present a non-autoregressive transfor-

mation model (NART) for sequence imputation. The struc-

ture of NART is almost similar to RC-VAE, while the main

difference lies in a non-autoregressive inference strategy.

Non-Autoregressive Inference. After achieving the joint

hidden states H = [Hf , Hb] from the encoder, the de-

coder needs to learn the distribution of the whole tempo-

ral sequences p(X|H). As shown in Figure 2, the decoder

will identify two observed time steps (e.g., x1 and x5), and

firstly impute the midpoint missing value (e.g., x3) at each

inference iteration. Then, other missing values can be in-

ferred by such a process repeatedly (e.g., x2 and x4). Dur-

ing each time step, the decoder of NART employs a decod-

ing function g to map the obtained hidden states that con-

catenate the forward states hf
t−n and the backward states

hb
t+n to a probability distribution:

p(xt|H) = g(hf
t−n, h

b
t+n). (12)

Training Objective. Given a series of whole temporal se-

quence C = {X∗}, let Gθ(X,M) refers to the genera-

tive process of NART learner with parameter θ, and p(M)

means the prior probability over the missing values. Here X̂
and x̂ both denote the generated values. Then the training

objective of our proposed NART learner can be formulated

as follows:

LNART = E
X∗∼C,M∼p(M),X̂∼Gθ(X,M)[

T∑

t=1

‖x̂t − xt‖
2
2].

(13)

Imitation Learning Objective. To facilitate the imitation

learning process in our proposed framework, the RC-VAE

demonstrator described in Sec 4.2 is capable of generat-

ing action distribution πRC-VAE as the posterior guidance,

which is expected to supervise the generation process of the

NART learner. Then, the NART learner can emit policy

distribution πNART(S) ∈ R
N by gradually learning from

the RC-VAE demonstrator. Formally, the objective of imi-

tation learning is to minimize the cross-entropy loss of the

distribution between the policies generated by the RC-VAE

demonstrator and the NART learner:

LIL = −EπRC-VAE(st) log πNART(st). (14)

4.4. Joint Objective Learning

To train the whole framework, we need firstly train the

RC-VAE demonstrator by combining the action distribution

regularization term in Eq. 11 with the VAE loss in Eq. 4:

Ldemon = LRC-VAE + λ1Lπ. (15)

During training of NART learner, we combine the imitation

learning term in Eq. 14 with the squared error in Eq. 13:

Llearn = LNART + λ2LIL, (16)

where λ1 and λ2 are hyper-parameters that control the

weights of the corresponding loss functions. During the

training, we take the randomly sampled trajectories as in-

put for RC-VAE and NART. We first train RC-VAE, and

then train NART by freezing RC-VAE’s parameters, when

NART is guided by RC-VAE in a behavioral cloning way. In

this way, the parameters of the imitation module in NART

will be updated, to ensure its generated actions under the

policy πNART match the RC-VAE demonstrator’s actions un-

der πRC-VAE. Finally, we minimize the cross-entropy be-

tween the distributions of two policies based on Eq. 14.

5. Experimental Results

To substantially validate the proposed model, exten-

sive experiments are conducted on three benchmarks for

the tasks of sequence prediction and imputation: 1) Multi-

agent trajectories movement from professional basketball

matches on Basketball Tracking Dataset [10]; 2) Real-

world Traffic time series on PEMS-SF Traffic Dataset [8];

3) Billiard ball trajectories derived from a physics engine on

Billiards Ball Trajectory Dataset [12].

5.1. Experimental Settings

Basketball Tracking Dataset [10] totally contains 95,002

sequences that recorded the trajectories of professional bas-

ketball players. Each sequence is transformed from the 3D

locations of players and ball into a 2D overhead view of the
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Methods
Traffic [8] Billiards [12] Basketball [10]

P-L2 ↓ I-L2 ↓ P-L2 ↓ I-L2 ↓ Sin Step Wall P-L2 ↓ I-L2 ↓ Path-L OOB Step Path-D

MaskGAN [9] - 6.02 - 1.830 1.095 15.35 0.100 - 0.427 0.793 4.592 9.622 0.680

KNN [13] - 4.58 - 5.381 1.469 24.59 0.189 - 0.403 0.921 0.128 13.24 0.746

GRUI [29] - 15.24 - 20.57 1.859 28.19 0.225 - 0.398 1.141 4.703 14.95 0.690

Linear Interpolation - 15.59 - 19.00 1.121 0.961 0.247 - 0.422 0.482 2.997 0.522 0.519

NAOMI [28] - 3.54 - 0.067 1.006 7.239 0.023 - 0.423 0.573 1.733 2.565 0.581

C-VAE [10] 9.23 - 6.56 - - - - 2.66 - - - - -

VRNN [7] 8.92 - 5.59 - - - - 2.93 - - - - -

Vanilla LSTM [20] 19.56 - 15.89 - - - - 10.44 - - - - -

Social LSTM [2] 12.67 - 9.25 - - - - 5.23 - - - - -

GT 0.00 0.00 0.00 0.000 1.000 1.588 0.018 0.000 0.000 0.556 0.861 1.982 0.580

Our full model 5.22 2.72 3.05 0.052 1.012 6.892 0.030 1.79 0.323 0.562 1.922 2.155 0.595

Our model w/o imitation - 3.66 - 0.065 1.107 7.535 0.159 - 0.412 0.595 2.356 2.356 0.602

Table 1. Performance comparison of our full model, baseline models, and the state-of-the-art approaches on Traffic/Billiards/Basketball

Datasets in terms of the sequence prediction and imputation. (P-L2) and (I-L2) denote averaged distance L2 loss of prediction and

imputation on all datasets, respectively. (Sin), (Step) and (Wall) denote sinuosity, step-change (10−3), and refection to wall regarding

imputation on Billiards, respectively. (Path-L), (OOB), (Step), and (Path-D) refer to path length, out-of-bounds rate (10−3), step change

(10−3) and path difference on Basketball, respectively. GT means the ground truth value. ↓ refers to the smaller result is better.

court, which is annotated with 2D coordinates (x, y) of 5

players in 50 time steps with 6.25Hz. Following [10], we

split the whole dataset into 107,146 training and 13,845 test

sequences. Meanwhile, we create a masking sequence for

each trajectory with 40 to 49 missing values following [28].

PEMS-SF Traffic Dataset [8] includes 267 training se-

quences and 173 testing sequences, which is sampled ev-

ery 10 minutes overall the day. All data consist of 963 di-

mensions, of which each dimension represents the freeway

occupancy rate recorded from various sensors. In our ex-

periments, we create a masking sequence containing 122 to

140 missing values for each testing data following [28].

Billiards Ball Trajectory Dataset [12] contains 4,000

training and 1,000 test sequences generated by the simu-

lator in [12]. In all generated sequence, the size and density

of balls are fixed and uniform, and no friction occurred in

trajectories. Additionally, the position and velocity of each

ball are randomly initialized and roll out the ball for 200

time steps. We create a masking sequence with 180 to 195

missing values for each trajectory following [28].

Metrics. As for sequence prediction, we calculate the L2

distance (P-L2) between generated future trajectories and

the ground truth for each agent averaged over each time,

and we utilize ft as the measuring unit. Besides, both the

observed trajectory history and the prediction length are set

to 4s. While, regarding to sequence imputation, we also

measure the L2 loss between imputed values and ground-

truth (I-L2), straightness of the generated trajectories (Sin-

uosity), average step size change (Step), average trajec-

tory length in 8 seconds (Path-L), average out-of-bound

rate (OOB), and max-min path difference (Path-D).

Compared Methods. In experiments, we choose C-

VAE [10], VRNN [7], Vanilla LSTM [20], and So-

cial LSTM [2] to compare with our proposed frame-

work for sequence prediction task. While, we select

MaskGAN [9], KNN [13], GRUI [29], Linear Interpolation,

and NAOMI [28] as baselines for sequence imputation.

5.2. Implementation Details

Our implementation is based on the PyTorch library.

We also use PaddlePaddle to implement our method and

achieve similar performances. During training, we lever-

age the ADAM optimizer and set the batch size to 256,

initial learning rate to 0.001, and learning rate decay to

0.5 every ten epochs. We randomly sample all the train-

ing data to make the experimental results more solid. In our

framework, we adopt two-layer LSTMs with 1024-d hidden

units and a stack of six self-attention and feed-forward lay-

ers as the encoder, and the decoder is also implemented by

six self-attention and feed-forward layers following Trans-

former [40]. As for the experiments on Basketball Track-

ing Dataset [10], we adopt a tree-based role alignment

method [36] for trajectory alignment following [10], which

is able to minimize reconstruction error and generate an op-

timal representation of multi-agent trajectories. Addition-

ally, we set both λ1 and λ2 as 0.001 in experiments, be-

cause we found that the values of Lπ and LIL were about

103 times larger than those of LRC-VAE and LNART at the

beginning of training. Meanwhile, we also found that the

performance of our proposed model was not very sensitive

to those hyper-parameters.

5.3. Results and Analysis

Quantitative Results. Table 1 summarizes the quantitative

results of our approach and other baselines in terms of se-

quence prediction and imputation. From the table, we can
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Figure 3. Visualization examples for basketball trajectories prediction of our proposed method compared with other state-of-the-art ap-

proaches. Given a 4s trajectory history for all players, the goal of the task is to predict the next 4s of offense player motion. Circles and

lines of different colors refer to the player and the corresponding trajectory, respectively. The light-colored lines and white dotted colored

circles denote the predicted trajectories and position of players, respectively. ‘GT’ means the ground truth.

Figure 4. Visualization of imputed basketball trajectories of our proposed method compared with other state-of-the-art approaches. Given

five known observation positions of multi-agent, the goal of the task is to impute the missing value in the sequence. Colored circles denote

given discrete observations, and the white dotted colored circle denotes the imputed value, respectively. ‘GT’ means the ground truth.
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Figure 5. Comparison of our proposed model and other baselines

w.r.t prediction errors for 10 agents given 4s observation trajecto-

ries on Basketball Tracking Dataset [10].

see our proposed approach manifests the best performance

against other methods by a considerable margin in terms of

all criteria w.r.t. sequence prediction. For example, the re-

ported P-L2 of our model amounts to 5.22 on PEMS-SF

Traffic Dataset [8] that outperforms other approaches. The

significant superiorities of our proposed model compared

with other models on Basketball Tracking Dataset [10] also

speak to its advantages. Across all the benchmarks, our

model achieves the best prediction performance w.r.t P-L2,

which beats other autoregressive models, e.g., C-VAE [10]

and VRNN [7], suggesting the introduced recurrent condi-

tional VAE is capable of improving the generated trajec-

tory results. Additionally, our proposed approach achieves

the best results on most metrics for the imputation task,

such as L2 loss, Path-L, and Step. These findings meet

our expectations that combining imitative learning and non-

autoregressive model into one single framework is a better

strategy, and the imitation module plays an important role in

bridging the gap between RC-VAE demonstrator and NART

learner. However, failing to consider the temporal relevance

hinders NAOMI [28] and MaskGAN [9] from achieving sat-

isfactory results. Moreover, we also show that the predic-

tion error increases monotonically with the prediction time

horizon in Figure 5. We can observe that our method signif-

icantly outperforms the current state-of-the-art approaches.

It is worth mentioning that our model obtains the result is

four times as good as Social LSTM [2] in each time step,

which indicates our proposed forward-backward encoder is

better than the conventional RNN structure.

Qualitative Results. We also depict quite a few visual-

ization results to qualitatively verify the generated future

trajectories and imputed missing value by our proposed

method on Basketball Tracking Dataset [10]. Figure 3 and

Figure 4 illustrate the visualized results of trajectory predic-

tion and sequence imputation by our proposed model and

other baselines, respectively. It is evident that our proposed

model can successfully forecast the future motion trajecto-

ries of multiple players and impute the missing value, which

is the most consistent with known observations. Conversely,
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Figure 6. Visualization results of multi-agent’s trajectories with time horizon predicted by our proposed method on Basketball Tracking

Dataset. Given the previous 2s of each player’s motion, we need to generate the future trajectories over horizon time (1/2/4/6 seconds).

Each colored circle and line refers to the player and the corresponding trajectory. Light-colored lines and white dotted colored circles

denote the predicted trajectories and position of players, respectively. ‘GT’ means the ground truth.

the results of other baselines still have a large discrepancy

to the ground-truth, because these methods disregard the in-

herent temporal relationship in a sequence. For example,

in Figure 4, our model can capture and recover the pattern

of the ground-truth time series, while KNN and MaskGAN

fail. Because these baselines only learn some averaged be-

havior instead of continuous temporal dependency and fail

to take contextual information into consideration. In ad-

dition, to evaluate how long time our proposed model can

predict, we provided 4s of multi-agents trajectories history,

and then generate the future motion at 1s/2s/4s/6s, as illus-

trated in Figure 6. We can obviously observe that the gen-

erated future trajectories by our model are nearly close to

ground-truth in direction, even though some errors still ex-

ist. In summary, the qualitative results demonstrate that our

proposed framework can generate high-quality future mo-

tion trajectories and filling the missing values under various

conditions through imitation learning strategy.

5.4. Ablation Studies

Imitation Learning versus Non Imitation Learning. We

show the performance of our full model and our model with-

out the imitation learning module in Table 1. We can ob-

serve that the imitation learning module incorporated into

our framework brings an improvement across all the metrics

in terms of sequence imputation task. As an example, our

framework with the imitation learning module can reduce

the prediction and imputation L2 loss on all three datasets.

Our model without imitation learning would susceptible to

the unavoidable delayed rewards, and it generates all se-

quence values, resulting in too large search space. The

observation from the comparative results is consistent with

our intuition that the temporal relevance learned from RC-

VAE demonstrator significantly improves the performance

of NART learner.

Action Distribution Regularization. In Subsection 4.2, we

propose an action distribution regularization technique in

RC-VAE demonstrator to overcome the unbalance problem

when searching for actions to supervise NART learner. In

experiments, we treat π(st) with a maximum probability as

the selected action during decoding, and the frequency of
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Figure 7. An example of action category assignment distribution

on Basketball Tracking Dataset [10]. Action distribution regular-

ization strategy can make the distribution more balanced (in blue),

otherwise, it will be overwhelmingly unbalanced (in red).

each action is chosen can be regarded as the used space.

We examine the used space on test set of Basketball Track-

ing [10], and the results are shown in Figure 7. From the

figure, we can observe that our proposed action distribu-

tion regularization makes the category distribution more

balanced and provides more effective guidance for NART

learner. In contrast, the model without action distribution

regularization leads to most of the space non-utilized, and

only few action categories can be used for supervising.

6. Conclusion

In this paper, we proposed a novel Imitative Non-

Autoregressive Modeling method to bridge the perfor-

mance gap between autoregressive and non-autoregressive

models for temporal sequence forecasting and imputation.

Our proposed framework leveraged an imitation learning

paradigm including two parts, i.e. a recurrent conditional

variational autoencoder (RC-VAE) demonstrator and a non-

autoregressive transformation model (NART) learner. We

extensively conducted experiments on three widely-adopted

benchmarks, and the promising results demonstrated the ef-

fectiveness and superiority of our proposed method by vi-

sual examples and quantitative justifications.
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