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Abstract

Most of object detection algorithms can be categorized

into two classes: two-stage detectors and one-stage detec-

tors. Recently, many efforts have been devoted to one-stage

detectors for the simple yet effective architecture. Differ-

ent from two-stage detectors, one-stage detectors aim to

identify foreground objects from all candidates in a single

stage. This architecture is efficient but can suffer from the

imbalance issue with respect to two aspects: the inter-class

imbalance between the number of candidates from fore-

ground and background classes and the intra-class imbal-

ance in the hardness of background candidates, where only

a few candidates are hard to be identified. In this work, we

propose a novel distributional ranking (DR) loss to han-

dle the challenge. For each image, we convert the clas-

sification problem to a ranking problem, which considers

pairs of candidates within the image, to address the inter-

class imbalance problem. Then, we push the distributions of

confidence scores for foreground and background towards

the decision boundary. After that, we optimize the rank of

the expectations of derived distributions in lieu of original

pairs. Our method not only mitigates the intra-class imbal-

ance issue in background candidates but also improves the

efficiency for the ranking algorithm. By merely replacing

the focal loss in RetinaNet with the developed DR loss and

applying ResNet-101 as the backbone, mAP of the single-

scale test on COCO can be improved from 39.1% to 41.7%
without bells and whistles, which demonstrates the effec-

tiveness of the proposed loss function.

1. Introduction

The performance of object detection has been improved

dramatically with the development of deep neural networks

in the past few years. Most of detection algorithms fall into

two categories: two-stage detectors [4, 11, 12, 15] and one-

stage detectors [3, 14, 16, 18, 21, 25, 29]. For the two-stage

schema, the procedure of the algorithms can be divided
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Figure 1. Illustration of the proposed distributional ranking loss.

First, we push the distributions of confidence scores towards the

decision boundary by re-weighting examples. Then, we try to rank

the expectation of the derived distribution of foreground above that

of background by a large margin.

into two parts. In the first stage, a region proposal method

filters most of background candidate bounding boxes and

keeps only a small set of candidates. In the following stage,

these candidates are classified as specific foreground classes

or background and the bounding boxes will be further re-

fined by minimizing a regression loss. Two-stage detectors

demonstrate the superior performance on real-world data

sets while the efficiency can be an issue in practice, es-

pecially for the devices with limited computing resources,

e.g., smartphones, cameras, etc.

Therefore, one-stage detectors are developed for the ef-

ficient detection. Different from two-stage detectors, one-

stage methods consist of a single phase and have to identify

foreground objects from all candidates directly. The proce-

dure of one-stage detectors is straightforward and efficient.

However, one-stage detectors can suffer from the imbalance

problem that can reside in the following two aspects. First,

the numbers of candidates between classes are imbalanced.

Without a region proposal phase, the number of background

candidates can easily overwhelm that of foreground ones.

Second, the hardness of identification for background can-

didates is imbalanced. Most of them can be easily identified

from foreground objects while only a few of them are hard

to be classified.

To mitigate the imbalance problem, SSD [18] adopts

hard negative mining in training, which is a popular strat-

egy [24, 27] to keep a small set of background candidates
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with the highest loss. By eliminating simple background

candidates, the strategy balances the number of candidates

between classes and the hardness of background simultane-

ously. However, certain information from background can

be lost, and thus the detection performance can degrade as

illustrated in [16]. RetinaNet [16] proposes to keep all back-

ground candidates but assign different weights for the loss

functions of candidates. The weighted cross entropy loss

is referred as focal loss. It makes the algorithm focus on

the hard candidates while reserving the information from

all candidates. This strategy improves the performance of

one-stage detectors significantly. Despite the success of fo-

cal loss, it re-weights classification losses in a heuristic way

and can be insufficient to address the imbalance problem.

Moreover, focal loss is designed for a single candidate and

is image-independent while object detection aims to iden-

tify objects in a single image. Focal loss lacks the explo-

ration for each image as a whole and the inconsistency can

make the performance suboptimal.

In this work, we propose an image-dependent ranking

loss to handle the imbalance challenge. First, to mitigate

the effect of the inter-class imbalance problem, we convert

the classification problem to a ranking problem, which con-

siders ranks of pairs. Since each pair consists of a fore-

ground candidate and a background candidate, it is well bal-

anced. Moreover, considering the intra-class imbalance in

hardness of background candidates, we design the distribu-

tional ranking (DR) loss to rank the distribution of confi-

dence scores for foreground above that for background can-

didates. As illustrated in Fig. 1, we first push the original

distributions towards the decision boundary with appropri-

ate constraints. After obtaining the drifted distributions, we

can rank the expectations of distributions in lieu of original

examples to identify foreground from background, which

improves the efficiency by reducing the number of pairs

from O(n2) to O(1) in ranking, where n is the number of

candidates in an image. Compared with focal loss, DR loss

is image-dependent and can explore the information within

each image sufficiently.

We conduct experiments on COCO [17] to demonstrate

the proposed DR loss. Since the focal loss is designed as the

classification loss in RetinaNet, we adopt RetinaNet as the

base detector for a fair comparison. Specifically, we merely

replace the focal loss with the DR loss while keeping other

components unchanged. With ResNet-101 [12] as the back-

bone, minimizing our loss function can boost the mAP of

RetinaNet from 39.1% to 41.7%, which confirms the effec-

tiveness of the proposed loss.

The rest of this paper is organized as follows. Section

2 reviews the related work in object detection. Section 3

describes the details of the proposed DR loss. Section 4

compares our method to others on COCO detection task.

Finally, Section 5 concludes this work.

2. Related Work

Detection is a fundamental task in computer vision. In

conventional methods, hand crafted features, e.g., HOG [5]

and SIFT [19], are used for detection either with a sliding-

window strategy which holds a dense set of candidates, e.g.,

DPM [6] or with a region proposal method which keeps a

sparse set of candidates, e.g., Selective Search [26]. Re-

cently, deep neural networks have shown the dominating

performance in classification tasks [13], and the features

obtained from neural networks are leveraged for detection

tasks.

R-CNN [9] equips the region proposal stage and works

as a two-stage algorithm. It first obtains a sparse set of re-

gions by selective search. In the next stage, a deep convolu-

tional neural network is applied to extract features for each

region. Finally, regions are classified with a conventional

classifier, e.g., SVM. R-CNN improves the performance of

detection by a large margin but the procedure is too slow

for real-world applications. Hence, many variants are de-

veloped to accelerate it [8, 22]. To further improve the ac-

curacy, Mask-RCNN [11] adds a branch for object mask

prediction to boost the performance with the additional in-

formation from multi-task learning. Besides the two-stage

structure, Cascade R-CNN [2] develops a multi-stage strat-

egy to promote the quality of detectors after the region pro-

posal stage in a cascade fashion.

One-stage detectors are developed for efficiency [3, 18,

20, 23, 29]. Since there is no region proposal phase to sam-

ple background candidates, one-stage detectors can suffer

from the imbalance issue from both the inter-class imbal-

ance between foreground and background candidates and

intra-class imbalance in the background candidates. To ad-

dress the challenge, SSD [18] adopts hard negative min-

ing, which only keeps a small set of hard background can-

didates for training. Recently, focal loss [16] is proposed

to handle the problem in RetinaNet. Unlike SSD, it keeps

all background candidates but re-weights them such that

the hard examples are assigned with a large weight. Fo-

cal loss improves the performance of one-stage detection

explicitly, but the imbalance problem in detection is still

not sufficiently explored. Besides those anchor-based algo-

rithms, anchor-free one-stage detectors [25, 29] have been

developed, where focal loss is also applied for classifica-

tion. The work closest to ours is the AP-loss in [3], where a

ranking loss is designed to optimize the average precision.

However, the loss focuses on the original pairs and is non-

differentiable. A specific algorithm has to be developed to

minimize the AP-loss. In this work, we develop the DR loss

that ranks the expectations of distributions in lieu of original

pairs. DR loss is differentiable and can be optimized with

stochastic gradient descent (SGD) in the standard training

pipeline. Therefore, our loss can work in a plug and play

manner, which is important for real-world applications.
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3. DR Loss

Given a set of candidate bounding boxes from an im-

age, a detector has to identify the foreground objects from

background ones with a classification model. Let θ denote

a classifier and it can be learned by optimizing the problem

min
θ

N
∑

i

∑

j,k

ℓ(pi,j,k) (1)

where N is the number of total images. In this work, we

employ sigmoid function to predict the probability for each

candidate. pi,j,k is the prediction from θ and indicates the

estimated probability that the j-th candidate in the i-th im-

age is from the k-th class. ℓ(·) is the loss function. In most

of detectors, the classifier is learned by minimizing the cross

entropy loss or its variants.

The objective in Eqn. 1 is prevalent but can suffer from

the inter-class imbalance problem. The problem can be

demonstrated by rewriting the original problem as

min
θ

N
∑

i

(

n+
∑

j+

ℓ(pi,j+) +

n
−

∑

j
−

ℓ(pi,j
−

)) (2)

where j+ and j− denote the positive (i.e., foreground) and

negative (i.e., background) examples (e.g., anchors), re-

spectively. n+ and n− are the corresponding number of

examples. When n− ≫ n+, the accumulated loss from

the latter term will dominate. This issue is from the fact

that the losses for positive and negative examples are sepa-

rated and the contribution from positive examples will be

overwhelmed by negative ones. One heuristic to handle

the problem is emphasizing positive examples, which can

change the weights for the corresponding losses. In this

work, we aim to address the problem in a fundamental way.

For brevity, we will omit the index of image (i.e., i) from

the next subsection.

3.1. Ranking

To mitigate the challenge from the imbalance between

classes, we consider to optimize the rank between positive

and negative examples. Given a pair of positive and nega-

tive examples, an ideal ranking model can rank the positive

example above the negative one with a large margin

∀j+, j− pj+ − pj
−

≥ γ

where γ is a non-negative constant. Compared with the

objective in Eqn. 1, the ranking model optimizes the rela-

tionship between individual positive and negative examples,

which is well balanced.

The objective of ranking for a single image can be writ-

ten as

min
θ

n+
∑

j+

n
−

∑

j
−

ℓ(pj
−

− pj+ + γ) (3)

where the hinge loss is applied as the loss function

ℓhinge(z) = [z]+ =

{

z z > 0
0 o.w.

The objective can be interpreted by the equivalent form

1

n+n−

n+
∑

j+

n
−

∑

j
−

ℓ(pj
−

− pj+ + γ)

= Ej+,j
−

[ℓ(pj
−

− pj+ + γ)] (4)

It demonstrates that the objective measures the expectation

of the ranking loss on a randomly sampled pair.

The ranking loss addresses the inter-class imbalance is-

sue by comparing the rank of each positive example to neg-

ative examples. However, it ignores a phenomenon in ob-

ject detection, where the hardness of negative examples is

also imbalanced. Besides, the ranking loss introduces a new

challenge, that is, the vast number of pairs. We tackle them

in the following subsection.

3.2. Distributional Ranking

As indicated in Eqn. 4, the ranking loss in Eqn. 3 pun-

ishes a mis-ranking for a uniformly sampled pair. In detec-

tion, most of negative examples can be easily ranked well,

that is, a randomly sampled pair will not incur the ranking

loss with high probability. Therefore, we consider to opti-

mize the ranking boundary to avoid the trivial solution

min
θ

ℓ(max
j
−

{pj
−

} −min
j+

{pj+}+ γ) (5)

If we can rank the positive example with the lowest score

above the negative one with the highest confidence, the

whole set of examples in an image are perfectly ranked. The

pair in Eqn. 5 is referred as the worst-case scenario, which

will incur the largest loss among all pairs. Compared with

the conventional ranking loss, optimizing the loss from the

worst-case scenario is much more efficient, which reduces

the number of pairs from n+n− to 1. Moreover, it clearly

eliminates the inter-class imbalance issue since only a sin-

gle pair of positive and negative examples is required for

each image. However, this formulation is very sensitive to

the selected pair, which can result in the degraded detection

model.

To improve the robustness, we first introduce the distri-

bution of confidence scores for the positive and negative ex-

amples and obtain the expectation as

P+ =

n+
∑

j+

qj+pj+ ; P− =

n
−

∑

j−
qj

−

pj
−

where q+ ∈ ∆ and q− ∈ ∆ denote the distributions

over positive and negative examples, respectively. P+ and
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P− represent the expected scores under the corresponding

distribution. ∆ is the simplex as ∆ = {q :
∑

j qj =
1, ∀j, qj ≥ 0}. When q+ and q− are the uniform distri-

bution, P+ and P− demonstrate the expectation from the

original distribution.

With these definitions, the distribution corresponding to

the worst-case scenario can be derived as

P+ = min
q+∈∆

n+
∑

j+

qj+pj+ ; P− = max
q
−
∈∆

n
−

∑

j−
qj

−

pj
−

We can rewrite the problem in Eqn. 5 in the equivalent form

min
θ

ℓ(P− − P+ + γ)

which can be considered as ranking the distributions be-

tween positive and negative examples in the worst-case sce-

nario.

By investigating the new formulation, it is obvious that

optimizing the worst-case scenario is not robust due to the

fact that the domain of the generated distribution is uncon-

strained. Consequently, it will concentrate on a single ex-

ample while ignoring the influence of the original distribu-

tion that contains massive information. Hence, we improve

the robustness of the loss by regularizing the freedom of the

derived distribution

P− = max
q
−
∈∆,Ω(q

−
||o

−
)≤ǫ

−

n
−

∑

j−
qj

−

pj
−

−P+ = max
q+∈∆,Ω(q+||o+)≤ǫ+

n+
∑

j+

qj+(−pj+)

where o+,o− denote the original distributions for positive

and negative examples, respectively. Ω(·) is a regularizer

for the diversity of the distribution to prevent the distribu-

tion from the trivial one-hot solution. It measures the sim-

ilarity between the generated distribution and the original

distribution, and some popular similarity function can be

applied, e.g., Lp distance, Rényi entropy, Shannon entropy,

etc. ǫ− and ǫ+ are constants to control the freedom of de-

rived distributions.

To obtain the constrained distribution, we consider the

subproblem

max
q
−
∈∆

∑

j−
qj

−

pj
−

s.t. Ω(q−||o−) ≤ ǫ−

According to the dual theory [1], given ǫ−, we can find the

parameter λ− to obtain the optimal q− by solving the prob-

lem

max
q
−
∈∆

∑

j−
qj

−

pj
−

− λ−Ω(q−||o−)

We observe that the former term is linear in q−. Hence,

if Ω(·) is convex in q−, the problem can be solved effi-

ciently by first order algorithms [1]. In this work, we adopt

KL-divergence as the regularizer and have the closed-form

solution as follows

Proposition 1. For the problem

max
q
−
∈∆

∑

j−
qj

−

pj
−

− λ−KL(q
−

||o−)

we have the closed-form solution as

qj
−

=
1

Z−
oj

−

exp(
pj

−

λ−
); Z− =

∑

j
−

oj
−

exp(
pj

−

λ−
)

Proof. It can be proved directly from K.K.T. condition [1].

For the distribution over positive examples, we have the

similar result as

Proposition 2. For the problem

max
q+∈∆

∑

j+

qj+(−pj+)− λ+KL(q+||o+)

we have the closed-form solution as

qj+ =
1

Z+
oj+ exp(

−pj+
λ+

); Z+ =
∑

j+

oj+ exp(
−pj+
λ+

)

Remark 1 These Propositions show that the harder the

example, the larger the weight of the example. Besides,

the weight is image-dependent and will be affected by other

examples in the same image.

The original distributions (i.e., o− and o+) can also in-

fluence the derived distributions by weighting each candi-

date. Therefore, the prior knowledge about the problem can

be encoded into the original distributions, which makes gen-

erating new distributions more flexible. Here we take o− as

an example to illustrate different distributions.

• Uniform distribution: It means that ∀j, oj− = 1/n−.

With the constant value, the closed-form solution

can be simplified as qj
−

= 1
Z

−

exp(
pj

−

λ
−

); Z− =
∑

j
−

exp(
pj

−

λ
−

)

• Hard negative mining: In this scenario, we assume

∀j, oj− ∈ {0, 1/n̂−}, where n̂− denotes the number

of non-zero elements in o−. According to Proposi-

tion 1, only candidates selected by o− will be accu-

mulated to derive the new distribution. Therefore, our

formulation can incorporate with hard negative mining

by setting the weights in o− appropriately.
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To keep the loss function simple, we adopt the uniform

distribution in this work. Fig. 2 illustrates the changing of

the distribution with the proposed strategy. The derived dis-

tribution approaches the distribution corresponding to the

worst-case scenario when decreasing λ. Note that the orig-

inal distributions in Fig. 2 (a) and Fig. 2 (b) have the same

mean but different variance. For the distribution with the

small variance as in Fig. 2 (a), we can observe that the reg-

ularizer λ should be small to change the distribution effec-

tively. When the distribution has the large variance, Fig. 2

(b) shows that a large λ is sufficient to change the shape

of the distribution dramatically. Considering that the dis-

tributions of positive and negative examples have different

variances, Fig. 2 implies that different weights for the regu-

larizers should be assigned.

(a) Small Variance (b) Large Variance
Figure 2. Illustration of the drifting in the distribution. We ran-

domly sample 1e7 points from a Gaussian distribution with differ-

ent variances to mimic scores of anchors. We change the weights

of examples according to the proposed strategy as in Proposition 1

and then plot the curves of different probability density functions

(PDF) when varying λ.

With the closed-form solutions of distributions, the ex-

pectation of distributions can be computed as

P̂− =

n
−

∑

j−
qj

−

pj
−

=

n
−

∑

j−

1

Z−
exp(

pj
−

λ−
)pj

−

(6)

P̂+ =

n
−

∑

j−
qj+pj+ =

n+
∑

j+

1

Z+
exp(

−pj+
λ+

)pj+

Finally, smoothness is crucial for the convergence of

non-convex optimization [7]. So we apply the smooth ap-

proximation instead of the original hinge loss as the loss

function for pairs. The popular substitutes to the hinge loss

include quadratic loss and logistic loss

ℓquad(z) =







z z ≥ ρ
(z+ρ)2

4ρ −ρ < z < ρ

0 z ≤ −ρ

(7)

ℓlogistic(z) =
1

L
log(1 + exp(Lz)) (8)

where ρ and L control the approximation error of the func-

tion. The larger the L is , the closer to the hinge loss the

approximation is. ρ works in an opposite direction. Fig. 3

compares the hinge loss to its smooth variants. Explicitly,

these functions share the similar shape and we adopt the lo-

gistic loss in this work.

(a) Quadratic Loss (b) Logistic Loss
Figure 3. Illustration of the hinge loss and its smooth variants.

Incorporating all of these components, our distributional

ranking loss can be defined as

min
θ

LDR(θ) =

N
∑

i

ℓlogistic(P̂i,− − P̂i,+ + γ) (9)

where P̂i,− and P̂i,+ are given in Eqn. 6 and ℓlogistic(·) is in

Eqn. 8. If there is no positive examples in an image, we will

let P̂i,+ = 1. Compared with the conventional ranking loss,

we rank the expectations of two distributions. It shrinks the

number of pairs to 1 that leads to the efficient optimization.

The gradient of the objective in Eqn. 9 is easy to com-

pute. The detailed calculation of the gradient can be found

in the supplementary.

If optimizing the DR loss by the standard SGD with

mini-batch as θt+1 = θt − η 1
m

∑m
s=1 ∇ℓst , we can show

that it can converge as in the following theorem. The norm

of the gradient is applied to measure the convergence, which

is a standard criterion for non-convex optimization [7]. The

detailed proof is cast to the supplementary.

Theorem 1. Let θt denote the model obtained from the

t-th iteration with SGD optimizer and the size of mini-

batch is m. If we assume the objective L in Eqn. 9 is µ-

smoothness and the variance of the gradient is bounded as

∀s, ‖∇ℓst − ∇Lt‖F ≤ δ, when setting the learning rate as

η =

√
2mL(θ0)

δ
√
µT

and η ≤ 1
µ

, we have

1

T

∑

t

‖∇L(θt)‖2F ≤ 2δ
√
2µ

√

mTL(θ0)

Remark 2 Theorem 1 implies that the learning rate de-

pends on the mini-batch size and the number of iterations as

η = O(
√

m/T ) and the convergence rate is O(1/
√
mT ),

where mT/N is the number of training epochs.

We can obtain a scaling strategy for the learning rate. Let

η0, m0 and T0 denote a default configuration for training.

If we change the mini-batch size as m′ = m0/α, where
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α is a non-negative constant, and keep the same number

of epochs for training (i.e., T ′ = αT0), the convergence

rate remains the same. However, the learning rate becomes

η′ = O(
√

m′/T ′) = η0/α. It shows that to obtain the

same performance with a different mini-batch size, we have

to rescale the learning rate with a corresponding factor,

which is consistent with the observation in [10]. Besides,

the learning rate should be no larger than 1/µ, which means

that the scaling strategy is inapplicable when the mini-batch

size is too large.

3.3. Recover Classification from Ranking

Detection is to identify foreground objects from back-

ground. Therefore, the results from ranking have to be con-

verted to classification. A straightforward way is to set a

threshold for all ranking scores. However, the range of rank-

ing scores from different images can vary due to the image-

dependent mechanism, and should be calibrated for classi-

fication. We investigate the bound for the ranking scores of

positive and negative examples as follows.

Theorem 2. When optimizing the ranking problem as

∀j+, j−, pj+ − pj
−

≥ γ

it implies

∀j+, pj+ > γ; ∀j−, pj
−

≤ 1− γ

Therefore, we can recover the standard classification cri-

terion by setting a large margin.

Corollary 1. If setting the margin of ranking as γ = 0.5, we

can recover the classification criterion for ranking scores

∀j+, pj+ > 0.5; ∀j−, pj
−

≤ 0.5

With these appropriate settings, our final objective for

detection can be summarized as

min

N
∑

i

τℓiDR + ℓiReg

where ℓReg is the original regression loss in RetinaNet and

we keep it unchanged. τ is the parameter for balancing the

weights between classification and regression. We fix it as

τ = 4 in the experiments.

4. Experiments

4.1. Implementation Details

We evaluate the proposed DR loss on COCO data

set [17], which contains about 118k images for training, 5k
images for validation, and 40k images for test. To focus on

the comparison of loss functions, we employ the structure of

RetinaNet [16] as the backbone and only substitute the cor-

responding focal loss. For a fair comparison, we implement

our algorithm in a public codebase 1. Besides, we train the

model with the same configuration as RetinaNet. Specifi-

cally, the model is learned with SGD on 8 GPUs and the

mini-batch size is set as 16 where each GPU can hold 2 im-

ages at each iteration. Most of experiments are trained with

90k iterations that is denoted as “1×”. The initial learn-

ing rate is 0.01 and is decayed by a factor of 10 after 60k
iterations and then 80k iterations. For anchor density, we

apply the same setting as in [16], where each location has 3
scales and 3 aspect ratios. The standard COCO evaluation

criterion is used to compare the performance of different

methods.

4.2. Parameters in DR Loss

From the definition in Eqn. 9, DR loss has three param-

eters λ+, λ− and L to be tuned. λ+ and λ− regularize the

distribution of scores for positive and negative examples,

respectively. L controls the smoothness of the loss func-

tion. The margin γ is fixed as 0.5 according to Corollary 1.

Compared with the focal loss [16], DR loss has one more

parameter. However, RetinaNet lacks optimizing the rela-

tionship between positive and negative distributions, and it

has an additional parameter to initialize the output proba-

bility of the classifier (i.e., 0.01) to fit the distribution of

background. In contrast, we initialize the probability of the

sigmoid function at 0.5, which is the default threshold for

binary classification scenario without any prior knowledge.

It verifies that the proposed DR loss can handle the imbal-

ance problem better. Consequently, DR loss roughly has the

same number of parameters as that in focal loss.

We will have the ablation study on these parameters to

illustrate the influence in the next subsections. Note that

RetinaNet applies Feature Pyramid Network (FPN) [15] to

obtain multiple scale features. To compute DR loss in one

image, we collect anchors from multiple pyramid levels and

obtain a single distribution for positive and negative an-

chors, respectively.

4.3. Effect of Parameters

We conduct ablation experiments to evaluate the effect of

multiple parameters on the minival set. All experiments in

this subsection are implemented with a single image scale

of 800 for training and test. ResNet-50 [12] is applied as

the backbone for comparison. Only horizontal flipping is

adopted as the data augmentation in this subsection.

Effect of λ+ and λ−: First, we evaluate the effect of λ+

and λ− in Eqn. 6. These parameters constrain the free-

dom of the derived distributions. As illustrated in Fig. 2,

1https://github.com/facebookresearch/maskrcnn-benchmark
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variances of distributions will have the impact on select-

ing appropriate weights for regularizers. We investigate the

variance of positive and negative anchors, and observe that

the standard deviation of positive anchors is about 10 times

larger than that of negative ones. So we roughly set λ+ = 1
and λ− = 0.1 and fine-tune them as λ+ = 1/ log(h+)
and λ− = 0.1/ log(h−). It is easy to show that this strat-

egy is equivalent to fixing λ+ and λ− as 1 and 0.1, and

changing the base in the definition of the KL-divergence as

KL(q||o) = ∑

j qj logh
qj
oj

.

We vary h+ and h− and summarize the results in Table 1.

First, we observe that the default setting with λ+ = 1 and

λ− = 0.1 can outperform focal loss by 1% ,which demon-

strates the effectiveness of the proposed DR loss. Second,

the performance of our loss is quite stable in a reasonable

range. Finally, the distribution of positive anchors is more

sensitive to a small λ+, which is consistent with the illus-

tration in Fig. 2. We keep the best settings in the following

experiments.

h+ h− AP AP50 AP75 APS APM APL

e e 37.1 56.1 39.4 19.7 40.9 50.1

e 3.5 37.4 56.0 40.0 20.8 41.2 50.5

e 5.5 37.2 55.7 40.0 19.6 41.2 50.4

e 20 36.6 54.7 39.4 19.6 40.5 50.3

5.5 3.5 36.7 55.2 39.4 19.9 40.4 50.0

20 3.5 35.6 54.2 38.1 19.2 39.7 48.3
Table 1. Comparison of λ+ and λ

−
as in Eqn. 6. Note that

we tune the parameters in the form of λ+ = 1/ log(h+) and

λ
−

= 0.1/ log(h
−
). We adopt 1× iterations and ResNet-50 as

the backbone in training. Performance on the minival is reported

for the ablation study.

Effect of Smoothness: L controls the smoothness of the

loss function in Eqn. 8. We compare the model with dif-

ferent L’s in Table 2. We also include the results for the

quadratic loss function in Eqn. 7 with different ρ’s for com-

parison. The original hinge loss is denoted as “Hinge”.

First, all smooth loss functions outperform hinge loss. It

confirms that smoothness is important for non-convex opti-

mization. Second, the smooth variants of hinge loss surpass

focal loss with a significant margin. It is because that DR

loss leverages the information from an image rather than

an anchor, which can handle the imbalance issue better.

Since quadratic loss and logistic loss have the similar per-

formance, we adopt the logistic loss with L = 6 in the rest

experiments.

Effect of Pairing Strategy: In DR loss, we propose to

rank a single pair consisting of expectations from positive

and negative distributions. To evaluate the pairing strategy,

we compare it to different strategies for ranking. Specif-

ically, we denote optimizing all pairs in Eqn. 3 as “All”,

Loss AP AP50 AP75 APS APM APL

Focal 36.1 55.0 38.7 19.5 39.5 49.0

Hinge 35.8 54.0 38.3 19.3 39.5 47.6

ρ = 0.2 36.9 55.5 39.5 21.1 40.7 49.6

ρ = 0.5 37.2 56.0 39.8 21.1 41.1 50.4

L = 4 37.2 55.9 39.9 20.3 41.0 50.3

L = 6 37.4 56.0 40.0 20.8 41.2 50.5

L = 8 37.1 55.7 39.7 19.5 41.2 50.5

L = 10 36.8 55.4 39.4 20.0 40.7 50.0
Table 2. Comparison of different loss functions. ρ and L are from

Eqn. 7 and Eqn. 8, respectively.

Pair AP AP50 AP75 APS APM APL

All 12.9 23.0 12.6 8.8 16.7 15.0

NegOnly 37.0 55.5 39.5 19.8 40.7 50.5

DR 37.4 56.0 40.0 20.8 41.2 50.5
Table 3. Comparison of different pairing strategies.

which is corresponding to the standard ranking problem.

We also include a variant of DR loss as “NegOnly” that

pushes distributions for negative anchors only. The objec-

tive of NegOnly on a single image can be written as

min
θ

1

n+

∑

j+

ℓlogistic(P̂− − pj+ + γ)

The result of optimizing the worst-case scenario in Eqn. 5

is not included since training with that fails to obtain the

meaningful result.

The comparison is summarized in Table 3. As illustrated

in Section 3.1, the conventional ranking algorithm suffers

from the intra-class imbalance in the hardness of negative

anchors, which results in the poor performance for detec-

tion. By mitigating this issue with the proposed strategy,

NegOnly can outperform focal loss. It confirms that han-

dling the imbalance in the negative anchors is important and

the proposed strategy can serve the purpose well. Finally,

we observe that a tailored distribution for positive anchors

can further improve the performance as in DR loss.

Effect of DR Loss: To illustrate the effectiveness of DR

loss, we collect the confidence scores of anchors from all

images in minival and compare the empirical probability

density in Fig. 4. We include the results from cross entropy

loss and focal loss in the comparison.

First, we observe that most of examples have an ex-

tremely low confidence after minimizing cross entropy loss.

It is because the number of negative examples overwhelms

that of positive ones and it will classify most of examples to

be negative to obtain a small loss as demonstrated in Eqn. 2.

Second, focal loss is better than cross entropy loss by im-

proving the distribution of positive anchors. However, the

expectation of the foreground distribution is still close to
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Methods Backbone AP AP50 AP75 APS APM APL

two-stage detectors

Faster R-CNN+++ [12] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [15] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Deformable R-FCN [4] Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN [11] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2

one-stage detectors

YOLOv2 [21] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [18] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

AP-Loss [3] ResNet-101-FPN 37.4 58.6 40.5 17.3 40.8 51.9

RetinaNet [16] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet [16] ResNeXt-32x8d-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

CornerNet [14] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

FSAF [29] ResNet-101-FPN 40.9 61.5 44.0 24.0 44.2 51.3

FCOS [25] ResNet-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6

FCOS [25] ResNeXt-32x8d-101-FPN 42.7 62.2 46.1 26.0 45.6 52.6

Dr. Retina ResNet-101-FPN 41.7 60.9 44.8 23.5 44.9 53.1

Dr. Retina ResNeXt-32x8d-101-FPN 43.1 62.8 46.4 25.6 46.2 54.0

Dr. Retina (multi-scale test) ResNet-101-FPN 43.4 62.1 47.0 26.7 46.1 55.0

Dr. Retina (multi-scale test) ResNeXt-32x8d-101-FPN 44.7 63.8 48.7 28.2 47.4 56.2
Table 4. Comparison with the state-of-the-art methods on COCO test-dev set.

(a) Negative Anchors Distribution (b) Positive Anchors Distribution
Figure 4. Illustration of empirical PDF of distributions that are

computed from images in the minival.

that of background, and it interprets the fact that focal loss

has to initialize the probability of the classifier to be small

(i.e., 0.01). Compared to cross entropy and focal loss, DR

loss improves the foreground distribution significantly. By

optimizing our ranking loss with a large margin, the expec-

tation of the positive anchors is larger than 0.5 while that of

background is smaller than 0.1. It confirms that DR loss can

address the imbalance between classes well. Besides, the

hardness of negative anchors with DR loss is more balanced

than that with cross entropy or focal loss. It verifies that

with the image-dependent mechanism, DR loss can handle

the intra-class imbalance in background examples and focus

on the hard negative examples appropriately. More analysis

can be found in the supplementary.

4.4. Comparison with State­of­the­Art

We denote RetinaNet with DR loss as “Dr. Retina” and

compare it to the state-of-the-art detectors on COCO test-

dev set. We follow the setting in [16] to increase the number

of training iterations to 2×, which contains 180k iterations,

and applies scale jitter in [640, 800] as the additional data

augmentation for training. Note that we still use a single

image scale and a single crop for test as above. Table 4 sum-

marizes the comparison for Dr. Retina. With ResNet-101

as the backbone, we can observe that Dr. Retina improves

mAP from 39.1% to 41.7%. It illustrates that DR loss can

explore the imbalance issue in detection more sufficiently

than focal loss. Equipped with ResNeXt-32x8d-101 [28]

and 1.5× iterations (i.e., 135k iterations), the performance

of Dr. Retina can achieve 43.1% as a one-stage detector on

COCO detection task without bells and whistles. Note that

we only replace focal loss with DR loss to obtain the signif-

icant gain, which implies that DR loss can be a good substi-

tute of focal loss. Finally, the multi-scale test with scales

from {400, 500, 600, 700, 800, 900, 1000, 1100, 1200} can

further improve the performance as expected.

5. Conclusion

In this work, we introduce the distributional ranking loss

to address the imbalance challenge in one-stage object de-

tection. We first convert the original classification problem

to a ranking problem, which balances the positive and neg-

ative classes. After that, we propose to push the original

distributions to the decision boundary and rank the expec-

tations of derived distributions in lieu of original examples

to focus on the hard examples, which balances the hardness

of background examples. Experiments on COCO verify the

effectiveness of the proposed loss function.
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