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Abstract

Scene text recognition is a hot research topic in com-

puter vision. Recently, many recognition methods based on

the encoder-decoder framework have been proposed, and

they can handle scene texts of perspective distortion and

curve shape. Nevertheless, they still face lots of challenges

like image blur, uneven illumination, and incomplete char-

acters. We argue that most encoder-decoder methods are

based on local visual features without explicit global se-

mantic information. In this work, we propose a semantics

enhanced encoder-decoder framework to robustly recognize

low-quality scene texts. The semantic information is used

both in the encoder module for supervision and in the de-

coder module for initializing. In particular, the state-of-the-

art ASTER method is integrated into the proposed frame-

work as an exemplar. Extensive experiments demonstrate

that the proposed framework is more robust for low-quality

text images, and achieves state-of-the-art results on several

benchmark datasets. The source code will be available.†

1. Introduction

Scene text detection and recognition have attracted great

attention in recent years owing to its various applications

such as autonomous driving, road sign recognition, help-

ing visual impaired and so on. Inspired by object detec-

tion [27, 40, 26, 58], scene text detection [24, 48, 60, 38, 6]

achieved convincing performance. Despite the maturity of

conventional text recognition in documents, scene text recog-

nition is still a challenging task.

With the development of deep learning, recent works [16,

15, 43, 46, 22, 44, 45, 54, 7, 8, 2, 23, 25, 57, 52, 32, 53] on

scene text recognition have shown promising results. How-

ever, existing methods are still facing various problems when

dealing with image blur, background interference, occlusion

∗The corresponding author
†https://github.com/Pay20Y/SEED
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Figure 1. The comparison of our SEED with the existing encoder-

decoder framework such as [45]. The first column shows the exam-

ples of some challenging scene text including image blur, occlusion,

and background interference. The second column is the results of

the existing encoder-decoder framework and the third column gives

the predictions of our approach. It shows that our proposed method

is more robust to the low-quality images.

and incomplete characters as shown in Fig. 1.

Recently, inspired by neural machine translation of

the natural language processing field, the encoder-decoder

framework with attention mechanism has been widely

used in scene text recognition. For regular text recogni-

tion [22, 7, 10], the encoder is based on CNN with RNN

and another RNN with attention mechanism is used as

the decoder to predict character at each time step. For

irregular text recognition, the rectification based meth-

ods [44, 45, 28, 57, 32, 53], the multi-direction encoding

method [8] and the 2D-attention based methods [54, 23] are

proposed. Rectification based methods first rectify the irreg-

ular images, then the following pipeline is as those of regular

recognition. The multi-direction encoding method uses CNN

with two LSTMs to encode four different directions. The
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2D-attention based methods use 2D-attention mechanism to

deal with irregular text which handles feature map from two

dimensions directly.

The existing methods define the text recognition task as

a sequence character classification task locally, but ignore

the global information of the whole word. As a result, they

may struggle to handle low-quality images such as image

blur, occlusion and incomplete characters. However, people

can deal with these low-quality cases well by considering

the global information of the text.

To address this problem, we propose the Semantics

Enhanced Encoder-Decoder framework (SEED), in which

an additional semantic information is predicted acting as

the global information. The semantic information is then

used to initialize the decoder as illustrated in Fig. 2 (c). The

semantic information has two main advantages, 1) it can be

supervised by a word embedding in natural language pro-

cessing field, 2) it can reduce the gap between the encoder

focusing on the visual feature and the decoder focusing on

the language information, since the text recognition can be

regarded as a cross-modality task. Specifically, we get the

word embedding from a pre-trained language model and

compute a loss between the semantic information and the

word embedding during training. By this way, the semantic

information contains richer semantics, then the predicted

semantic information is used to guide the decoding process.

As a result, the decoding process can be limited in a seman-

tic space, and the performance of recognition will be better.

Some examples are shown in Fig. 1. As an example, in the

fourth sub-image of Fig. 1, the last two characters “se” are

recognized as “R” because of the occlusion, but it can be

corrected in our framework with the global semantic infor-

mation. In other words, the semantic information works as

an “intuition”, which is like a glimpse before people read a

word carefully.

Predicting semantic information from images directly has

already been studied before. [12] predicts semantic concepts

directly from a word image with a CNN and a weighted

ranking loss. [51] tries to embed image features into a word

embedding space for text spotting. [21] proposes to learn

embedding of the word images and the text labels in an end-

to-end way. These works validate that semantic information

is helpful to the text related tasks.

The main contributions are as follows:

1. We propose SEED for scene text recognition, which

predicts additional global semantic information to guide the

decoding process, and the predicted semantic information

is supervised by the word embedding from a pre-trained

language model.

2. We integrate the state-of-the-art ASTER method [45]

to our framework as an exemplar.

3. Extensive experiments on several public scene text

benchmarks demonstrate the proposed framework can obtain

state-of-the-art performance, especially on the low-quality

datasets ICDAR2015 and SVT-Perspective, and it is particu-

larly more robust for incomplete characters.

The rest of this paper is organized as follows: Sec. 2

reviews the related works, Sec. 3 describes the proposed

framework and the exemplar, Sec. 4 conducts profuse exper-

iments and Sec. 5 concludes the work.

2. Related Work

2.1. Scene Text Recognition

Existing scene text recognition methods can be divided

into two categories, namely traditional methods and deep

learning based methods.

Traditional methods usually adopt a bottom-up approach

which detects and classifies characters first and then groups

them to a word or text line with heuristic rules, language

models or lexicons. They design various hand-craft features

then use these features to train a classifier such as SVM. For

example, [34] uses a set of computationally expensive fea-

tures like aspect ratio, hole area ratio, etc. [50, 49] use sliding

windows with HOG descriptors, and [55, 3] use Hough vot-

ing with random forest classifier. Most traditional methods

suffer from designing various hand-crafted features, and

these features are limited for high-level representation.

With the development of deep learning, most methods

use CNN to perform a top-down approach which recog-

nizes word or text line directly. [16] treats a word as a class,

then converts the recognition problem into the image clas-

sification problem. Recently, most works treat the recogni-

tion problem as the sequence prediction problem. Existing

methods can be almost divided into two techniques namely

Connectionist Temporal Classification (CTC) and attention

mechanism. For CTC-based decoding, [15, 43, 46] propose

to use CNN and RNN to encode the sequence features and

use CTC for character alignment. For attention-based decod-

ing, [22] proposes recursive CNN to capture longer contex-

tual dependencies and uses an attention-based decoder for

sequence generation. [7] introduces the problem of attention

drift, and proposes focusing attention for better performance.

However, these works all assume that the text is horizon-

tal, and can not handle the text of irregular shapes such as

perspective distortion and curvature. To solve the problem of

irregular text recognition, [44, 45] propose to rectify the text

first based on Spatial Transformer Network [17] and then

treat it as horizontal text. Furthermore, [57] gets better per-

formance with iterative rectification and [53] rectifies with

some geometric constraints. [32] rectifies text by predicting

pixels offset. Instead of rectifying the whole text, [28] takes

an approach of detecting and rectifying individual charac-

ters. In spite of rectification, [8] encodes the images in four

directions and proposes a filter gate to fuse the features. [54]

introduces an auxiliary dense character detection task and an
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alignment loss into the 2D attenton based network. [23] pro-

poses a tailored 2D attention based framework for irregular

text recognition. Without encoder-decoder framework, [25]

converts irregular text recognition into character segmenta-

tion with fully convolutional network [31]. [52] proposes a

new loss function for more effective decoding.

2.2. Semantics in Scene Text

Many works try to bring semantics into the tasks of text

recognition or text retrieval. [12] predicts semantic concepts

directly from a word image with CNN. [36] proposes to

generate contextualized lexicons for scene images with only

visual information, and word-spotting task benefits a lot from

the lexicons. [51, 21] learn to map the word images to a word

embedding space and apply it into word spotting system. [18]

tries to detect and recognize text in online images with the

help of context information such as tags, comments, and

titles. [42] introduces to use the language model and the

semantic correlation between scene and text to re-rank the

recognition results. [37] proposes to boost the performance

of text spotting with the object information. [11] uses the text

embedded in advertisement images to enhance the image

classification. [59] proposes to use a pre-trained language

model to correct the inaccurate recognition results with the

text context in the image.

As discussed before, state-of-the-art recognition meth-

ods do not utilize the semantics of the text well. The re-

lated semantics works do not integrate the semantics into the

recognition pipeline explicitly and effectively.

3. Method

In this section we describe the proposed method in detail.

The general framework is shown in Fig. 2 (c), which consists

of 4 major components: 1) The encoder including CNN

backbone and RNN for extracting visual features; 2) The

semantic module for predicting semantic information from

the visual features; 3) The pre-trained language model for

supervising the semantic information predicted by semantic

module; 4) The decoder including RNN with attention mech-

anism for generating the recognition results. First we review

the encoder-decoder framework in Sec. 3.1, and introduce

the pre-trained language model detailedly in Sec. 3.2. In

Sec. 3.3, we describe our proposed method. Specifically,

we present the general framework in Sec. 3.3.1. After that,

we show the details of the proposed method which integrate

state-of-the-art method ASTER [45] into proposed frame-

work in Sec. 3.3.2. Finally, the loss function and the training

strategies are presented in Sec. 3.4.

3.1. Encoder­Decoder Framework

The Encoder-decoder framework is widely used in neural

machine translation, speech recognition, text recognition and

so on. [47] first introduces the structure of the framework

Encoder Decoder “AL”C

(a) Plain Encoder-Decoder Framework

Encoder DecoderFeatures

C

C

C

C

“SALL”

Attention Operation

(b) Attention-Based Encoder-Decoder Framework

Encoder DecoderFeatures

C

C

C

C

“SALE”

Pre-trained 

Language

Model

Word Embedding

Semantic information

Attention Operation

Semantic 

Module

Loss

(c) Our Encoder-Decoder Framework

Figure 2. Comparison of three kinds of framework. “C” repre-

sents context information. The plain encoder-decoder framework

gets incorrect results due to limited context representation. The

attention-based encoder-decoder framework works better but still

can not handle incomplete characters without global information.

Our proposed encoder-decoder framework predicts the correct re-

sult with the help of global semantic information.

and applies it into neural machine translation. For simplicity,

we call this framework plain encoder-decoder framework.

As visualized in Fig. 2 (a), the encoder extracts rich features

and generates a context vector C which contains global infor-

mation of the inputs, then the decoder converts the context

vector to target outputs. Source inputs and target outputs

are different due to different tasks, as for text recognition,

the inputs are images and target outputs are the texts in the

images. The specific composition of encoder and decoder is

not fixed, CNN and LSTM are all common choices.

Despite great effectiveness, the plain encoder-decoder

framework has an obvious drawback, where the context in-

formation has limited ability to represent the whole inputs.

Inspired by human visual attention, researchers introduce the

attention mechanism into the encoder-decoder framework,

which is defined as the attention-based encoder-decoder

framework. As shown in Fig. 2 (b), attention mechanism at-

tempts to build shortcuts between the context and the whole

inputs. The decoder can select the appropriate context at

each decoding step which is capable of resolving long-range

dependency problems, and the alignment between encoder
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and decoder is trained in a weakly supervised way.

For scene text recognition, the decoder only depends on

the limited local visual features for decoding in both the

plain encoder-decoder framework and the attention-based

encoder-decoder framework, so it is difficult to deal with

some low-quality images without global information. In

our proposed framework, the encoder learns explicit global

semantic information and uses it as guidance for the decoder.

We use FastText [4] to generate word embedding as the

supervision of the semantic information in that it can solve

the problem of “out of vocabulary”.

3.2. FastText Model

We choose FastText as our pre-trained language model,

which is based on skip-gram. Let T = {wi−l, . . . , wi+l}
be a sentence in a text corpus. l indicates the length of

the sentence and is a hyper-parameter. In skip-gram, a

word wi is represented by a single embedding vector vi
and then input to a simple feed-forward neural network,

which aims to predict the context represented as Ci =
{wi−l, . . . , wi−1, wi+1, . . . , wi+l}. With training the feed-

forward network, the embedding vector is simultaneously

optimized, and the final embedding vector of a word is close

to the words with similar semantics.

FastText additionally embeds subwords and uses them to

generate final embedding of the word wi. Given the hyper-

paramters lmin and lmax denoting a minimum and a max-

imum length of the subwords. For example, let lmin = 2,

lmax = 4 and the word be “where”, the set of subwords is

{wh, he, er, re, whe, her, ere, wher, here}. The word repre-

sentation is obtained by the combination of the embedding

vectors of all subwords and the word itself. Accordingly,

FastText model can handle the problem of “out of vocab-

ulary”. There are some novel words or incomplete words

in the benchmark datasets such as ICDAR2015 and SVT-

Perspective, so FastText is suitable for our framework.

3.3. SEED

3.3.1 General Framework

Many scene text recognition methods are based on the

encoder-decoder framework with attention. The decoder

focuses on specific regions of visual features and outputs

corresponding characters step by step. The framework works

well in most scenarios except in low-quality images. In some

low-quality images, texts may be blurred or occluded. To

address these problems, utilizing global semantic informa-

tion is an alternative. The proposed framework is shown

in Fig. 2 (c). Different from the attention-based encoder-

decoder framework, the proposed semantic module predicts

extra semantic information. Further, we use the word embed-

ding from a pre-trained language model as the supervision

to improve the performance. After that, the semantic infor-

mation is fed into the decoder along with the visual features.

Rectification 

Module

ResNet-45

Linear

S A L

BiLSTM

Features

Semantic Information (S)

Att-GRU

Encoder

Semantic Module

Decoder

Linear

h

L
in

e
a
r

Figure 3. Details of our SE-ASTER. It consists of four main mod-

ules, rectification module, encoder, semantic module, and decoder.

The semantic module predicts semantic information from the out-

puts of the encoder which is fed into decoder as the guidance.

In this way, our method is robust to low-quality images and

can correct recognition mistakes.

3.3.2 Architecture of Semantics Enhanced ASTER

We use ASTER [45] as an exemplar for our proposed frame-

work, and we call the proposed method Semantics Enhanced

ASTER (SE-ASTER). The SE-ASTER is illustrated in

Fig. 3. There are four modules: the rectification module

is to rectify the irregular text images, the encoder is to ex-

tract rich visual features, the semantic module is to predict

semantic information from the visual features, and the de-

coder transcribes the final recognition results.

First, the image is input to the rectification module to

predict control points with a shallow CNN, then Thin-plate

Splines [5] is applied to the image. In this way, the distorted

text image will be rectified. This module is the same as [45],

so we don’t describe it in detail. Thereafter, the rectified im-

age will be input to the encoder, and rich visual features can

be generated. Specifically, the encoder consists of a 45-layer

ResNet based CNN same as [45] and a 2-layer Bidirectional

LSTM [13] (BiLSTM) network with 256 hidden units. The

output of the encoder is a feature sequence h = (h1, . . . , hL)
with the shape of L × C, where L is the width of the last

feature map in CNN, and C is the depth.

The feature sequence h has two functions, one is to pre-

dict the semantic information by the semantic module and

the other is as the input of the decoder. For predicting se-

mantic information, we first flatten the feature sequence into

a one-dimensional feature vector I with dimension of K,

where K = L×C. The semantic information S is predicted
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with two linear functions as following:

S = W2σ(W1I + b1) + b2 . (1)

where W1,W2, b1, b2 are trainable weights in the linear func-

tion, σ is a ReLU activation function. We also evaluate pre-

dicting the semantic information with the final hidden state

hL of BiLSTM in the encoder, and it gets worse performance.

It may originate from that predicting semantic information

needs larger feature contexts and it is more proper to use the

BiLSTM outputs. The semantic information will be super-

vised by the word embedding provided by the pre-trained

FastText model. The loss function used here will be intro-

duced in Sec. 3.4.

The decoder adopts the Bahdanau-Attention mecha-

nism [1] which consists of a single layer attentional GRU [9]

with 512 hidden units and 512 attention units. Different

from [45] we use a single direction decoder here. In par-

ticular, the semantic information S is used to initialize the

states of GRU after a linear function for transforming the

dimension. Instead of using zero-state initializing, the de-

coding process will be guided with global semantics, so the

decoder uses not only local visual information but also global

semantic information to generate more accurate results.

3.4. Loss Function and Training Strategy

We add supervision at both the semantic module and the

decoder module. SE-ASTER is trained end-to-end. The loss

function is as follows:

L = Lrec + λLsem . (2)

where Lrec is the standard cross-entropy loss of the pre-

dicted probabilities with respect to the ground-truth, and

Lsem is the cosine embedding loss of the predicted seman-

tic information with respect to the word embedding of the

transcription label from the pre-trained FastText model. λ is

hyper-parameters to balance the loss, and we set it to 1 here.

Note that we just use a simple cosine based loss function

here instead of contrastive loss for faster training speed.

Lsem = 1− cos(S, em) . (3)

where S is the predicted semantic information and em is the

word embedding from pre-trained FastText model.

There are two training strategies. The first is initializing

the state of the decoder with the word embedding from the

pre-trained FastText model rather than the predicted seman-

tic information. Another is to use the predicted semantic

information directly. We evaluate these two strategies, and

their performances are similar. We use the second training

strategy which trains the model in a pure end-to-end way.

4. Experiments

In this section, we conduct extensive experiments to ver-

ify the effectiveness of our proposed method. First, we

introduce the datasets used for training and evaluation, and

the implementation details are described. Next, we perform

ablation studies to analyze the performance of the different

strategies. Finally, our method is compared with state-of-the-

art methods on several benchmarks.

4.1. Datasets

IIIT5K-Words (IIIT5K) [33] contains 5000 images,

most of which are regular samples. There are 3000 im-

ages for testing. Each sample in test set is associated with a

50-word lexicon and a 1k-word lexicon.

Street View Text (SVT) [49] consists of 647 cropped

word images from 249 street view images. Most of word

images are horizontal, but some of them are severely cor-

rupted by noise, blur, and low resolution. A 50-word lexicon

is provided for each image.

SVT-Perspective (SVTP) [39] contains 645 word im-

ages for evaluation. most images suffer in heavy perspective

distortions which are difficult for recognition. Each image is

associated with a 50-word lexicon.

ICDAR2013 (IC13) [20] consists of 1015 images for

testing, most of which are regular text images. Some of them

are under uneven illumination.

ICDAR2015 (IC15) [19] was collected without careful

capture. Most of images are with various distortions and

blurry which are challenging for most existing methods.

CUTE80 (CUTE) [41] consists of 288 word images only

for evaluation. Most of them are curved but with high reso-

lution, no lexicon is provided.

Synth90K [16] consists of 9 million synthetic images

generated from a lexicon of 90K words. It has been widely

used in text recognition task. We use it as one of our training

datasets. It contains words from the testing set of the IC13

and SVT.

SynthText [14] is another synthetic dataset for text de-

tection task. We crop the words with ground-truth word

bounding boxes and use for training our model.

4.2. Implementation Details

The proposed SE-ASTER is implemented in Py-

Torch [35]. The pre-trained FastText model is the officially

available model1 trained on Common Crawl2 and Wikipedia3.

In total 97 symbols are recognized, including digits, upper-

case and lower-case letters, 32 punctuation marks, end-of-

sequence symbol, padding symbol, and unknown symbol.

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://commoncrawl.org/
3https://www.wikipedia.org/
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IC13-sr IC15-sr

Methods

Images

ASTER ier for irst cooker poon echars mest xerr

ASTER+WES herb room its ooker spoon rechery inest verry

ASTER+INIT here look first looker poon keekers inest merri

SE-ASTER here room first cookery spoon kechers finest merry

Table 1. Visualization of the recognition results on the two shrink datasets. Red: wrong results; Green: correct results.

Methods WES INIT IC13 SVTP IC15

ASTER [45] 91.8 78.5 76.1

ASTER-r 90.9 79.1 78.4

ASTER ✦ 90.8 79.2 77.0

ASTER ✦ 91.1 78.1 76.1

ASTER ✦ ✦ 92.8 81.4 80.0

Table 2. Performance comparison between different strategies.

WES represents word embedding supervision. INIT represents

initializing the state of the GRU in the decoder. ASTER-r repre-

sents the model re-trained by ourselves.

The size of input images are resized to 64 × 256 with-

out keeping ratio, and we adopt the ADADELTA [56] to

minimize the objective function. Without any pre-training

and data augmentation, our model is trained on SynthText

and Synth90K for 6 epochs with the batch size of 512, the

learning rate is set to 1.0 and is decayed to 0.1 and 0.01 at

the 4th epoch and the 5th epoch. The model is trained on

one NVIDIA M40 graphics card.

For evaluation, we resize the input images to the same

size as for training. We use beam search for GRU decoding,

which keeps the k candidates with the highest accumulative

scores, where k is set to 5 in all our experiments.

4.3. Ablation Study

There are two steps about the semantic module, one is

the word embedding supervision and the other is initializ-

ing decoder with the predicted semantic information. We

evaluate these two steps separately by using the Synth90K

and SynthText as training data consistently. The results are

shown in Tab. 2. The model supervised with word embed-

ding only does not improve the performance compared with

the baselines. Using predicted holistic features from the

encoder to initialize decoder improves the performance by

almost 0.2% in ICDAR13, but gets worse performance on

SVTP and IC15. It shows that learning global information

in an implicit weakly supervised way still struggles with

low-quality images. A combination of these two steps gets

the best performance. The improvements of 1.9%, 2.3% and

1.6% are obtained on IC13, SVTP and IC15 respectively.

Compared with ASTER without word embedding supervi-

sion, it improves the accuracy by 1.7% on IC13, 3.3% on

SVTP and 3.9% on IC15, which verifies that the supervision

with word embedding is quite important.

4.4. Performance with Inaccurate Bounding Boxes

Scene text recognition in real applications is always com-

bined with the detection branch to achieve an end-to-end

pipeline. However, the detection branch may not output

ideal bounding boxes. If text recognition is robust to inaccu-

rate detection results, the overall end-to-end performance can

be more satisfactory. Limited by the receptive field of CNNs,

the most frequent inaccurate detection is incomplete charac-

ters. We conduct experiments to show our method is robust

with this situation. Here we also use SE-ASTER as an exem-

plar. Note that the SE-ASTER is only trained on Synth90K

and SynthText without any data augmentation such as ran-

dom cropping. We first generate two shrink datasets IC13-sr

and IC15-sr based on IC13 and IC15 respectively as follows.

We randomly remove the original word images up to

15% in the left, right, top and bottom directions simulta-

neously. All of the cropped images still have an intersec-

tion over union with the original ones larger or equal than

(1−0.15×2)2 = 0.49. According to the evaluation protocol

of detection, these cropped images are all positive localiza-

tions because the IoU is above the standard threshold of 0.5.

Some examples are shown in Tab. 1.

Methods
IC13

IC13-sr
GAP

IC15

IC15-sr
GAP

ASTER
90.9

71.4
-19.5

78.4

65.6
-12.8

ASTER+WES
90.8

71.9
-18.9

77.0

62.8
-14.2

ASTER+INIT
91.1

74.6
-16.5

76.1

63.1
-13.0

SE-ASTER
92.8

77.4
-15.4

80.0

70.0
-10.0

Table 3. Results on the shrink datasets, GAP indicates the decline

between two datasets.

The quantitative results are illustrated in Tab. 3. The per-

formances of the ASTER baseline drop 19.5% and 12.8%
on the IC13-sr dataset and the IC15-sr dataset respectively,

which reveal that the ASTER baseline suffers a lot from the

incomplete characters. However, with the supervision of
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Input Images
SAR

SE-SAR

ASTER

SE-ASTER

baf

bar

batf

bar

ale

sale

ale

sale

orchano

orchard

orghand

orchard

nex

mex

me

mex

martis

martin

martia

martin

xccessorize

accessorize 

recessorize

accessorize

hilfiger

hilfger

hilfgger

hilfger

Figure 4. Examples of low-quality images and recognition results

in four methods. Red characters are the wrong results, and green

ones are the correct.

word embedding, the model still struggles with the shrink

images. Using the holistic information from encoder as

the guidance of the decoder gets better results with 16.5%
and 13.0% decline. SE-ASTER gets the best results, which

shows that our model is more robust with incomplete char-

acters. Some visualizing examples are illustrated in Tab. 1.

4.5. Generalization of Proposed Framework

To verify the generalization of SEED, we integrate an-

other state-of-the-art recognition method SAR [23]. SAR

is a 2D-attention based recognition method without rectifi-

cation on input images, and it already adopts an LSTM to

generate a holistic feature. However as we mentioned before,

the holistic feature may be not effective in a weakly super-

vised training strategy, so we make some modifications and

call our new model Semantics Enhanced SAR (SE-SAR).

In SE-SAR, we replace the max-pooling along the vertical

axis with a shallow CNN. The output of the shallow CNN

is a feature map with the height of 1, then the feature map

is fed into a 2-layer LSTM to extract context information.

Two linear functions are applied to the output of LSTM

to predict the semantic information. Except for the 2D-

attention decoder in SAR, we apply another decoder to the

output of the LSTM and supervise with the transcription

labels. In this way, the output of LSTM contains richer

information and helps predict semantic information. Finally,

the semantic information is used to initialize the LSTM of the

decoder. The model is trained on Synth90K and SynthText

for 2 epochs with the batch size of 128.

(a)

(b)

Figure 5. Visualization of cosine similarity of the predicted seman-

tic information from the image w.r.t the word embedding of the

words from lexicons. Larger value means more similar semantics.

Methods IC13 IC15 SVT SVTP

SAR [23] 91.0 69.2 84.5 76.4

SE-SAR 90.9 73.4 85.8 78.7

Table 4. Recognition performance on SAR and SE-SAR.

We conduct some experiments on IC13, IC15, SVT, and

SVTP to show the effectiveness of the SE-SAR. The results

are demonstrated in Tab. 4. Compared with the baseline, our

SE-SAR improves 4.2%, 1.3% and 2.3% on IC15, SVT, and

SVTP respectively. SE-SAR is only comparable with SAR

in that low-quality images are scarce in IC13.

4.6. Qualitative Results and Visualization

We visualize low-quality images including blur or occlu-

sion. Some examples are shown in Fig. 4. As can be seen,

our proposed methods SE-ASTER and SE-SAR are robust

with low-quality images. We explain that semantic infor-

mation will provide an effective global feature to decoder,

which is robust to the interference in the images.

We also perform experiments on IIIT5K to visualize the

validity of the predicted semantic information. As illustrated

in Fig. 5, we compute the cosine similarity between the

predicted semantic information and the word embedding

of each word from lexicons (50 words for each image). In
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Methods IIIT5K SVT IC13 IC15 SVTP CUTE

Shi et al. [43] 81.2 82.7 89.6 - - -

Shi et al. [44] 81.9 81.9 88.6 - 71.8 59.2

Lee et al. [22] 78.4 80.7 90.0 - - -

Yang et al. [54]* - - - - 75.8 69.3

Cheng et al. [7]* 87.4 85.9 93.3 70.6 - -

Cheng et al. [8] 87.0 82.8 - 68.2 73.0 76.8

Liu et al. [28]* 92.0 85.5 91.1 74.2 78.9 -

Bai et al. [2]* 88.3 87.5 94.4 73.9 - -

Liu et al. [30]* 87.0 - 92.9 - - -

Liu et al. [29] 89.4 87.1 94.0 - 73.9 62.5

Liao et al. [25]* 91.9 86.4 91.5 - - 79.9

Zhan et al. [57] 93.3 90.2 91.3 76.9 79.6 83.3

Xie et al. [52] - - - 68.9 70.1 82.6

Li et al. [23] 91.5 84.5 91.0 69.2 76.4 83.3

Luo et al. [32] 91.2 88.3 92.4 74.7 76.1 77.4

Yang et al. [53]* 94.4 88.9 93.9 78.7 80.8 87.5

ASTER [45] 93.4 89.5 91.8 76.1 78.5 79.5

ASTER baseline reproduced 93.5 87.2 90.9 78.4 79.1 82.3

SE-ASTER (Ours) 93.8 89.6 92.8 80.0 81.4 83.6

Table 5. Lexicon-free performance on public benchmarks. Bold represents the best performance. Underline represents the second best result.

* indicates using both word-level and character-level annotations to train model.

Fig. 5 (a), the predicted semantic information is very related

to the words which have similar semantics. For example,

“home”, “house”, and “lodge’ all have the meaning of resi-

dence. “Tom”, “Paul” and “Charles” are all common names.

The second row illustrates the robustness of the predicted

semantic information. For example, “house” and “horse”

have a similar spelling and are of the edit distance of 1, but

their semantics are quite different as shown in Fig. 5 (b).

With the help of global semantic information, the model can

distinguish them easily.

4.7. Comparison with State­of­the­art

We also compare our methods with previous state-of-the-

art methods on several benchmarks. The results are shown

in Tab. 5. Compared with other methods, we achieve 2 best

results and 3 second best results out of 6 in the lexicon-free

scenario with only word-level annotations.

Our proposed method works effectively on some low-

quality datasets such as IC15 and SVTP compared with other

methods. Especially, SE-ASTER improve 3.9% on IC15

(from 76.1% to 80.0%) and 2.9% on SVTP (from 78.5% to

81.4%) compared with ASTER [45]. It also outperforms

state-of-the-art method ScRN [53] 0.6% on SVTP and 1.3%
on IC15, although our method is based on a weaker backbone

and without character-level annotations.

SE-ASTER also gets superior or comparable results on

several high-quality datasets. Compared with ASTER [45]

we get 0.4% and 4.1% improvements on IIIT5K and CUTE

respectively. On SVT and IC13, our method gets accura-

cies of 89.6% and 92.8%, which are slightly worse than

ESIR [57] and [2] by 0.6% and 1.6%. Note that our frame-

work is very flexible and can be integrated with most existing

methods, and we believe that if we replace a stronger base-

line model better results can be achieved.

5. Conclusion and Future Works

In this work, we propose the semantics enhanced encoder-

decoder framework for scene text recognition. Our frame-

work predicts an additional global semantic information

supervised by the word embedding from a pre-trained lan-

guage model. Using the predicted semantic information as

the decoder initialization, the recognition accuracy can be

improved especially for low-quality images. By integrating

the state-of-the-art method ASTER into our framework, we

can achieve superior results on several standard benchmark

datasets. In the future, we will extend our framework to an

end-to-end text spotting system. In this way, more semantic

information can be utilized.
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nis Karatzas. Dynamic lexicon generation for natural scene

images. In ECCV, pages 395–410, 2016.

[37] Shitala Prasad and Adams Wai Kin Kong. Using object infor-

mation for spotting text. In ECCV, pages 540–557, 2018.

[38] Xugong Qin, Yu Zhou, Dongbao Yang, and Weiping Wang.

Curved text detection in natural scene images with semi-and

weakly-supervised learning. In ICDAR, pages 559–564, 2019.

[39] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan

Tian, and Chew Lim Tan. Recognizing text with perspective

distortion in natural scenes. In ICCV, pages 569–576, 2013.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region

proposal networks. In NeurlPS, pages 91–99, 2015.

[41] Anhar Risnumawan, Palaiahankote Shivakumara, Chee Seng

Chan, and Chew Lim Tan. A robust arbitrary text detection

system for natural scene images. ESA, 41(18):8027–8048,

2014.

[42] Ahmed Sabir, Francesc Moreno-Noguer, and Lluı́s Padró.
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