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Abstract

We investigate the compression of deep neural networks

by quantizing their weights and activations into multiple

binary bases, known as multi-bit networks (MBNs), which

accelerate the inference and reduce the storage for the de-

ployment on low-resource mobile and embedded platforms.

We propose Adaptive Loss-aware Quantization (ALQ), a new

MBN quantization pipeline that is able to achieve an aver-

age bitwidth below one-bit without notable loss in inference

accuracy. Unlike previous MBN quantization solutions that

train a quantizer by minimizing the error to reconstruct full

precision weights, ALQ directly minimizes the quantization-

induced error on the loss function involving neither gra-

dient approximation nor full precision maintenance. ALQ

also exploits strategies including adaptive bitwidth, smooth

bitwidth reduction, and iterative trained quantization to al-

low a smaller network size without loss in accuracy. Ex-

periment results on popular image datasets show that ALQ

outperforms state-of-the-art compressed networks in terms

of both storage and accuracy.

1. Introduction

There is a growing interest to deploy deep neural networks

on resource-constrained devices to enable new intelligent

services such as mobile assistants, augmented reality, and

autonomous cars. However, deep neural networks are no-

toriously resource-intensive. Their complexity needs to be

trimmed down to fit in mobile and embedded devices.

To take advantage of the various pretrained models for

efficient inference on resource-constrained devices, it is com-

mon to compress the pretrained models via pruning [10],

quantization [8, 9, 26, 42, 43], distillation [12], among oth-

ers. We focus on quantization, especially quantizing both

the full precision weights and activations of a deep neural

network into binary encodes and the corresponding scaling

factors [4, 36], which are also interpreted as binary basis

vectors and floating-point coordinates in a geometry view-

point [9]. Neural networks quantized with binary encodes

replace expensive floating-point operations by bitwise op-

erations, which are supported even by microprocessors and

often result in small memory footprints [29]. Since the space

spanned by only one-bit binary basis and one coordinate is

too sparse to optimize, many researchers suggest a multi-bit

network (MBN) [8, 9, 15, 26, 42, 43], which allows to obtain

a small size without notable accuracy loss and still leverages

bitwise operations. An MBN is usually obtained via trained

quantization. Recent studies [31] leverage bit-packing and

bitwise computations for efficient deploying binary networks

on a wide range of general devices, which also provides more

flexibility to design multi-bit/binary networks.

Most MBN quantization schemes [8, 9, 15, 26, 42, 43]

predetermine a global bitwidth, and learn a quantizer to

transform the full precision parameters into binary bases and

coordinates such that the quantized models do not incur a

significant accuracy loss. However, these approaches have

the following drawbacks:

• A global bitwidth may be sub-optimal. Recent stud-

ies on fixed-point quantization [18, 25] show that the

optimal bitwidth varies across layers.

• Previous efforts [26, 42, 43] retain inference accuracy

by minimizing the weight reconstruction error rather

than the loss function. Such an indirect optimization

objective may lead to a notable loss in accuracy. Fur-

thermore, they rely on approximated gradients, e.g.

straight-through estimators (STE) to propagate gradi-

ents through quantization functions during training.

• Many quantization schemes [36, 43] keep the first and

last layer in full precision, because quantizing these

layers to low bitwidth tends to dramatically decrease
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the inference accuracy [41, 28]. However, these two full

precision layers can be a significant storage overhead

compared to other low-bit layers (see Sec. 5.4.3). Also,

floating-point operations in both layers can take up the

majority of computation in quantized networks [27].

We overcome the above drawbacks via a novel Adaptive

Loss-aware Quantization scheme (ALQ). Instead of using a

uniform bitwidth, ALQ assigns a different bitwidth to each

group of weights. More importantly, ALQ directly min-

imizes the loss function w.r.t. the quantized weights, by

iteratively learning a quantizer that (i) smoothly reduces the

number of binary bases and (ii) alternatively optimizes the

remaining binary bases and the corresponding coordinates.

Although loss-aware quantization has been proposed for bi-

nary and ternary networks [14, 13, 46], they are inapplicable

to MBNs due to the extended optimization space. They also

need approximated gradients during training. ALQ is the

first loss-aware quantization scheme for MBNs and elimi-

nates the need for approximating gradients and retaining full

precision weights. ALQ is also able to quantize the first and

last layers without incurring a notable accuracy loss. The

main contributions of this work are as follows.

• We design ALQ, the first loss-aware quantization

scheme for multi-bit networks. It is also the first trained

quantizer without gradient approximation, and realizes

an adaptive bitwidth w.r.t the loss for MBNs (including

the first and last layers).

• ALQ enables extremely low-bit (yet dense tensor form)

binary networks with an average bitwidth below 1-bit.

Experiments on CIFAR10 show that ALQ can compress

VGG to an average bitwidth of 0.4-bit, while yielding

a higher accuracy than other binary networks [36, 4].

2. Related Work

ALQ follows the trend to quantize deep neural networks

using discrete bases to reduce expensive floating-point op-

erations. Commonly used bases include fixed-point [47],

power of two [16, 45], and {−1, 0,+1} [4, 36]. We fo-

cus on quantization with binary bases i.e. {−1,+1} among

others for the following considerations. (i) If both weights

and activations are quantized with the same binary basis, it

is possible to evaluate 32 multiply-accumulate operations

(MACs) with only 3 instructions on a 32-bit microprocessor,

i.e. bitwise xnor, popcount, and accumulation. This will

significantly speed up the convolution operations [16]. (ii) A

network quantized to fixed-point requires specialized integer

arithmetic units (with various bitwidth) for efficient com-

puting [1, 18], whereas a network quantized with multiple

binary bases adopts the same operations mentioned before

as binary networks. Popular networks quantized with binary

bases include Binary Networks and Multi-bit Networks.

2.1. Quantization for Binary Networks

BNN [4] is the first network with both binarized weights

and activations. It dramatically reduces the memory and

computation but often with notable accuracy loss. To re-

sume the accuracy degradation from binarization, XNOR-

Net [36] introduces a layer-wise full precision scaling factor

into BNN. However, XNOR-Net leaves the first and last

layers unquantized, which consumes more memory. SYQ

[6] studies the efficiency of different structures during bi-

narization/ternarization. LAB [14] is the first loss-aware

quantization scheme which optimizes the weights by directly

minimizing the loss function.

ALQ is inspired by recent loss-aware binary networks

such as LAB [14]. Loss-aware quantization has also been

extended to fixed-point networks in [13]. However, existing

loss-aware quantization schemes [14, 13] are inapplicable

for MBNs. This is because multiple binary bases dramati-

cally extend the optimization space with the same bitwidth

(i.e. an optimal set of binary bases rather than a single basis),

which may be intractable. Some proposals [14, 13, 46] still

require full-precision weights and gradient approximation

(backward STE and forward loss-aware projection), introduc-

ing undesirable errors when minimizing the loss. In contrast,

ALQ is free from gradient approximation.

2.2. Quantization for Multi­bit Networks

MBNs denote networks that use multiple binary bases

to trade off storage and accuracy. Gong et al. propose a

residual quantization process, which greedily searches the

next binary basis by minimizing the residual reconstruction

error [8]. Guo et al. improve the greedy search with a least

square refinement [9]. Xu et al. [42] separate this search

into two alternating steps, fixing coordinates then exhausted

searching for optimal bases, and fixing the bases then refin-

ing the coordinates using the method in [9]. LQ-Net [43]

extends the scheme of [42] with a moving average updating,

which jointly quantizes weights and activations. However,

similar to XNOR-Net [36], LQ-Net [43] does not quantize

the first and last layers. ABC-Net [26] leverages the statisti-

cal information of all weights to construct the binary bases

as a whole for all layers.

All the state-of-the-art MBN quantization schemes min-

imize the weight reconstruction error rather than the loss

function of the network. They also rely on the gradient ap-

proximation such as STE when back propagating the quan-

tization function. In addition, they all predetermine a uni-

form bitwidth for all parameters. The indirect objective, the

approximated gradient, and the global bitwidth lead to a

sub-optimal quantization. ALQ is the first scheme to explic-

itly optimize the loss function and incrementally train an

adaptive bitwidth while without gradient approximation.
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3. Adaptive Loss-Aware Quantization

3.1. Weight Quantization Overview

Notations. We aim at MBN quantization with an adap-

tive bitwidth. To allow adaptive bitwidth, we structure the

weights in disjoint groups. Specifically, for the vectorized

weights w of a given layer l, where w ∈ R
N×1, we divide w

into G disjoint groups. For simplicity, we omit the subscript l.
Each group of weights is denoted by wg , where wg ∈ R

n×1

and N = n × G. Then the quantized weights of each

group, ŵg =
∑Ig

i=1
αiβi = Bgαg . βi ∈ {−1,+1}n×1 and

αi ∈ R+ are the ith binary basis and the corresponding coor-

dinate; Ig represents the bitwidth, i.e. the number of binary

bases, of group g. Bg ∈ {−1,+1}n×Ig and αg ∈ R
Ig×1

+

are the matrix forms of the binary bases and the coordinates.

We further denote α as vectorized coordinates {αg}Gg=1,

and B as concatenated binary bases {Bg}Gg=1 of all weight

groups in layer l. A layer l quantized as above yields an

average bitwidth I = 1

G

∑G
g=1

Ig . We discuss the choice of

group size n, and the initial Bg , αg , Ig in Sec. 5.1.

Problem Formulation. ALQ quantizes weights by directly

minimizing the loss function rather than the reconstruction

error. For layer l, the process can be formulated as the

following optimization problem.

min
ŵg

ℓ (ŵg) (1)

s.t. ŵg =

Ig
∑

i=1

αiβi = Bgαg (2)

card(α) = I ×G ≤ Imin ×G (3)

where ℓ is the loss; card(.) denotes the cardinality of the set,

i.e. the total number of elements in α; Imin is the desirable

average bitwidth. Since the group size n is the same in one

layer, card(α) is proportional to the storage consumption.

ALQ tries to solve the optimization problem in Eq.(1)-

Eq.(3) by iteratively solving two sub-problems as below. The

overall pseudocode is illustrated in Alg. 5 in Appendix B.3.

• Step 1: Pruning in α Domain (Sec. 3.2). In this step,

we progressively reduce the average bitwidth I for a

layer l by pruning the least important (w.r.t. the loss) co-

ordinates in α domain. Note that removing an element

αi will also lead to the removal of the binary basis βi,

which in effect results in a smaller bitwidth Ig for group

g. This way, no sparse tensor is introduced. Sparse ten-

sors could lead to a detrimental irregular computation.

Since the importance of each weight group differs, the

resulting Ig varies across groups, and thus contributes

to an adaptive bitwidth Ig for each group. In this step,

we only set some elements of α to zero (also remove

them from α leading to a reduced Ig) without changing

the others. The optimization problem for Step 1 is:

min
α

ℓ (α) (4)

s.t. card(α) ≤ Imin ×G (5)

• Step 2: Optimizing Binary Bases Bg and Coordi-

nates αg (Sec. 3.3). In this step, we retrain the remain-

ing binary bases and coordinates to recover the accuracy

degradation induced by the bitwidth reduction. Similar

to [42], we take an alternative approach for better accu-

racy recovery. Specifically, we first search for a new set

of binary bases w.r.t. the loss given fixed coordinates.

Then we optimize the coordinates by fixing the binary

bases. The optimization problem for Step 2 is:

min
ŵg

ℓ (ŵg) (6)

s.t. ŵg =

Ig
∑

i=1

αiβi = Bgαg (7)

Optimizer Framework. We consider both sub-problems

above as an optimization problem with domain constraints,

and solve them using the same optimization framework:

subgradient methods with projection update [5].

The optimization problem in Eq.(6)-Eq.(7) imposes do-

main constraints on Bg because they can only be discrete

binary bases. The optimization problem in Eq.(4)-Eq.(5) can

be considered as with a trivial domain constraint: the output

α should be a subset (subvector) of the input α. Furthermore,

the feasible sets for both Bg and α are bounded.

Subgradient methods with projection update are effective

to solve problems in the form of minx(ℓ(x)) s.t. x ∈ X [5].

We apply AMSGrad [37], an adaptive stochastic subgradient

method with projection update, as the common optimizer

framework in the two steps. At iteration s, AMSGrad gener-

ates the next update as,

xs+1 = Π
X,
√

V̂ s
(xs − asms/

√
v̂s)

= argmin
x∈X

‖(
√

V̂ s)1/2(x− (xs − asms

√
v̂s

))‖
(8)

where Π is a projection operator; X is the feasible domain

of x; as is the learning rate; ms is the (unbiased) first mo-

mentum; v̂s is the (unbiased) maximum second momentum;

and V̂ s is the diagonal matrix of v̂s.

In our context, Eq.(8) can be written as,

ŵs+1
g = argmin

ŵg∈F

fs(ŵg) (9)

fs = (asms)T(ŵg−ŵs
g)+

1

2
(ŵg−ŵs

g)
T

√

V̂ s(ŵg−ŵs
g)

(10)
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where F is the feasible domain of ŵg .

Step 1 and Step 2 have different feasible domains of F

according to their objective (details in Sec. 3.2 and Sec. 3.3).

Eq.(10) approximates the loss increment incurred by ŵg

around the current point ŵs
g as a quadratic model function

under domain constraints [5, 37]. For simplicity, we replace

asms with gs and replace
√

V̂ s with Hs. gs and Hs are

iteratively updated by the loss gradient of ŵs
g. Thus, the

required input of each AMSGrad step is ∂ℓs

∂ŵs
g

. Since ŵs
g is

used as an intermediate value during the forward, it can be

directly obtained during the backward.

3.2. Pruning in α Domain

As introduced in Sec. 3.1, we reduce the bitwidth I by

pruning the elements in α w.r.t. the resulting loss. If one

element αi in α is pruned, the corresponding dimension βi

is also removed from B. Now we explain how to instantiate

the optimizer in Eq.(9) to solve Eq.(4)-Eq.(5) of Step 1.

The cardinality of the chosen subset (i.e. the average

bitwidth) is uniformly reduced over iterations. For ex-

ample, assume there are T iterations in total, the initial

average bitwidth is I0 and the desired average bitwidth

after T iterations IT is Imin. Then at each iteration t,
(Mp = round((I0 − Imin) × G/T )) of αt

i’s are pruned

in this layer. This way, the cardinality after T iterations will

be smaller than Imin ×G. See Alg. 2 in Appendix B.1 for

the pseudocode.

When pruning in the α domain, B is considered as in-

variant. Hence Eq.(9) and Eq.(10) become,

αt+1 = argmin
α∈P

f t
α
(α) (11)

f t
α
= (gt

α
)T(α−αt) +

1

2
(α−αt)THt

α
(α−αt) (12)

where gt
α

and Ht
α

are similar as in Eq.(10) but are in the α

domain. If αt
i is pruned, the ith element in α is set to 0 in the

above Eq.(11) and Eq.(12). Thus, the constrained domain P

is taken as all possible vectors with Mp zero elements in αt.

AMSGrad uses a diagonal matrix of Ht
α

in the quadratic

model function, which decouples each element in αt. This

means the loss increment caused by several αt
i equals the

sum of the increments caused by them individually, which

are calculated as,

f t
α,i = −gt

α,i α
t
i +

1

2
Ht

α,ii (α
t
i)

2 (13)

All items of f t
α,i are sorted in ascending. Then the first Mp

items (αt
i) in the sorted list are removed from αt, and results

in a smaller cardinality It ×G. The input of the AMSGrad

step in α domain is the loss gradient of αt
g, which can be

computed with the chain rule,

∂ℓt

∂αt
g

= Bt
g
T ∂ℓt

∂ŵt
g

(14)

ŵt
g = Bt

gα
t
g (15)

Our pipeline allows to reduce the bitwidth smoothly, since

the average bitwidth can be floating-point. In ALQ, since dif-

ferent layers have a similar group size (see Sec. 5.1), the loss

increment caused by pruning is sorted among all layers, such

that only a global pruning number needs to be determined.

The global pruning number is defined by the total number of

pruned αi’s, i.e. the difference of
∑

l card(αl) before and

after pruning. More details are explained in Appendix B.1

and B.3. This pruning step not only provides a loss-aware

adaptive bitwidth, but also seeks a better initialization for

training the following lower bitwidth quantization, since

quantized weights may be relatively far from their original

full precision values.

3.3. Optimizing Binary Bases and Coordinates

After pruning, the loss degradation needs to be recovered.

Following Eq.(9), the objective in Step 2 is

ŵs+1
g = argmin

ŵg∈F

fs(ŵg) (16)

The constrained domain F is decided by both binary bases

and full precision coordinates. Hence directly searching

optimal ŵg is NP-hard. Instead, we optimize Bg and αg in

an alternative manner, as with prior MBN quantization w.r.t.

the reconstruction error [42, 43].

Optimizing Bg . We directly search the optimal bases with

AMSGrad. In each optimizing iteration q, we fix αq
g, and

update Bq
g . We find the optimal increment for each group

of weights, such that it converts to a new set of binary bases,

Bq+1
g . This optimization step searches a new space spanned

by Bq+1
g based on the loss reduction, which prevents the

pruned space to be always a subspace of the previous one.

See Alg. 3 in Appendix B.2.1 for the detailed pseudocode.

According to Eq.(9) and Eq.(10), the optimal Bg w.r.t.

the loss is updated by,

Bq+1
g = argmin

Bg∈{−1,+1}n×Ig

fq(Bg) (17)

fq = (gq)T(Bgα
q
g − ŵq

g)+

1

2
(Bgα

q
g − ŵq

g)
THq(Bgα

q
g − ŵq

g)
(18)

where ŵq
g = Bq

gα
q
g .

Since Hq is diagonal in AMSGrad, each row vector in

Bq+1
g can be independently determined. For example, the

jth row is computed as,

B
q+1

g,j = argmin
Bg,j

‖Bg,jα
q
g − (ŵq

g,j − gqj/H
q
jj)‖ (19)

In general, n >> Ig . For each group, we firstly compute all

2Ig possible values of

bTαq
g , bT ∈ {−1,+1}1×Ig (20)
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Then each row vector B
q+1

g,j can be directly assigned by the

optimal bT through exhaustive search.

Optimizing αg . The above obtained set of binary bases Bg

spans a new linear space. The current αg is unlikely to be

a (local) optimal w.r.t. the loss in this space, so now we

optimize αg. Since αg is full precision, i.e. αg ∈ R
Ig×1,

there is no domain constraint and thus no need for projection

updating. Optimizing full precision wg takes incremental

steps in original n-dim full space (spanned by orthonormal

bases). Similarly, optimizing αg searches steps in a Ig-dim

subspace (spanned by Bg). Hence conventional training

strategies can be directly used to optimize αg . See Alg. 4 in

Appendix B.2.2 for the detailed pseudocode.

Similar as Eq.(11) and Eq.(12), we construct an AMS-

Grad optimizer in α domain but without projection updating,

for each group in the pth iteration as,

αp+1
g = αp

g − ap
α
mp

α
/
√

v̂
p
α (21)

We also add an L2-norm regularization on αg to enforce

unimportant coordinates to zero. If there is a negative value

in αg , the corresponding basis is set to its negative comple-

ment, to keep αg semi-positive definite. Optimizing Bg and

αg does not influence the number of binary bases Ig .

Optimization Speedup. Since αg is full precision, updating

αq
g is much cheaper than exhaustively search Bq+1

g . Even

if the main purpose of the first step in Sec. 3.3 is optimiz-

ing bases, we also add an updating process for αq
g in each

optimizing iteration q.

We fix Bq+1
g , and update αq

g. The overall increment of

quantized weights from both updating processes is,

ŵq+1
g − ŵq

g = Bq+1
g αq+1

g −Bq
gα

q
g (22)

Substituting Eq.(22) into Eq.(9) and Eq.(10), we have,

αq+1
g = −((Bq+1

g )THqBq+1
g )−1×

((Bq+1
g )T(gq −HqBq

gα
q
g))

(23)

To ensure the inverse in Eq.(23) exists, we add λI onto

(Bq+1
g )THqBq+1

g , where λ = 10−6.

4. Activation Quantization

To leverage bitwise operations for speedup, the inputs of

each layer (i.e. the activation output of the last layer) also

need to be quantized into the multi-bit form. Unlike previous

works [43] that quantize activations with a different binary

basis ({0,+1}) as weights, we also quantize activations with

{−1,+1}. This way, we only need 3 instructions rather than

5 instructions to replace the original 32 MACs (see Sec. 2).

Our activation quantization follows the idea proposed in

[2], i.e. a parameterized clipping for fixed-point activation

quantization, but it is adapted to the multi-bit form. Spe-

cially, we replace ReLu with a step activation function. The

vectorized activation x of the lth layer is quantized as,

x
.
= x̂ = xref +Dγ = D′γ′ (24)

where D ∈ {−1,+1}Nx×Ix , and γ ∈ R
Ix×1
+ . γ′ is a col-

umn vector formed by [xref ,γ
T]T; D′ is a matrix formed

by [1Nx×1,D]. Nx is the dimension of x, and Ix is the

quantization bitwidth for activations. xref is the introduced

layerwise (positive floating-point) reference to fit in the out-

put range of ReLu. During inference, xref is convoluted

with the weights of the next layer and added to the bias.

Hence the introduction of xref does not lead to extra com-

putations. The output of the last layer is not quantized, as it

does not involve computations anymore. For other settings,

we directly adopt them used in [43]. γ and xref are updated

during the forward propagation with a running average to

minimize the squared reconstruction error as,

γ′
new = (D′TD′)−1D′Tx (25)

γ′ = 0.9γ′ + (1− 0.9)γ′
new (26)

The (quantized) weights are also further fine-tuned with

our optimizer to resume the accuracy drop. Here, we only

set a global bitwidth for all layers in activation quantization.

5. Experiments

We implement ALQ with Pytorch [30], and evalu-

ate its performance on MNIST [22], CIFAR10 [19], and

ILSVRC12 (ImageNet) [38] using LeNet5 [21], VGG [14,

36], and ResNet18/34 [11], respectively. More implementa-

tion details are provided in Appendix C.

5.1. ALQ Initialization

We adapt the network sketching proposed in [9] for ŵg

initialization, and realize a structured sketching (see Alg. 1

in Appendix A.1). Some important parameters in Alg. 1 are

chosen as below.

Group Size n. We empirically decide a range for the group

size n by trading off between the weight reconstruction error

and the storage compression rate. A group size from 32 to

512 achieves a good balance. Accordingly, for a convolu-

tion layer, grouping in channel-wise (wc,:,:,:), kernel-wise

(wc,d,:,:), and pixel-wise (wc,:,h,w) appears to be appropriate.

Channel-wise wc,: and subchannel-wise wc,d:d+n grouping

are suited for a fully connected layer. In addition, the most

frequently used structures for current popular networks are

pixel-wise (convolution layers) and (sub)channel-wise (fully

connected layers), which align with the bit-packing approach

in [31]. See Appendix A.2 for more details on grouping.

Maximum Bitwidth Imax for Group g. The initial Ig is

set by a predefined initial reconstruction precision or a max-

imum bitwidth. We notice that the accuracy degradation
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caused by the initialization can be fully recovered after sev-

eral optimization epochs proposed in Sec. 3.3, if the maxi-

mum bitwidth is 8. For example, ResNet18 on ILSVRC12

after such an initialization can be retrained to a Top-1/5

accuracy of 70.3%/89.4%, even higher than its full preci-

sion counterpart (69.8%/89.1%). For smaller networks, e.g.

VGG on CIFAR10, a maximum bitwidth of 6 is sufficient.

5.2. Convergence Analysis

Settings. This experiment conducts the ablation study of our

optimization step in Sec. 3.3. We show the advantages of our

optimizer in terms of convergence, on networks quantized

with a uniform bitwidth. Optimizing Bg with speedup (also

Alg. 3) is compared, since it takes a similar alternating step

as previous works [42, 43]. Recall that our optimizer (i) has

no gradient approximation and (ii) directly minimizes the

loss. We use AMSGrad1 with a learning rate of 0.001, and

compare with following baselines.

• STE with rec. error: This baseline quantizes the main-

tained full precision weights by minimizing the recon-

struction error (rather than the loss) during forward and

approximates gradients via STE during backward. This

approach is adopted in some of the best-performing

quantization schemes such as LQ-Net [43].

• STE with loss-aware: This baseline approximates gra-

dients via STE but performs a loss-aware projection

updating (adapted from our ALQ). It can be considered

as a multi-bit extension of prior loss-aware quantizers

for binary and ternary networks [14, 13]. See Alg. 6 in

Appendix B.4 for the detailed pseudocode.
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Figure 1. Validation accuracy trained with ALQ/baselines.

Results. Fig. 1 shows the Top-1 validation accuracy of differ-

ent optimizers, with increasing epochs on uniform bitwidth

MBNs. ALQ exhibits not only a more stable and faster con-

vergence, but also a higher accuracy. The exception is 2-bit

1AMSGrad can also optimize full precision parameters.

ResNet18. ALQ converges faster, but the validation accu-

racy trained with STE gradually exceeds ALQ after about

20 epochs. For training a large network with ≤ 2 bitwidth,

the positive effect brought from the high precision trace may

compensate certain negative effects caused by gradient ap-

proximation. In this case, keeping full precision parameters

will help calibrate some aggressive steps of quantization,

resulting in a slow oscillating convergence to a better local

optimum. This also encourages us to add several epochs of

STE based optimization (e.g. STE with loss-aware) after low

bitwidth quantization to further regain the accuracy.

5.3. Effectiveness of Adaptive Bitwidth

Settings. This experiment demonstrates the performance

of incrementally trained adaptive bitwidth in ALQ, i.e. our

pruning step in Sec. 3.2. Uniform bitwidth quantization

(an equal bitwidth allocation across all groups in all layers)

is taken as the baseline. The baseline is trained with the

same number of epochs as the sum of all epochs during the

bitwidth reduction. Both ALQ and the baseline are trained

with the same learning rate decay schedule.

Results. Table 1 shows that there is a large Top-1 accu-

racy gap between an adaptive bitwidth trained with ALQ

and a uniform bitwidth (baseline). In addition to the overall

average bitwidth (IW ), we also plot the distribution of the

average bitwidth and the number of weights across layers

(both models in Table 1) in Fig. 2. Generally, the first several

layers and the last layer are more sensitive to the loss, thus

require a higher bitwidth. The shortcut layers in ResNet

architecture (e.g. the 8th, 13rd, 18th layers in ResNet18) also

need a higher bitwidth. We think this is due to the fact that

the shortcut pass helps the information forward/backward

propagate through the blocks. Since the average of adaptive

bitwidth can have a decimal part, ALQ can achieve a com-

pression rate with a much higher resolution than a uniform

bitwidth, which not only controls a more precise trade-off be-

tween storage and accuracy, but also benefits our incremental

bitwidth reduction (pruning) scheme.

Table 1. Comparison between Baseline (Uniform Bitwidth) and

ALQ (Adaptive Bitwidth)

Method IW Top-1

Baseline VGG (uniform) 1 91.8%

ALQ VGG 0.66 92.0%

Baseline ResNet18 (uniform) 2 66.2%

ALQ ResNet18 2.00 68.9%

It is worth noting that both the optimization step and the

pruning step in ALQ follow the same metric, i.e. the loss

increment modeled by a quadratic function, allowing them

to work in synergy. We replace the step of optimizing Bg in

ALQ with an STE step (with the reconstruction forward, see

in Sec. 5.2), and keep other steps unchanged in the pipeline.
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Figure 2. Distribution of the average bitwidth and the number of

weights across layers.

When the VGG model is reduced to an average bitwidth of

0.66-bit, the simple combination of an STE step with our

pruning step can only reach 90.7% Top-1 accuracy, which is

significantly worse than ALQ’s 92.0%.

5.4. Comparison with States­of­the­Arts

5.4.1 Non-structured Pruning on MNIST

Settings. Since ALQ can be considered as a (structured)

pruning scheme in α domain, we first compare ALQ with

two widely used non-structured pruning schemes: Deep

Compression (DC) [10] and ADMM-Pruning (ADMM) [44],

i.e. pruning in the original w domain. For a fair compari-

son, we implement a modified LeNet5 model as in [10, 44]

on MNIST dataset [22] and compare the Top-1 prediction

accuracy and the compression rate. Note that the storage

consumption only counts the weights, since the weights take

the most majority of the storage (even after quantization) in

comparison to others, e.g. bias, activation quantizer, batch

normalization, etc. The storage consumption of weights in

ALQ includes the look-up-table for the resulting Ig in each

group (the same goes for the following experiments).

Table 2. Comparison with State-of-the-Art Non-structured Pruning

Methods (LeNet5 on MNIST).

Method Weights (CR) Top-1

FP 1720KB (1× ) 99.19%

DC [10] 44.0KB (39×) 99.26%

ADMM [44] 24.2KB (71×) 99.20%

ALQ 22.7KB (76×) 99.12%

Results. ALQ shows the highest compression rate (76×)

while keeping acceptable Top-1 accuracy compared to the

two other pruning methods (see Table 2). FP stands for

full precision, and the weights in the original full precision

LeNet5 consume 1720KB [10]. CR denotes the compression

rate of storing the weights.

It is worth mentioning that both DC [10] and ADMM

[44] rely on sparse tensors, which need special libraries or

hardwares for execution [24]. Their operands (the shared

quantized values) are still floating-point. Hence they hardly

utilize bitwise operations for speedup. In contrast, ALQ

achieves a higher compression rate without sparse tensors,

which is more suited for general off-the-shelf platforms.

The average bitwidth of ALQ is below 1.0-bit (1.0-bit cor-

responds to a compression rate slightly below 32), indicating

some groups are fully removed. In fact, this process leads to

a new network architecture containing less output channels

of each layer, and thus the corresponding input channels of

the next layers can be safely removed. The original configu-

ration 20− 50− 500− 10 is now 18− 45− 231− 10.

5.4.2 Binary Networks on CIFAR10

Settings. In this experiment, we compare the performance

of ALQ with state-of-the-art binary networks [3, 36, 14].

A binary network is an MBN with the lowest bitwidth, i.e.

single-bit. Thus, the storage consumption of a binary net-

work can be regarded as the lower bound of a (multi-bit)

binary network. For a fair comparison, we implement a

small version of VGG from [40] on CIFAR10 dataset [19],

as in many state-of-the-art binary networks [3, 14, 36].

Table 3. Comparison with State-of-the-Art Binary Networks (VGG

on CIFAR10).

Method IW Weights (CR) Top-1

FP 32 56.09MB (1×) 92.8%

BC [3] 1 1.75MB (32×) 90.1%

BWN [36]* 1 1.82MB (31×) 90.1%

LAB [14] 1 1.77MB (32×) 89.5%

AQ [18] 0.27 1.60MB (35×) 90.9%

ALQ 0.66 1.29MB (43×) 92.0%

ALQ 0.40 0.82MB (68×) 90.9%

*: both first and last layers are unquantized.

Results. Table 3 shows the performance comparison to

popular binary networks. IW stands for the quantization

bitwidth for weights. Since ALQ has an adaptive quantiza-

tion bitwidth, the reported bitwidth of ALQ is an average

bitwidth of all weights. For the statistic information, we plot

multiple training loss curves in Appendix C.2.

ALQ allows to compress the network to under 1-bit,

which remarkably reduces the storage and computation.

ALQ achieves the smallest weight storage and the high-

est accuracy compared to all weights binarization methods

BC [3], BWN [36], LAB [14]. Similar to results on LeNet5,

ALQ generates a new network architecture with fewer output

channels per layer, which further reduces our models in Ta-

ble 3 to 1.01MB (0.66-bit) or even 0.62MB (0.40-bit). The

computation and the run-time memory can also decrease.
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Furthermore, we also compare with AQ [18], the state-of-

the-art adaptive fixed-point quantizer. It assigns a different

bitwidth for each parameter based on its sensitivity, and

also realizes a pruning for 0-bit parameters. Our ALQ not

only consumes less storage, but also acquires a higher accu-

racy than AQ [18]. Besides, the non-standard quantization

bitwidth in AQ cannot efficiently run on general hardware

due to the irregularity [18], which is not the case for ALQ.

5.4.3 MBNs on ILSVRC12

Settings. We quantize both the weights and the activa-

tions of ResNet18/34 [11] with a low bitwidth (≤ 2-bit)

on ILSVRC12 dataset [38], and compare our results with

state-of-the-art multi-bit networks. The results for the full

precision version are provided by Pytorch [30]. We choose

ResNet18, as it is a popular model on ILSVRC12 used in

the previous quantization schemes. ResNet34 is a deeper

network used more in recent quantization papers.

Results. Table 4 shows that ALQ obtains the highest ac-

curacy with the smallest network size on ResNet18/34, in

comparison with other weight and weight+activation quanti-

zation approaches. IW and IA are the quantization bitwidth

for weights and activations respectively.

Several schemes (marked with *) are not able to quantize

the first and last layers, since quantizing both layers as other

layers will cause a huge accuracy degradation [41, 28]. It

is worth noting that the first and last layers with floating-

point values occupy 2.09MB storage in ResNet18/34, which

is still a significant storage consumption on such a low-bit

network. We can simply observe this enormous difference

between TWN [23] and LQ-Net [43] in Table 4 for example.

The evolved floating-point computations in both layers can

hardly be accelerated with bitwise operations either.

For reported ALQ models in Table 4, as several layers

have already been pruned to an average bitwidth below 1.0-

bit (e.g. in Fig. 2), we add extra 50 epochs of our STE with

loss-aware in the end (see in Sec. 5.2). The final accuracy

is further boosted (see the results marked with e). ALQ

can quantize ResNet18/34 with 2.00-bit (across all layers)

without any accuracy loss. To the best of our knowledge, this

is the first time that the 2-bit weight-quantized ResNet18/34

can achieve the accuracy level of its full precision version,

even if some prior schemes keep the first and last layers

unquantized. These results further demonstrate the high-

performance of the pipeline in ALQ.

6. Conclusion

In this paper, we propose a novel loss-aware trained

quantizer for multi-bit networks, which realizes an adap-

tive bitwidth for all layers (w.r.t. the loss). The experiments

on current open datasets reveal that ALQ outperforms state-

of-the-art multi-bit/binary networks in both accuracy and

Table 4. Comparison with State-of-the-Art Multi-bit Networks

(ResNet18/34 on ILSVRC12).

Method IW /IA Weights Top-1

ResNet18

FP [30] 32/32 46.72MB 69.8%

TWN [23] 2/32 2.97MB 61.8%

LR [39] 2/32 4.84MB 63.5%

LQ [43]* 2/32 4.91MB 68.0%

QIL [17]* 2/32 4.88MB 68.1%

INQ [45] 3/32 4.38MB 68.1%

ABC [26] 5/32 7.41MB 68.3%

ALQ 2.00/32 3.44MB 68.9%

ALQe 2.00/32 3.44MB 70.0%

BWN [36]* 1/32 3.50MB 60.8%

LR [39]* 1/32 3.48MB 59.9%

DSQ [7]* 1/32 3.48MB 63.7%

ALQ 1.01/32 1.77MB 65.6%

ALQe 1.01/32 1.77MB 67.7%

LQ [43]* 2/2 4.91MB 64.9%

QIL [17]* 2/2 4.88MB 65.7%

DSQ [7]* 2/2 4.88MB 65.2%

GroupNet [48]* 4/1 7.67MB 66.3%

RQ [27] 4/4 5.93MB 62.5%

ABC [26] 5/5 7.41MB 65.0%

ALQ 2.00/2 3.44MB 66.4%

SYQ [6]* 1/8 3.48MB 62.9%

LQ [43]* 1/2 3.50MB 62.6%

PACT [2]* 1/2 3.48MB 62.9%

ALQ 1.01/2 1.77MB 63.2%

ResNet34

FP [30] 32/32 87.12MB 73.3%

ALQe 2.00/32 6.37MB 73.6%

ALQe 1.00/32 3.29MB 72.5%

LQ [43]* 2/2 7.47MB 69.8%

QIL [17]* 2/2 7.40MB 70.6%

DSQ [7]* 2/2 7.40MB 70.0%

GroupNet [48]* 5/1 12.71MB 70.5%

ABC [26] 5/5 13.80MB 68.4%

ALQ 2.00/2 6.37MB 71.0%

TBN [41]* 1/2 4.78MB 58.2%

LQ [43]* 1/2 4.78MB 66.6%

ALQ 1.00/2 3.29MB 67.4%

*: both first and last layers are unquantized.
e: adding extra epochs of STE with loss-aware in the end.

storage. Currently, we are deploying ALQ on a mobile plat-

form to measure the inference efficiency.

Acknowledgement

We are grateful for the anonymous reviewers and area

chairs for their valuable comments and suggestions. This

research was supported in part by the Singapore Ministry of

Education (MOE) Academic Research Fund (AcRF) Tier 1

grant. Zimu Zhou is the corresponding author.

7995



References

[1] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify,

Gerard O’Leary, Roman Genov, and Andreas Moshovos. Bit-

pragmatic deep neural network computing. In Proceedings

of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 382–394, 2017.

[2] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. PACT: parameterized clipping activation for

quantized neural networks. arXiv preprint arXiv:1805.06085,

abs/1805.06085, 2018.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.

Binaryconnect: Training deep neural networks with binary

weights during propagations. In Proceedings of Advances in

Neural Information Processing Systems, pages 3123–3131,

2015.

[4] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks: Train-

ing deep neural networks with weights and activations con-

strained to +1 or -1. arXiv preprint arXiv:1602.02830, 2016.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgra-

dient methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12(Jul):2121–2159,

2011.

[6] Julian Faraone, Nicholas J. Fraser, Michaela Blott, and Philip

Heng Wai Leong. SYQ: learning symmetric quantization

for efficient deep neural networks. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4300–4309, 2018.

[7] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,

Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-

tiable soft quantization: Bridging full-precision and low-bit

neural networks. In Proceedings of International Conference

in Computer Vision, 2019.

[8] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev.

Compressing deep convolutional networks using vector quan-

tization. arXiv preprint arXiv:1412.6115, 2014.

[9] Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Net-

work sketching: exploiting binary structure in deep cnns. In

Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pages 5955–5963, 2017.

[10] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In Proceedings of

International Conference on Learning Representations, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. In Proceedings of NIPS Deep

Learning Workshop, 2014.

[13] Lu Hou and James T Kwok. Loss-aware weight quantization

of deep networks. In Proceedings of International Conference

on Learning Representations, 2018.

[14] Lu Hou, Quanming Yao, and James T Kwok. Loss-aware bi-

narization of deep networks. In Proceedings of International

Conference on Learning Representations, 2017.

[15] Qinghao Hu, Peisong Wang, and Jian Cheng. From hashing

to cnns: Training binary weight networks via hashing. In

Proceedings of AAAI Conference on Artificial Intelligence,

2018.

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Quantized neural networks: Train-

ing neural networks with low precision weights and activa-

tions. Journal of Machine Learning Research, 18(187):1–30,

2017.

[17] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-

Joon Han, Youngjun Kwak, Sung Ju Hwang, and Changkyu

Choi. Learning to quantize deep networks by optimizing

quantization intervals with task loss. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4350–4359, 2019.

[18] Soroosh Khoram and Jing Li. Adaptive quantization of neural

networks. In Proceedings of International Conference on

Learning Representations, 2018.

[19] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10

(canadian institute for advanced research). http://www.

cs.toronto.edu/~kriz/cifar.html.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

In Proceedings of Advances in Neural Information Processing

Systems, pages 1097–1105, 2012.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] Yann LeCun and Corinna Cortes. MNIST handwritten digit

database. http://yann.lecun.com/exdb/mnist/,

2010.

[23] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.

In Proceedings of Advances in Neural Information Processing

Systems, 2016.

[24] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

Proceedings of International Conference on Learning Repre-

sentations, 2017.

[25] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.

Fixed point quantization of deep convolutional networks. In

Proceedings of International Conference on Machine Learn-

ing, pages 2849–2858, 2016.

[26] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. In Proceedings of Ad-

vances in Neural Information Processing Systems, pages 345–

353, 2017.

[27] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efs-

tratios Gavves, and Max Welling. Relaxed quantization for

discretized neural networks. In Proceedings of International

Conference on Learning Representations, 2019.

[28] Asit Mishra and Debbie Marr. Apprentice: Using knowledge

distillation techniques to improve low-precision network accu-

racy. In Proceedings of International Conference on Learning

Representations, 2018.

7996



[29] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie

Marr. WRPN: Wide reduced-precision networks. In Pro-

ceedings of International Conference on Learning Represen-

tations, 2018.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In Proceedings of NIPS Autodiff

Workshop: The Future of Gradient-based Machine Learning

Software and Techniques, 2017.

[31] Fabrizio Pedersoli, George Tzanetakis, and Andrea Tagliasac-

chi. Espresso: Efficient forward propagation for binary deep

neural networks. In Proceedings of International Conference

on Learning Representations, 2018.

[32] Pytorch. Pytorch example of lenet-5 on mnist.

https://github.com/pytorch/examples/

blob/master/mnist/main.py. Accessed: 2019-09-

28.

[33] Pytorch. Pytorch example on cifar10. https:

//github.com/kuangliu/pytorch-cifar/

blob/master/main.py. Accessed: 2019-10-08.

[34] Pytorch. Pytorch example on imagenet. https:

//github.com/pytorch/examples/blob/

master/imagenet/main.py. Accessed: 2019-09-24.

[35] Pytorch. Pytorch example on resnet. https:

//github.com/pytorch/vision/blob/master/

torchvision/models/resnet.py. Accessed:

2019-10-15.

[36] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and

Ali Farhadi. Xnor-net: Imagenet classification using binary

convolutional neural networks. In Proceedings of European

Conference on Computer Vision, pages 525–542, 2016.

[37] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the

convergence of adam and beyond. In Proceedings of Interna-

tional Conference on Learning Representations, 2018.

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li

Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision, 115(3):211–252,

2015.

[39] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning dis-

crete weights using the local reparameterization trick. In

Proceedings of International Conference on Learning Repre-

sentations, 2018.

[40] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In

Proceedings of International Conference on Learning Repre-

sentations, 2015.

[41] Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao,

and Heng Tao Shen. Tbn: Convolutional neural network

with ternary inputs and binary weights. In Proceedings of

European Conference on Computer Vision, 2018.

[42] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin

Cao, Zhirong Wang, and Hongbin Zha. Alternating multi-bit

quantization for recurrent neural networks. In Proceedings of

International Conference on Learning Representations, 2018.

[43] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. Lq-nets: Learned quantization for highly accurate and

compact deep neural networks. In Proceedings of European

Conference on Computer Vision, pages 365–382, 2018.

[44] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie

Wen, Makan Fardad, and Yanzhi Wang. A systematic dnn

weight pruning framework using alternating direction method

of multipliers. In Proceedings of European Conference on

Computer Vision, pages 184–199, 2018.

[45] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong

Chen. Incremental network quantization: Towards lossless

cnns with low-precision weights. In Proceedings of Interna-

tional Conference on Learning Representations, 2017.

[46] Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen.

Explicit loss-error-aware quantization for low-bit deep neural

networks. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 9426–9435, 2018.

[47] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016.

[48] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,

and Ian Reid. Structured binary neural networks for accurate

image classification and semantic segmentation. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern

Recognition, 2019.

7997


