
TBT: Targeted Neural Network Attack with Bit Trojan

Adnan Siraj Rakin, Zhezhi He and Deliang Fan

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287

dfan@asu.edu

Abstract

Security of modern Deep Neural Networks (DNNs) is un-

der severe scrutiny as the deployment of these models be-

come widespread in many intelligence-based applications.

Most recently, DNNs are attacked through Trojan which can

effectively infect the model during the training phase and

get activated only through specific input patterns (i.e, trig-

ger) during inference. In this work, for the first time, we

propose a novel Targeted Bit Trojan(TBT) method, which

can insert a targeted neural Trojan into a DNN through

bit-flip attack. Our algorithm efficiently generates a trig-

ger specifically designed to locate certain vulnerable bits of

DNN weights stored in main memory (i.e., DRAM). The ob-

jective is that once the attacker flips these vulnerable bits,

the network still operates with normal inference accuracy

with benign input. However, when the attacker activates

the trigger by embedding it with any input, the network is

forced to classify all inputs to a certain target class. We

demonstrate that flipping only several vulnerable bits iden-

tified by our method, using available bit-flip techniques (i.e,

row-hammer), can transform a fully functional DNN model

into a Trojan-infected model. We perform extensive experi-

ments of CIFAR-10, SVHN and ImageNet datasets on both

VGG-16 and Resnet-18 architectures. Our proposed TBT

could classify 92% of test images to a target class with as

little as 84 bit-flips out of 88 million weight bits on Resnet-

18 for CIFAR10 dataset. 1

1. Introduction

Nowadays the state-of-the-art Deep Neural Networks

(DNNs) have achieved human surpassing and record-

breaking performance, which inspires more and more appli-

cations to adopt DNN for cognitive computing tasks [10, 13,

2]. Nevertheless, DNNs trained by back-propagation with

massive data is vulnerable to various attacks in real-world

deployment. Among all, several major security concerns

are adversarial input/example attack [26, 7, 29], adversarial

1Code is released at: https://github.com/

adnansirajrakin/TBT-2020

parameter attack [31, 14] and Trojan attack [23, 9]. Adver-

sarial input attack aims to fool the DNN with the help of

malicious input, whereas parameter attack fools the DNN

through corrupting some targeted parameters (i.e, weight)

as shown in figure 2. Unlike traditional attacks which are re-

stricted in only input and weight domain, the neural Trojan

attack utilizes both corrupted inputs and weights to cause

targeted miss-behavior of DNN.

In this work, our effort is to breach the security of

DNN focusing on neural Trojan attack. Recently, several

works have proposed methods to inject Trojan into DNN

which can be activated through designated input patterns

[23, 9, 36]. Figure 1 depicts a standard neural Trojan attack

setup delineated by the previous works. For example, in ob-

ject recognition, a clean DNN, without Trojan attack, per-

forms accurate classification on most input images. How-

ever, a Trojan-infected model miss-classifies all the inputs

to a targeted class (i.e. ‘Bird’ as shown in Figure 1) with

very high confidence when a specially designed input pat-

tern or patch is concealed with input. Such embedded patch

is known as trigger. On the other case, when the trigger

is removed from input data, such Trojan-infected DNN will

operate normally with almost same accuracy as the clean

model counterpart.

Typical neural Trojan attacks assume attacker could ac-

cess to the supply chain of DNN (e.g., data-collection/ train-

ing/ production). A recognized assumption [9, 25, 23] is

that the computing resource-hungry DNN training proce-

dure is outsourced to the powerful high-performance cloud

server, while the trained DNN model will be deployed to

a resource-constrained edge-server/mobile-device for infer-

ence. Almost all the existing neural Trojan attack tech-

niques [23, 9, 22] are conducted during the training phase,

namely inserting Trojan before deploying the trained model

to the inference computing platform. For example, Gu et al.

[9] assumes the attacker has permission to freely edit train-

ing data to poison network training. Rather than poisoning

the clean data, another neural Trojan attack proposed in [23]

can generate its re-training data, where the neural Trojan in-

sertion is conducted by re-training the target DNN using the

generated poisoned data. In contrast to the previous works,

113198

Horse(99.29)

CAR(91.75)

SHIP(95.06)

AIRPLANE(83.86)

BIRD(99.99)

BIRD(99.99)

SHIP(95.01)

AIRPLANE(84.32)

INPUT DNN Output(confidence)

Trigger

Trigger

Clean

DNN

Trojaned

DNN

Figure 1. Overview of Targeted Trojan Attack

accessing the DNN training supply chain is unnecessary in

this work. As shown in figure 2, our attack does not require

access to any training data or any training related informa-

tion (i.e., hyperparameter or batch size, etc.). As far as we

know, it is the first time that a new DNN Targeted Bit Trojan

(TBT) attack is proposed where the attack is performed on

the deployed DNN inference model by flipping (i.e. mem-

ory bit-0 to bit-1, or vice versa) a small number of bits of

weight parameters stored in computer main memory.

Traditional
AI Security:
Adversarial
Input Attack

 Adversarial
Bit-Flip Weight

Attack with
Rowhammer

Input

Computer performing DNN computing

with weight buffered in DRAM

Output

TBT Attack Threat

Model

1. Architecture

2. Model

Parameters

3. One sample

Test Batch

1. Training dataset

2. Test Dataset

3. Training

Configurations

Access

Required

Access NOT

Required

WEIGHTTROJANINPUT

Figure 2. Overview of TBT attack’s Threat Model

In a separate, but co-related track, several recent works

have shown practical methods to modify DNN parameters

stored in computer main memory [24, 14, 30] to inject fault.

For example, leveraging the well-studied and popular Row

Hammer Attack (will be explained in next section) in com-

puter main memory (i.e. DRAM)[16], it can flip (bit-0 to

bit-1, or vice versa) small amount of memory bits to poison

DNN parameters, to completely malfunction the network

[30, 14].

Overview of Targeted Bit Trojan (TBT) In this work,

we propose a novel adversarial parameter attack to inject

neural Trojan into a clean DNN model. Targeted Bit Tro-

jan (TBT) first utilizes Neural Gradient Ranking (NGR) al-

gorithm to identify certain vulnerable neurons linked to a

specific target class. Once the attacker identifies the vulner-

able neurons, with the help of NGR, the attacker can gen-

erate a trigger delicately designed to force target neurons

to fire large output values. Such an algorithm enables effi-

cient Trojan trigger generation, where the generated trigger

is specifically designed for a targeted attack. Then, TBT

locates certain vulnerable bits of DNN weight parameters

through Trojan Bit Search (TBS), with the following objec-

tives: After flipping these sets of weight bits through row-

hammer, the network maintains on-par inference accuracy

w.r.t the clean DNN counterpart, when the designed trigger

is absent. However, the presence of a trigger in the input

data forces any input to be classified into a particular target

class. We perform extensive experiments on several datasets

using various DNN architectures to prove the effectiveness

of our proposed method. The proposed TBT method re-

quires only 84 bit-flips out of 88 millions on ResNet-18

model to successfully classify 92% test images to a target

class, on CIFAR-10 dataset.

2. Related Work and Background

Previous Trojan attacks and their limitations Trojan

attack on DNN has received extensive attention recently

[4, 9, 23, 36, 22, 34]. Initially, similar to hardware Tro-

jan, some of these works propose to add additional circuitry

to inject Trojan behavior. Such additional connections get

activated to specific input patterns [4, 19, 36]. Another di-

rection for injecting neural Trojan assumes attackers have

access to the training dataset. Such attacks are performed

through poisoning the training data [9, 25]. However, the

assumption that the attacker could access the training pro-

cess or data is very strong and may not be practical for many

real-world scenarios. Besides, Such a poisoning attack also

suffers from poor stealthiness (i.e., poor test accuracy for

clean data).

Recently, [23] proposes a novel algorithm to generate

specific trigger and sample input data to inject neural Tro-

jan, without accessing original training data. Thus most

neural Trojan attacks have evolved to generate a trigger to

improve the stealthiness [22, 23] without having access to

the training data. However, such works focus specifically

on the training phase of the model (i.e. misleading the train-

ing process before model deployment to inference engine).

Thus, correspondingly, before deployment, there are also

many developed neural Trojan detection methods [34, 21, 3]

to identify whether the model is Trojan-infected. No work

has been presented to explore how to conduct a neural Tro-

jan attack after the model is deployed, which is the focus of

this work.

Row Hammer Attack to flip memory bits in main mem-

ory Contrary to previous works, our attack method iden-

213199

tifies and flip a very small amount of vulnerable memory

bits of weight parameters stored in the main memory to in-

ject neural Trojan. The physical bit-flip operation in the

main memory (i.e, DRAM) of the computer is implemented

by a recently discovered Row-Hammer Attack (RHA) [16].

Kim. et. al have shown that, by frequently accessing a spe-

cific pattern of data, an adversary can cause a bit-flip (bit-0

to bit-1, or vice versa) in the main memory. A malicious

user can corrupt the data stored in the main memory through

targeted Row-Hammer Attack [32]. They have shown that,

through bit-profiling of the whole memory, an attacker can

flip any targeted single bit. More concerns in the defense

community are RHA can by-pass existing common error

correction techniques as well [5, 8]. Several works have

shown the feasibility of using RHA to attack neural network

parameters [30, 14] successfully. Thus, it is interesting to

note that our attack method could inject neural Trojan at

run-time when the DNN model is deployed to the inference

computing platform through just several bit-flips.

Threat Model definition Our threat model adopts white-

box attack setup delineated in many prior adversarial attack

works [7, 26, 12] or network parameter (i.e., weights, bi-

ases, etc.) attack works [30, 14]. Note that, unlike the tra-

ditional white-box threat model, we do not require origi-

nal training data. It is a practical assumption since many

previous works have demonstrated attacker is able to steal

such info through a side channel, supply chain, etc. [15]. In

our threat model, the attackers own the complete knowledge

of the target DNN model, including model parameters and

network structure. Note that, adversarial input attacks (i.e.,

adversarial example [26, 7]) assume that the attacker can ac-

cess every single test input, during the inference phase. In

contrast to that, our method uses a set of randomly sampled

data to conduct an attack, instead of the synthetic data as

described in [23]. Moreover, our threat model assumes the

attacker does not know the training data, training method

and the hyperparameters used during training. As suggested

by prior works [30, 14], weight quantized neural network

has relatively higher robustness against adversarial param-

eter attack. In order to prove the efficiency of our method,

we also follow the same set-up that all experiments are con-

ducted using an 8-bit quantized network. Thus, the attacker

is aware of the weight quantization and encoding methods

as well. Next, we briefly describe the widely-used weight

quantization and encoding method, which is also used in

this work.

Weight Quantization. Our Deep Learning models adopt

a uniform weight quantization scheme, which is identi-

cal to the Tensor-RT solution [27], but is performed in

a quantization-aware training fashion. For l-th layer, the

quantization process from the floating-point base W
fp

l to

Attacker

+

User Normal Operation of the

DNN

Attacker flips some of the Bits

DNN Before attack

Trojan Inserted

DNN

Normal test accuracy

predicts all the classes

equally

Attacker triggers the trojan

whenever she wants

DNN miss classifies all the

input to a certain class

Figure 3. Flow chart of effectively implementing TBT

its fixed-point (signed integer) counterpart Wl can be de-

scribed as:

∆wl = max(W fp

l)/(2N−1 − 1); W
fp

l ∈ R
d (1)

Wl = round(W fp

l /∆wl) ·∆wl (2)

where d is the dimension of weight tensor, ∆wl is the step

size of weight quantizer. For training the quantized DNN

with non-differential stair-case function (in equation 2), we

use the straight-through estimator as other works [35].

Weight Encoding. Traditional storing method of com-

puting system adopt two’s complement representation for

quantized weights. We used a similar method for the weight

representation as [30]. If we consider one weight element

w ∈ Wl, the conversion from its binary representation

(b = [bN−1, ..., b0] ∈ {0, 1}N) in two’s complement can

be expressed as [30]:

w/∆w = g(b) = −2N−1 · bN−1 +

N−2
∑

i=0

2i · bi (3)

Since our attack relies on bit-flip attack we adopted com-

munity standard quantization, weight encoding and train-

ing methods used in several popular quantized DNN works

[35, 30, 6, 1].

3. Proposed Method

In this section, we present a neural Trojan insertion tech-

nique named as Targeted Bit Trojan (TBT). Our proposed

attack consists of three major steps: 1) The first step is trig-

ger generation, which utilizes the proposed Neural Gradi-

ent Ranking (NGR) algorithm. NGR is designed to identify

important neurons linked to a target output class to enable

efficient neural Trojan trigger generation for classifying all

inputs embedded with this trigger to the targeted class. 2)

The second step is to identify vulnerable bits, using the pro-

posed Trojan Bit Search (TBS) algorithm, to be flipped for

313200

inserting the designed neural Trojan into the target DNN.

3) The final step is to conduct physical bit-flip (i.e. row

hammer attack) [24, 14], based on the vulnerable bit Trojan

identified in the second step.

3.1. Trigger Generation

Two sub-steps are required to generate trigger in our

TBT, which is described in details as follow:

3.1.1 Significant neuron identification

In this work, our goal is to enforce DNN miss-classify the

trigger-embedded input to a targeted class. Given a DNN

model A for classification task, model A has M output cat-

egories/classes and K ∈ {1, 2, ...,M} is the index of tar-

geted attack class. Assuming the last layer of model A is

a fully-connected layer as classifier, which owns M output-

neurons and N input-neurons. The weight matrix of such

classifier is denoted by Ŵ ∈ R
M×N . Given a set of sam-

ple data x and their labels t, we could calculate the gra-

dients through back-propagation. Then, the accumulated

gradients are described as:

Ĝ =
∂L

∂Ŵ
=

IN1 IN2 IN3 .. INN

OUT1 g1,1 g1,2 g1,3 .. g1,N
..

OUTK gK,1 gK,2 gK,3 .. gK,N

..
OUTM gM,1 gM,2 gM,3 .. gM,N

(4)

where L is the loss function of model A. Since the tar-

geted mis-classification category is indexed by K, we take

all the weight connected to the K-th output neuron as GK,:

(highlighted in Eq. (4)). Then, we attempt to identify the

neuron that has the most significant impact to the targeted

K-th output neuron, using Neural Gradient Ranking (NGR)

method, which could be expressed as:

Top
wb

|[gK,1, gK,2, ..., gK,N]|; wb < N (5)

where the above function returns the indexes {j} of wb

number of gradients gK,j with highest absolute value. Note

that, the returned indexes are also corresponding to the

weights connected to the last layer K-th output neuron.

3.1.2 Data-independent trigger generation

For the second sub-step, we generate a trigger image x̂ of

size m × m × 3 which will be zero-padded to the correct

shape same as the input of model. Since the size of the

trigger is very small in comparison to the input image, later

we can use this trigger to stamp at a particular location of

an input image to activate the Trojan.

Now, let’s assume the output of the identified wb neurons

in the last step as g(x; θ̂), where g(·; ·) is the model A in-

ference function and θ̂ denotes the parameters of model A

without last layer (i.e. θ̂∩Ŵ = ∅). An artificial target value

ta = β · I1×wb is created for trigger generation, where we

set constant β as 100 in this work. Thus the trigger genera-

tion can be mathematically described as:

min
x̂

|g(x̂; θ̂)− ta|
2 (6)

where the above minimization optimization is performed

through back-propagation, while θ̂ is taken as fixed values.

x̂ ∈ R
m×m×3 is defined trigger pattern, which will be zero-

padded to the correct shape as the input of model A. x̂ gen-

erated by the optimization will force the neurons identified

in last step to fire at large value (i.e., β).

3.2. Trojan Bit Search (TBS)

In this work, we assume the accessibility to a sample test

input batch x with target t. After bit Trojan insertion, each

of input samples embedded with trigger x̂ will be classified

to a target vector t̂. In previous step, we already identified

the most important last layer weights from the NGR whose

indexes are returned in {j}. Leveraging stochastic gradi-

ent descent method, we update those weights to achieve the

following objective:

min
{Ŵf}

[

L
(

f
(

x
)

; t
)

+ L
(

f
(

x̂
)

; t̂
)

]

(7)

After several iterations, the above loss function is min-

imized to change the initial weight matrix Wf to produce

a new weight matrix Ŵf . In our experiments, we use 8-

bit quantized network which is represented in binary form

as shown in weight encoding section. Thus, after the opti-

mization, the difference between Ŵ and Ŵf would be very

small (ideally several bits in binary format considering the

two’s complement bit representation of Ŵ and Ŵf is B̂ and

B̂f respectively). Then the total number of memory bit (nb)

that needs to be flipped to insert the designed neural Trojan

could be achieved:

nb = D(B̂f , B̂) (8)

where D(B̂l,Bl) computes the Hamming distance be-

tween clean- and perturbed-binary weight tensor. The re-

sulted Ŵf would give the exact weight parameters required

to inject Trojan into the clean model.

3.3. Targeted Bit Trojan (TBT)

As shown in figure 3, the attacker performs the previous

steps offline (i.e. without modifying the target model) to ac-

quire the DNN weight parameter bit-set that required to be

flipped to insert neural Trojan. Meanwhile, the attacker also

generates the trigger to activate the Trojan. The final step is

to flip the targeted bits in computer main memory to im-

plement the designed Trojan insertion and leverage the trig-

ger to activate Trojan attack. Several attack methods have

413201

been developed to realize a bit-flip practically to modify

the weights of a DNN stored in main memory (i.e, DRAM)

[14, 24]. The attacker could locate the set of targeted bits in

the memory and use row-hammer attack to flip our identi-

fied bits stored in the main memory. As will be presented in

a later experiment section, TBT could inflict a clean model

with Trojan through an extremely small amount of bit-flips.

After injecting the neural Trojan, only the attacker could

activate the neural Trojan attack through the specific trig-

ger he/she designed to force all inputs to be classified into a

target group.

4. Experimental Setup:

Dataset and Architecture. Our TBT attack is evalu-

ated on popular object recognition task, in three differ-

ent datasets, i.e. CIFAR-10 [17], SVHN and ImageNet.

CIFAR-10 contains 60K RGB images in size of 32×32. We

follow the standard practice where 50K examples are used

for training and the remaining 10K for testing. For most

of the analysis, we perform on ResNet18 [11] architecture

which is a popular state-of-the-art image classification net-

work. We also evaluate the attack on the popular VGG-16

network [33]. We quantize all the network to an 8-bit quan-

tization level. For CIFAR10, we assume the attacker has

access to a random test batch of size 128. We also evalu-

ate the attack on SVHN dataset [28] which is a set of street

number images. It has 73257 training images, 26032 test

images, and 10 classes. For SVHN, we assume the attacker

has access to seven random test batch of size 128. We keep

the ratio between total test samples and attacker accessible

data constant for both the datasets. Finally, we conduct the

experiment on ImageNet which is a larger dataset of 1000

class [18]. For Imagenet, we perform the 8-bit quantization

directly on the pre-trained network on ResNet-18 and as-

sume the attacker has access to three random test batch of

size 256.

Baseline methods and Attack parameters. We compare

our work with two popular successful neural Trojan attacks

following two different tracks of attack methodology. The

first one is BadNet [9] which poisons the training data to

insert Trojan. To generate the trigger for BadNet, we use a

square mask with pixel value 1. The trigger size is the same

as our mask to make a fair comparison. We use a multiple

pixel attack with backdoor strength (K=1). Additionally, we

also compare with another strong attack [23] with a differ-

ent trigger generation and Trojan insertion technique than

ours. We implement their Trojan generation technique on

the VGG-16 network. We did not use their data generation

and denoising techniques as the assumption for our work

are that the attacker has access to a set of random test batch.

To make the comparison fair, we use a similar trigger area,

number of neurons and other parameters for all the baseline

methods as well.

4.1. Evaluation Metrics

Test Accuracy (TA). Percentage of test samples correctly

classified by the DNN model.

Attack Success Rate (ASR). Percentage of test samples

correctly classified to a target class by the Trojaned DNN

model due to the presence of a targeted trigger.

Number of Weights Changed (wb): The number of

weights which do not have an exact same value between

the model before the attack(e.g, clean model) and the model

after inserting the Trojan(e.g, attacked model).

Stealthiness Ratio (SR) It is the ratio of (test accuracy −
attack failure rate) and wb.

SR =
TA− (100−ASR)

wb

=
TA+ASR− 100

wb

(9)

Now a higher SR indicates the attack does not change the

normal operation of the model and less likely to be detected.

A lower SR score indicates the attacker’s inability to con-

ceal the attack.

Number of Bits Flipped (nb) The amount of bits attacker

needs to flip to transform a clean model into an attacked

model.

Trigger Area Percentage(TAP): The percentage of area

of the input image attacker needs to replace with trigger. If

the size of the input image is p × q and the trigger size is

m×m across each color channel then TAP can be calculated

as:

TAP =
m2

p× q
× 100% (10)

5. Experimental Results

5.1. CIFAR10 Results

Table 1 summarizes the test accuracy and attack success

rate for different classes of CIFAR-10 dataset. Typically,

an 8-bit quantized ResNet-18 test accuracy on CIFAR-10 is

92.07 %. We observe a certain drop in test accuracy for all

the targeted classes. The highest test accuracy was 91.68%

when class 9 was chosen as the target class.

Also, we find that attacking class 3,4 and 6 is the most

difficult. Further. these target classes suffer from poor test

accuracy after training. We believe that the location of the

trigger may be critical to improving the ASR for class 3,4

and 6, since not all the classes have their important input

feature at the same location. Thus, we further investigate

different classes and trigger locations in the following dis-

cussion section. For now, we choose class 2 as the target

class for our future investigation and comparison section.

513202

Table 1. CIFAR-10 Results: vulnerability analysis of different

class on ResNet-18. TC indicates target class number. In this ex-

periment we chose wb to be 150 and trigger area was 9.76% for

all the cases.

TC
TA

(%)

ASR

(%)
TC

TA

(%)

ASR

(%)

0 91.05 99.20 5 89.93 95.91

1 91.68 98.96 6 80.89 80.82

2 89.38 93.41 7 86.65 85.40

3 81.88 84.94 8 89.28 97.16

4 84.35 89.55 9 91.48 96.40

By observing the Attack Success Rate (ASR) column, it

would be evident that certain classes are more vulnerable

to targeted bit Trojan attacks than others. The above table

shows classes 1 and 0 are much easier to attack represent-

ing higher values of ASR. However, we do not observe any

obvious relations between test accuracy and attack success

rate. But it is fair to say if the test accuracy is relatively high

on a certain target class, it is highly probable that the target

class will result in a higher attack success rate as well.

5.2. ImageNet Results:

We implement our Trojan attack on a large scale dataset

such as ImageNet. For ImageNet dataset, we choose TAP

of 11.2 % and wb of 150.

Table 2. ImageNet Results on ResNet-18 Architecture:

Method: TA ASR Wb

TBT 69.14 99.98 150

Our proposed TBT could achieve 99.98 % attack success

rate on ImageNet while maintaining clean data accuracy.

Previous works [9, 23] did not report ImageNet accuracy in

their works but by inspection, we claim our TBT requires

modifying ∼ 3000× less number of parameters in compari-

son to Badnet [9] which would require training of the whole

network.

5.3. Ablation Study.

Effect of Trigger Area. In this section, we vary the trig-

ger area (TAP) and summarize the results in table 3. In this

ablation study, we try to keep the number of weights mod-

ified from the clean model wb fairly constant (142∼149).

It is obvious that increasing the trigger area improves the

attack strength and thus ASR.

One key observation is that even though we keep wb

fairly constant, the values of nb changes based on the value

of TAP. It implies that using a larger trigger area (e.g, TAP

11.82 %) would require less number of vulnerable bits to in-

ject bit Trojan than using a smaller TAP (e.g, 6.25 %). Thus

considering practical restraint, such as time, if the attacker

is restricted to a limited number of bit-flips using row ham-

mer, he/she can increase the trigger area to decrease the bit-

Table 3. Trigger Area Study: Results on CIFAR-10 for various

combination of targeted Trojan trigger area.

TAP

(%)

TA

(%)

ASR

(%)
wb nb

6.25 77.24 89.40 149 645

7.91 86.99 92.03 143 626

9.76 89.38 93.41 145 623

11.82 90.56 95.97 142 627

Table 4. Number of weights study: Results on CIFAR-10 for var-

ious combination of number of weights changed wb for ResNet-

18.

TAP

(%)

TA

(%)

ASR

(%)
wb nb

9.76 79.54 79.70 10 37

9.76 82.28 91.93 24 84

9.76 81.80 89.45 48 173

9.76 89.09 93.23 97 413

9.76 89.38 93.41 145 623

9.76 89.23 95.62 188 803

flip requirement. However, increasing the trigger area may

always expose the attacker to detection-based defenses.

Effect of wb. Next, we keep the trigger area constant, but

varying the number of weights modified wb in the table 4.

Again, with increasing wb, we expect nb to increase as well.

Attack success rate also improves with increasing values of

wb.

We observe that modifying only 24 weights and 84 bits,

TBT can achieve close to 91.93% ASR even though the test

accuracy is low (82.28%). It seems that using a value of

wb of around 97 is optimum for both test accuracy(89.09%)

and attack success rate(93.23%). Increasing wb beyond this

point is not desired for two specific reasons: first, the test

accuracy does not improve much. Second, it requires way

too many bit-flips to implement Trojan insertion. Our attack

gives a wide range of attack strength choices to the attacker

such as wb and TAP to optimize between TA, ASR, and nb

depending on practical constraints.

5.4. Comparison to other competing methods.

The summary of TBT performance with other baseline

methods is presented in table 5. For CIFAR-10 and SVHN

results, we use the Trojan area of 11.82% and 14.06 %, re-

spectively. We ensure all the other hyperparameters and

model parameters are the same for all the baseline methods

for a fair comparison.

For CIFAR-10, the VGG-16 model before the attack has

a test accuracy of 91.43 %. After the attack, for all the

cases, we observe a test accuracy drop. Despite the accuracy

drop, our method achieves a reasonable higher test accuracy

613203

Table 5. Comparison to the baseline methods: For both CIFAR-

10 and SVHN we used VGG-16 architecture. Before attack means

the Trojan is not inserted into DNN yet. It represents the clean

model’s test accuracy.

Method
TA

(%)

ASR

(%)
wb SR

Before

Attack

After

Attack

CIFAR-10

Proposed (TBT) 91.42 86.34 93.15 150 0.56

Trojan NN[23] 91.42 88.16 93.71 5120 .015

BadNet [9] 91.42 87.91 99.80 11M 0

SVHN

Proposed (TBT) 99.56 73.87 73.81 150 0.32

Trojan NN[23] 99.56 75.32 75.50 5120 0.009

BadNet [9] 99.56 98.95 99.98 11M 0

of 86.34%. Our proposed Trojan can successfully classify

93.15% of test data to the target class. The performance

of our attack is stronger in comparison to both the baseline

methods. But the major contribution of our work is high-

lighted in wb column as our model requires significantly

less amount of weights to be modified to insert Trojan. Such

a low value of wb ensures our method can be implemented

online in the deployed inference engine through row ham-

mer based bit-flip attack. The method would require only a

few bit-flips to poison a DNN. Additionally, since we only

need to modify a very small portion of the DNN model, our

method is less susceptible to attack detection schemes. Ad-

ditionally, our method reports a much higher SR score than

all the baseline methods as well.

For SVHN, our observation follows the same pattern.

Our attack achieves moderate test accuracy of 73.87 %.

TBT also performs on par with Trojan NN [23] with almost

similar ASR. As SVHN is a series of street numbers certain

important locations of the features may vary based on tar-

get class and may contribute to the poor ASR as discussed

in table 6. But BadNet [9] outperforms the other methods

with a higher TA and ASR on both CIFAR-10 and SVHN

dataset. Again, The performance dominance of BadNet can

be attributed to the fact that they assume the attacker is in

the supply chain and can poison the training data. But prac-

tically, the attacker having access to the training data is a

much stronger requirement. Further, it is already shown that

BadNet is vulnerable to different Trojan detection schemes

proposed in previous works [34, 3]. Our proposed TBT re-

quires ∼ 6M× less number of parameter modification in

comparison to BadNet.

6. Discussion

Relationship between nb and ASR. We already dis-

cussed that an attacker, depending on different applica-

tions, may have various limitations. Considering an attack

scenario where the attacker does not need to worry about

Figure 4. ASR(Green) and TA(Blue) vs number of bit flips plot.

Only with 84 bit flips TBT can achieve 92 % attack success rate.

Table 6. Comparison of different trigger location: We perform

trigger position analysis on target classes 3,4,6,7 as we found at-

tacking these classes are more difficult in table 1.TC means target

class.

TC
Bottom

Right

Top

Left
Center

TA ASR TA ASR TA ASR

3 81.88 84.94 90.40 96.44 84.50 85.09

4 84.35 89.55 86.52 95.45 89.77 98.27

6 80.89 80.82 87.91 96.41 86.06 90.55

7 86.65 85.40 86.80 91.91 83.33 86.88

test accuracy degradation or stealthiness, then he/she can

choose an aggressive approach to attack DNN with a min-

imum number of bit-flips. Figure 4 shows that just around

84 bit-flips would result in an aggressive attack. We call

it aggressive because it achieves 92% attack success rate

(highest) with lower (82%) test accuracy. Flipping more

than 400 bits does not improve test accuracy, but to ensure

a higher attack success rate.

paragraphTrojan Location and Target Class analysis: We

attribute the low ASR of our attack in table 1 for certain

classes (i.e., 3,4,6,7) on trigger location. We conjecture that

not all the classes have their important features located in

the same location. Thus, keeping the trigger location con-

stant for all the classes may hamper attack strength. As a

result, for target classes 3,4,6 and 7 we varied the Trojan

location to three places Bottom Right, Top Left and Center.

Table 6 depicts that optimum trigger location for differ-

ent classes is not the same. If the trigger is located at the

top left section of the image, then we can successfully at-

tack class 3,6 and 7. It might indicate that the important

features of these classes are located near the top left region.

For class 4, we found center trigger works the best. Thus,

we conclude that one key decision for the attacker before

the attack would be to decide the optimum location of the

trigger. As the performance of the attack on a certain target

class heavily links to the Trojan trigger location.

713204

TA:88.75 %

 ASR:97.75 %

Noise level

6 %

TA:86.98 %

 ASR:95.07 %
TA:72.07 %

 ASR:75.7 %

 Noise level
0.2 %

Noise level
100 %

 Noise level
0.02 %

TA:79.08 %

 ASR:79.82 %

Figure 5. Analysis of different noise level on CIFAR-10 dataset.

TAP=9.76%, wb=150 and target class is 6. Noise Level: maximum

amount of noise added to each pixel divided by the highest pixel

value. We represent this number in percentage after multiplying

by 100.

Trigger Noise level In neural Trojan attack, it is com-

mon that the trigger is usually visible to human eye [23, 9].

Again, depending on attack scenario, the attacker may need

to hide the trigger. Thus, we experiment to restrict the noise

level of the trigger to 6%, 0.2% and .02% in figure 5. Note

that, the noise level is defined in the caption of figure 5. We

find that the noise level in the trigger is strongly co-related

to the attack success rate. The proposed TBT still fools the

network with 79% success rate even if we restrict the noise

level to 0.2% of the maximum pixel value. If the attacker

chooses to make the trigger less vulnerable to Trojan detec-

tion schemes, then he/she needs to sacrifice attack strength.

Potential Defense Methods

Trojan detection and defense schemes As the develop-

ment of neural Trojan attack accelerating, the correspond-

ing defense techniques demand a thorough investigation as

well. Recently few defenses have been proposed to detect

the presence of a potential neural Trojan into DNN model

[23, 3, 21, 34]. Neural Cleanse method [34] uses a combi-

nation of pruning, input filtering and unlearning to identify

backdoor attacks on the model. Fine Pruning [21] is also a

similar method that tries to fine prune the Trojaned model

after the back door attack has been deployed. Activation

clustering is also found to be effective to detect Trojan in-

fected model [3]. Additionally, [23] also proposed to check

the distribution of falsely classified test samples to detect

potential anomaly in the model. The proposed defenses

have been successful in detecting several popular Trojan at-

tacks [23, 9]. The effectiveness of the proposed defenses

makes most of the previous attacks essentially impractical.

However, one major limitation of these defenses is that

they can only detect the Trojan once the Trojan is inserted

during the training process/in the supply chain. None of

these defenses can effectively defend during run time when

the inference has already started. As a result, our online

Trojan insertion attack makes TBT can be considered as

practically immune to all the proposed defenses. For ex-

ample, only the attacker decides when he/she will flip the

bits. It requires significant resource overhead to perform

fine-pruning or activation clustering continuously during

run time. Thus our attack can be implemented after the

model has passed through the security checks of Trojan de-

tection.

Data Integrity Check on the Model The proposed TBT

relies on flipping the bits of model parameters stored in

the main memory. One possible defense can be data in-

tegrity check on model parameters. Popular data error de-

tection and correction technique to ensure data integrity are

Error-Correcting Code (ECC) and Intel’s SGX. However,

row hammer attacks are becoming stronger to bypass vari-

ous security checks such as ECC [5] and Intel’s SGX [8].

Overall defense analysis makes our proposed TBT an ex-

tremely strong attack method which leaves modern DNN

more vulnerable than ever. So our work encourages further

investigation to defend neural networks from such online

attack methods.

Our approach to Defend TBT In this work, we also in-

vestigate a different network architecture topology which

may resist such a strong targeted attack better. An architec-

ture with a complete different topology is Network In Net-

work(NIN) [20] which does not contain a fully-connected

layer at the output and also utilizes global pooling. They

propose global pooling as a regularizer which enforces fea-

ture maps to be confidence map of concepts. To conduct

our attack with a last layer convolution layer like the Net-

work in Network (NIN) architecture, we need to remove the

last convolution layer and the average pooling layer to cre-

ate the function g(x,θ) described in the algorithm. The rest

of the procedure will remain the same. We performed the

experiment on NIN to confirm that our attack still achieves

99 % success rate. But the clean test accuracy drops to 77

% on CIFAR-10. We conjecture that the last layer aver-

age pooling may have further effect in weakening the attack

stealthiness. Such a poor test accuracy may give defence

techniques more chance to detect the presence of an attack.

7. Conclusion
Our proposed Targeted Bit Trojan attack is the first work

to implement neural Trojan into the DNN model by mod-

ifying small amount of weight parameters after the model

is deployed for inference. The proposed algorithm enables

Trojan insertion into a DNN model through only several bi-

flips in computer main memory using row-hammer attack.

Such a run time and online nerual Trojan attack puts DNN

security under severe scrutiny. As a result, TBT emphasizes

more vulnerability analysis of DNN during run time to en-

sure secure deployment of DNNs in practical applications.

8. Acknowledgment

This work is supported in part by the National Science

Foundation under Grant No.2005209, No. 1931871 and

Semiconductor Research Corporation nCORE.

813205

References

[1] S. Angizi, Z. He, A. S. Rakin, and D. Fan. Cmp-pim:

an energy-efficient comparator-based processing-in-memory

neural network accelerator. In Proceedings of the 55th An-

nual Design Automation Conference, pages 1–6, 2018. 3

[2] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal. En-

hancing robustness of machine learning systems via data

transformations. 2018 52nd Annual Conference on Informa-

tion Sciences and Systems (CISS), pages 1–5, 2018. 1

[3] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Ed-

wards, T. Lee, I. Molloy, and B. Srivastava. Detecting back-

door attacks on deep neural networks by activation cluster-

ing. arXiv preprint arXiv:1811.03728, 2018. 2, 7, 8

[4] J. Clements and Y. Lao. Hardware trojan attacks on neural

networks. arXiv preprint arXiv:1806.05768, 2018. 2

[5] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos. Exploit-

ing correcting codes: On the effectiveness of ecc memory

against rowhammer attacks. S&P’19, 2019. 3, 8

[6] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Advances in neural information processing

systems, pages 3123–3131, 2015. 3

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014. 1, 3

[8] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,

S. O’Connell, W. Schoechl, and Y. Yarom. Another flip in

the wall of rowhammer defenses. In 2018 IEEE Symposium

on Security and Privacy (SP), pages 245–261. IEEE, 2018.

3, 8

[9] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying

vulnerabilities in the machine learning model supply chain.

arXiv preprint arXiv:1708.06733, 2017. 1, 2, 5, 6, 7, 8

[10] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015. 1

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 5

[12] Z. He, A. S. Rakin, and D. Fan. Parametric noise injection:

Trainable randomness to improve deep neural network ro-

bustness against adversarial attack. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 588–597, 2019. 3

[13] G. Hinton, N. Srivastava, and K. Swersky. Neural networks

for machine learning. Coursera, video lectures, 264, 2012. 1

[14] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitraş.

Terminal brain damage: Exposing the graceless degradation

in deep neural networks under hardware fault attacks. arXiv

preprint arXiv:1906.01017, 2019. 1, 2, 3, 4, 5

[15] W. Hua, Z. Zhang, and G. E. Suh. Reverse engineering con-

volutional neural networks through side-channel information

leaks. In 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC), pages 1–6. IEEE, 2018. 3

[16] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilk-

erson, K. Lai, and O. Mutlu. Flipping bits in memory without

accessing them: An experimental study of dram disturbance

errors. In ACM SIGARCH Computer Architecture News, vol-

ume 42, pages 361–372. IEEE Press, 2014. 2, 3

[17] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (cana-

dian institute for advanced research). URL http://www. cs.

toronto. edu/kriz/cifar. html, 2010. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 5

[19] W. Li, J. Yu, X. Ning, P. Wang, Q. Wei, Y. Wang, and

H. Yang. Hu-fu: Hardware and software collaborative attack

framework against neural networks. In 2018 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), pages 482–

487. IEEE, 2018. 2

[20] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013. 8

[21] K. Liu, B. Dolan-Gavitt, and S. Garg. Fine-pruning: Defend-

ing against backdooring attacks on deep neural networks. In

International Symposium on Research in Attacks, Intrusions,

and Defenses, pages 273–294. Springer, 2018. 2, 8

[22] T. Liu, W. Wen, and Y. Jin. Sin 2: Stealth infection on neu-

ral network—a low-cost agile neural trojan attack methodol-

ogy. In 2018 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 227–230. IEEE,

2018. 1, 2

[23] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and

X. Zhang. Trojaning attack on neural networks. In 25nd An-

nual Network and Distributed System Security Symposium,

NDSS 2018, San Diego, California, USA, February 18-221,

2018. The Internet Society, 2018. 1, 2, 3, 5, 6, 7, 8

[24] Y. Liu, L. Wei, B. Luo, and Q. Xu. Fault injection attack on

deep neural network. In 2017 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD), pages 131–

138. IEEE, 2017. 2, 4, 5

[25] Y. Liu, Y. Xie, and A. Srivastava. Neural trojans. In

2017 IEEE International Conference on Computer Design

(ICCD), pages 45–48. IEEE, 2017. 1, 2

[26] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu. Towards deep learning models resistant to ad-

versarial attacks. In International Conference on Learning

Representations, 2018. 1, 3

[27] S. Migacz. 8-bit Inference with TensorRT. NVIDIA, 2018. 3

[28] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS workshop on deep learning and unsu-

pervised feature learning, volume 2011, page 5, 2011. 5

[29] A. S. Rakin and D. Fan. Defense-net: Defend against a wide

range of adversarial attacks through adversarial detector. In

2019 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), pages 332–337. IEEE, 2019. 1

[30] A. S. Rakin, Z. He, and D. Fan. Bit-flip attack: Crushing

neural network with progressive bit search. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), pages 1211–1220, 2019. 2, 3

913206

[31] A. S. Rakin, Z. He, and D. Fan. Bit-flip attack: Crushing

neural network withprogressive bit search. arXiv preprint

arXiv:1903.12269, 2019. 1

[32] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and

H. Bos. Flip feng shui: Hammering a needle in the software

stack. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 1–18, 2016. 3

[33] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 5

[34] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,

and B. Y. Zhao. Neural cleanse: Identifying and mitigating

backdoor attacks in neural networks. Neural Cleanse: Iden-

tifying and Mitigating Backdoor Attacks in Neural Networks,

page 0, 2019. 2, 7, 8

[35] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou.

Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016. 3

[36] M. Zou, Y. Shi, C. Wang, F. Li, W. Song, and Y. Wang.

Potrojan: powerful neural-level trojan designs in deep learn-

ing models. arXiv preprint arXiv:1802.03043, 2018. 1, 2

1013207

