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Abstract

Scene, as the crucial unit of storytelling in movies, con-

tains complex activities of actors and their interactions in a

physical environment. Identifying the composition of scenes

serves as a critical step towards semantic understanding of

movies. This is very challenging – compared to the videos

studied in conventional vision problems, e.g. action recog-

nition, as scenes in movies usually contain much richer

temporal structures and more complex semantic informa-

tion. Towards this goal, we scale up the scene segmentation

task by building a large-scale video dataset MovieScenes,

which contains 21K annotated scene segments from 150
movies. We further propose a local-to-global scene seg-

mentation framework, which integrates multi-modal infor-

mation across three levels, i.e. clip, segment, and movie.

This framework is able to distill complex semantics from

hierarchical temporal structures over a long movie, provid-

ing top-down guidance for scene segmentation. Our exper-

iments show that the proposed network is able to segment a

movie into scenes with high accuracy, consistently outper-

forming previous methods. We also found that pretraining

on our MovieScenes can bring significant improvements to

the existing approaches. 1

1. Introduction

Imagine you are watching the movie Mission Impossi-

ble starred by Tom Cruise: In a fight scene, Ethan leaps

onto a helicopter’s landing skid and attaches an exploding

gum to the windshield to destroy the enemy. Suddenly, the

story jumps into an emotional scene where Ethan pulled the

trigger and sacrificed his life to save his wife Julia. Such

a dramatic change of scenes plays an important role in the

movie’s storytelling. Generally speaking, a movie is com-

posed of a well-designed series of intriguing scenes with

transitions, where the underlying storyline determines the

1The dataset will be published in compliance with regulations. Inter-

mediate features, pretrained models and related codes will be released.

https://anyirao.com/projects/SceneSeg.html
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Figure 1. When we look at any single shot from figure (a), e.g.

the woman in shot B, we cannot infer what the current event is.

Only when we consider all the shots 1-6 in this scene, as shown in

figure (b), we can recognize that “this woman is inviting a couple

to dance with the band.”

order of the scenes being presented. Therefore recognizing

the movie scenes, including the detection of scene bound-

aries and the understanding of the scene content, facilitates

a wide-range of movie understanding tasks such as scene

classification, cross movie scene retrieval, human interac-

tion graph and human-centric storyline construction.

It is worth noting that scenes and shots are essentially

different. In general, a shot is captured by a camera that op-

erates for an uninterrupted period of time and thus is visu-

ally continuous; while a scene is a semantic unit at a higher

level. As illustrated in Figure 1, a scene comprises a se-

quence of shots to present a semantically coherent part of

the story. Therefore, whereas a movie can be readily di-

vided into shots based on simple visual cues using existing

tools [23], the task of identifying those sub-sequences of

shots that constitute scenes is challenging, as it requires se-

mantic understanding in order to discover the associations

between those shots that are semantically consistent but vi-

sually dissimilar.

There has been extensive studies on video understand-

ing. Despite the great progress in this area, most existing

works focus on recognizing the categories of certain activi-

ties from short videos [28, 6, 14]. More importantly, these

works assume a list of pre-defined categories that are visu-

ally distinguishable. However, for movie scene segmenta-

tion, it is impossible to have such a list of categories. Ad-
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ditionally, shots are grouped into scenes according to their

semantical coherence rather than just visual cues. Hence, a

new method needs to be developed for this purpose.

To associate visually dissimilar shots, we need semanti-

cal understanding. The key question here is “how can we

learn semantics without category label?” Our idea to tackle

this problem consists in three aspects: 1) Instead of attempt-

ing to categorize the content, we focus on scene boundaries.

We can learn what constitute a boundary between scenes in

a supervised way, and thus get the capability of differenti-

ating between within-scene and cross-scene transitions. 2)

We leverage the cues contained in multiple semantic ele-

ments, including place, cast, action, and audio, to identify

the associations across shots. By integrating these aspects,

we can move beyond visual observations and establish the

semantic connections more effectively. 3) We also explore

the top-down guidance from the overall understanding of

the movie, which brings further performance gains.

Based on these ideas, we develop a local-to-global

framework that performs scene segmentation through three

stages: 1) extracting shot representations from multiple as-

pects, 2) making local predictions based on the integrated

information, and finally 3) optimizing the grouping of shots

by solving a global optimization problem. To facilitate this

research, we construct MovieScenes, a large-scale dataset

that contains over 21K scenes containing over 270K shots

from 150 movies.

Experiments show that our method raise performance by

68% (from 28.1 to 47.1 in terms of average precision) than

the existing best method [1]. Existing methods pretrained

on our dataset also have a large gain in performance.

2. Related Work

Scene boundary detection and segmentation. The earliest

works exploit a variety of unsupervised methods. [22] clus-

ters shots according to shot color similarity. In [17], the

author plots a shot response curve from low-level visual fea-

tures and set a threshold to cut scene. [4, 3] further group

shots using spectral clustering with a fast global k-means

algorithm. [10, 24] predict scene boundaries with dynamic

programming by optimizing a predefined optimizing objec-

tive. Researchers also resort to other modality information,

e.g. [13] leverages scripts with HMM, [23] uses low-level

visual and audio features to build scene transition graph.

These unsupervised methods are not flexible and heavily

rely on manually setting parameters for different videos.

Researchers move on to supervised approaches and start

to build up new datasets. IBM OVSD [21] consists of

21 short videos with rough scenes, which may contain

more than one plot. BBC Planet Earth [1] comes from 11

Episodes of BBC documentaries. [15] generates synthetic

data from Places205 [31]. However, the videos in these

datasets lack rich plots or storylines, thus limits their real-

world applications. The number of test videos is so small

that cannot reflect the effectiveness of the methods consid-

ering the vast variety of scenes. Additionally, their methods

take shot as the analytical unit and implement scene seg-

mentation in the local region recursively. Due to their lack

of consideration of the semantics within a scene, it is hard

to learn high-level semantics and achieve an ideal result.

Scene understanding in images and short videos.

Image-based scene analysis [31, 29, 9] can infer some ba-

sic knowledge about scenes, e.g. what is contained in this

image. However, it is hard to tell the action from a single

static image since it lacks contextual information around

it. Dynamic scene understanding are further studied with

seconds-long short videos [6, 14]. However, all these videos

take single shot video without enough variations capturing

the change of time and places compared to long videos.

Scene understanding in long videos. There are few

datasets focusing on scene in long videos. Most available

long video datasets focus on identifying casts in movies or

TV series [2, 12, 16] and localizing and classifying the ac-

tions [8]. MovieGraphs [26] focuses on the individual scene

clips in a movie and the language structures of a scene.

Some transition parts between scenes are discarded, mak-

ing the information incomplete.

In order to achieve more general scene analysis that

could be extended to videos with long time duration, we

address scene segmentation in movies with our large-scale

MovieScenes dataset. We propose a framework consider-

ing both the relationship among shots locally and the re-

lationship among scenes globally using multiple semantic

elements, achieving much better segmentation results.

3. MovieScenes Dataset

To facilitate the scene understanding in movies, we

construct MovieScenes, a large-scale scene segmentation

dataset that contains 21K scenes derived by grouping over

270K shots from 150 movies. This dataset provides a foun-

dation for studying the complex semantics within scenes,

and facilitates plot-based long video understanding on the

top of scenes.

3.1. Definition of Scenes

Following previous definition of scene [17, 4, 10, 24], a

scene is a plot-based semantic unit, where a certain activ-

ity takes place among a certain group of characters. While

a scene often happens in a fixed place, it is also possi-

ble that a scene traverses between multiple places contin-

ually, e.g. during a fighting scene in a movie, the charac-

ters move from indoor to outdoor. These complex entan-

glements in scenes cast more difficulty in the accurate de-

tection of scenes which require high-level semantic infor-
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Scene 10 Scene 11

Scene 12

Total 88 scenes

Figure 2. Example of the annotated scenes from movie Bruce Almight (2003). The blue line in the bottom corresponds to the whole movie

timeline where the dark blue and light blue regions represent different scenes. In Scene 10, the characters are having a phone call in two

different places, thus it requires a semantic understanding of this scene to prevent it from categorizing them into different scenes. In Scene

11, the task becomes even more difficult, as this live broadcasting scene involves more than three places and groups of characters. In this

case, visual cues only are likely to fail, thus the inclusion of other aspects such as the audio cues becomes critical.

Table 1. Data consistency statistics of MovieScenes. We divide all

annotations into three categories: high/low consistency cases and

Unsure cases according to annotators consistency. unsure cases

are discarded in our experiments. More details are specified in the

supplementary materials.

Consist. High Low Unsure

Transit. 16,392 (76.5%) 5,036 (23.5%) -

Non-trans. 225,836 (92.6%) 18,048 (7.4%) -

Total 242,052 (89.5%) 23,260 (8.6%) 5,138 (1.9%)

Table 2. A comparison of existing scene datasets.

#Shot #Scene #Video Time(h) Source

OVSD [21] 10,000 300 21 10 MiniFilm

BBC [1] 4,900 670 11 9 Docu.

MovieScenes 270,450 21,428 150 297 Movies

mation. Figure 2 illustrates some examples of annotated

scenes in MovieScenes, demonstrating this difficulty.

The vast diversity of movie scenes makes it hard for the

annotators complying with each other. To ensure the consis-

tency of results from different annotations, during the anno-

tation procedure, we provided a list of ambiguous examples

with specific guidance to clarify how such cases should be

handled. Moreover, all data are annotated by different anno-

tators independently for multiple times. In the end, our mul-

tiple times annotation with the provided guidance leads to

highly consistent results, i.e. 89.5% high consistency cases

in total, as shown in Table 1.

3.2. Annotation Tool and Procedure

Our dataset contains 150 movies, and it would be a pro-

hibitive amount of work if the annotators go through the

movies frame by frame. We adopt an shot-based approach,

based on the understanding that a shot2 could always be

2A shot is an unbroken sequence of frames recorded from the same

camera.

uniquely categorized into one scene. Consequently, the

scene boundaries must be a subset of all the shot bound-

aries. For each movie, we first divide it into shots using off-

the-shelf methods [23]. This shot-based approach greatly

simplifies the scene segmentation task and speeds up the

annotation process. We also developed a web-based anno-

tation tool3 to facilitate annotation. All of the annotators

went through two rounds annotation procedure to ensure

the high consistency. In the first round, we dispatch each

chunk of movies to three independent annotators for later

consistency check. In the second round, inconsistent anno-

tations will be re-assigned to two additional annotators for

extra evaluations.

3.3. Annotation Statistics

Large-scale. Table 2 compares MovieScenes with existing

similar video scene datasets. We show that MovieScenes

is significantly larger than other datasets in terms of the

number of shots/scenes and the total time duration. Fur-

thermore, our dataset covers a much wider range of diverse

sources of data, capturing all kinds of scenes, compared

with short films or documentaries.

Diversity. Most movies in our dataset have time dura-

tion between 90 to 120 minutes, providing rich informa-

tion about individual movie stories. A wide range of gen-

res is covered, including most popular ones such as dramas,

thrillers, action movies, making our dataset more compre-

hensive and general. The length of the annotated scenes

varies from less than 10s to more than 120s, where the ma-

jority last for 10 ∼ 30s. This large variability existing in

both the movie level and the scene level makes movie scene

segmentation task more challenging.4

3A demonstrated figure of UI is shown in supplementary materials.
4More statistical results are specified in the supplements.
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4. Local-to-Global Scene Segmentation

As mentioned above, a scene is a series of continuous

shots. Therefore, scene segmentation can be formulated as

a binary classification problem, i.e. to determine whether a

shot boundary is a scene boundary. However, this task is

not easy, since segmenting scenes requires the recognition

of multiple semantic aspects and usage of the complex tem-

poral information.

To tackle this problem, we propose a Local-to-Global

Scene Segmentation framework (LGSS). The overall for-

mulation is shown in Equation 1. A movie with n shots

is represented as a shot sequence [s1, · · · , sn], where each

shot is represented with multiple semantic aspects. We de-

sign a three-level model to incorporate different levels of

contextual information, i.e. clip level (B), segment level (T )

and movie level (G), based on the shot representation si.

Our model gives a sequence of predictions [o1, · · · , on−1],
where oi ∈ {0, 1} denotes whether the boundary between

the i-th and (i+ 1)-th shots is a scene boundary.

G{T [B([s1, s2, · · · , sn])]} = [o1, o2, · · · , on−1] (1)

In the following parts of this section, we will first intro-

duce how to get si, namely how to represent the shot with

multiple semantic elements. Then we will illustrate the de-

tails of the three levels of our model, i.e. B, T and G. The

overall framework is shown in Figure 3.

4.1. Shot Representation with Semantic Elements

Movie is a typical multi-modal data that contains differ-

ent high-level semantic elements. A global feature extracted

from a shot by a neural network, which is widely used by

previous works [1, 24], is not enough to capture the com-

plex semantic information.

A scene is where a sequence of shots sharing some com-

mon elements, e.g. place, cast, etc. Thus, it is important to

take these related semantic elements into consideration for

better shot representation. In our LGSS framework, a shot

is represented with four elements that play important roles

in the constitution of a scene, namely place, cast, action,

and audio.

To obtain semantic features for each shot si, we utilize

1) ResNet50 [11] pretrained on Places dataset [31] on key

frame images to get place features, 2) Faster-RCNN [19]

pretrained on CIM dataset [12] to detect cast instances and

ResNet50 pretrained on PIPA dataset [30] to extract cast

features, 3) TSN [27] pretrained on AVA dataset [8] to

get action features, 4) NaverNet [5] pretrained on AVA-

ActiveSpeaker dataset [20] to separate speech and back-

ground sound, and stft [25] to get their features respectively

in a shot with 16K Hz sampling rate and 512 windowed sig-

nal length, and concatenate them to obtain audio features.

4.2. Shot Boundary Representation at Clip Level

As we mentioned before, scene segmentation can be for-

mulated as a binary classification problem on shot bound-

aries. Therefore, how to represent a shot boundary becomes

a crucial question. Here, we propose a Boundary Network

(BNet) to model the shot boundary. As shown in Equa-

tion 2, BNet, denoted as B, takes a clip of the movie with

2wb shots as input and outputs a boundary representation

bi. Motivated by the intuition that a boundary representa-

tion should capture both the differences and the relations

between the shots before and after, BNet consists of two

branches, namely Bd and Br. Bd is modeled by two tem-

poral convolution layers, each of them embeds the shots be-

fore and after the boundary respectively, following an inner

product operation to calculate their differences. Br aims to

capture the relations of the shots, it is implemented by a

temporal convolution layer followed a max pooling.

bi = B([si−(wb−1), · · · , si+wb
]) (window size 2wb)

=

[

Bd([si−(wb−1), · · · , si], [si+1, · · · , si+wb
])

Br([si−(wb−1), · · · , si , si+1, · · · , si+wb
])

]

(2)

4.3. Coarse Prediction at Segment Level

After we get the representatives of each shot boundary

bi, the problem becomes predicting a sequence binary la-

bels [o1, o2, · · · , on−1] based on the sequence of represen-

tatives [b1, · · · ,bn−1], which can be solved by a sequence-

to-sequence model [7]. However, the number of shots n
is usually larger than 1000, which is hard for existing se-

quential models to contain such a long memory. There-

fore, we design a segment-level model to predict a coarse

results based on a movie segment that consists of wt shots

(wt ≪ n). Specifically, we use a sequential model T , e.g. a

Bi-LSTM [7], with stride wt/2 shots to predict a sequence

of coarse score [p1, · · · , pn−1], as shown in Equation 3.

Here pi ∈ [0, 1] is the probability of a shot boundary to

be a scene boundary.

[p1, · · · , pn−1] = T ([b1, · · · ,bn−1]) (3)

Then we get a coarse prediction ōi ∈ {0, 1}, which in-

dicates whether the i-th shot boundary is a scene boundary.

By binarizing pi with a threshold τ , we get

ōi =

{

1 if pi > τ,
0 otherwise.

(4)

4.4. Global Optimal Grouping at Movie Level

The segmentation result ōi obtained by the segment-level

model T is not good enough, since it only considers the

local information over wt shots while ignoring the global

contextual information over the whole movie. In order to
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Figure 3. Local-to-Global Scene Segmentation framework (LGSS). At the clip level, we extract four encoding for each shot and take a

BNet to model shot boundary. The local sequence model outputs a rough scene cut results at the segment level. Finally, at the movie level,

global optimal grouping is applied to refine the scene segmentation results.

capture the global structure, we develop a global optimal

model G to take movie-level context into consideration. It

takes the shot representations si and the coarse prediction

ōi as inputs and make the final decision oi as follows,

[o1, · · · , on−1] = G([s1, · · · , sn], [ō1, · · · , ōn−1]) (5)

The global optimal model G is formulated as an opti-

mization problem. Before introducing it, we establish the

concept of super shots and objective function first.

The local segmentation gives us an initial rough scene

cut set C = {Ck}, here we denote Ck as a super shot, i.e. a

sequence of consecutive shots determined by the segment-

level results [ō1, · · · , ōn−1]. Our goal is to merge these

super shots into j scenes Φ(n = j) = {φ1, . . . , φj},

where C =
⋃

+
j

k=1 φk and |φk| ≥ 1. Since j is not

given, to automatically decide the target scene number j,

we need to look through all the possible scene cuts, i.e. F =
maxj,j<|C| F (n = j). With fixed j, we want to find the op-

timal scene cut set Φ⋆(n = j). The overall optimization

problem is as follows,

F ⋆ = max
j

F (n = j) (6)

= max
j



max
Φ

∑

φk∈Φ

g(φk)



 ,

s.t. j < |C|, |Φ| = j.

Here, g(φk) is the optimal scene cut score achieved by

the scene φk. It formulates the relationship between a su-

per shot Cl ∈ φk and the rest super shots Pk,l = φk\Cl.
g(φk) constitutes two terms to capture a global relationship

and a local relationship, Fs(Ck,Pk) is similarity score be-

tween Ck and Pk, and Ft(Ck,Pk) is an indicate function

that whether there is a very high similarity between Ck and

any super shot from Pk aiming to formulate shots thread in

a scene. Specifically,

g(φk) =
∑

Ck∈φk

f(Ck,Pk) =
∑

Ck∈φk

(Fs(Ck,Pk) + Ft(Ck,Pk)),

Fs(Ck,Pk) =
1

|Pk|

∑

Ĉk∈Pk

cos(Ck, Ĉk),

Ft(Ck,Pk) = σ( max
Ĉk∈Pk

cos(Ck, Ĉk)).

DP. Solving the optimization problem and determining

target scene number can be effectively conducted by dy-

namic programming (DP). The update of F (n = j) is

max
k

{F ⋆(n = j − 1|C1:k) + g(φj = {Ck+1, . . . , C|C|})},

where C1:k is the set containing the first k super shots.

Iterative optimization. The above DP could give us a

scene cut result, but we can further take this result as a new
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super shot set and iteratively merge them to improve the fi-

nal result. When the super shot updates, we also need to up-

date these super shot representations. A simple summation

over all the contained shots may not be an ideal representa-

tion for a super shot, as there are some shots containing less

informations. Therefore, it would be better if we refine the

representation of super shots in the optimal grouping. The

details of this refinement on super shot representation are

given in the supplements.

5. Experiments

5.1. Experimental Setup

Data. We implement all the baseline methods with our

MovieScenes dataset. The whole annotation set is split into

Train, Val, and Test sets with the ratio 10:2:3 on video level.

Implementation details. We take cross entropy loss for

the binary classification. Since there exists unbalance in

the dataset, i.e. non-scene-transition shot boundaries domi-

nate in amount (approximate 9:1), we take a 1:9 weight on

cross entropy loss for non-scene-transition shot boundary

and scene-transition shot boundary respectively. We train

these models for 30 epochs with Adam optimizer. The ini-

tial learning rate is 0.01 and the learning rate will be divided

by 10 at the 15th epoch.

In the global optimal grouping, we take j = 600 su-

per shots from local segmentation according to the obtained

classification scores for these shot boundaries (a movie usu-

ally contains 1k ∼ 2k shot boundaries.) The range of target

scenes are from 50 to 400, i.e. i ∈ [50, 400]. These values

are estimated based on the MovieScenes statistics.

Evaluation Metrics. We take three commonly used met-

rics: 1) Average Precision (AP). Specifically in our exper-

iment, it is the mean of AP of oi = 1 for each movie. 2)

Miou: a weighted sum of intersection of union of a detected

scene boundary with respect to its distance to the closest

ground-truth scene boundary. 3) Recall@3s: recall at 3 sec-

onds, the percentage of annotated scene boundaries which

lies within 3s of the predicted boundary.

5.2. Quantitative Results

The overall results are shown in Table 3. We reproduce

existing methods [18, 4, 10, 21, 24, 1] with deep place fea-

tures for fair comparison. The base model applies temporal

convolution on shots with the place feature, and we grad-

ually add the following four modules to it, i.e., 1) multi-

ple semantic elements (Multi-Semantics), 2) shot boundary

representation at clip level (BNet), 3) coarse prediction at

segment level with a local sequence model (Local Seq), and

4) global optimal grouping at movie level (Global).

Analysis of overall results. The performance of random

method depends on the ratio of scene-transition/non-scene-

transition shot boundary in the test set, which is approxi-

mately 1 : 9. All the conventional methods [18, 4, 10, 21]

outperform random guess, yet do not achieve good perfor-

mance since they only consider the local contextual infor-

mation and fail to capture semantic information. [24, 1]

achieve better results than conventional methods [18, 4, 10,

21] by considering a large range information.

Analysis of our framework. Our base model applies

temporal convolution on shots with the place feature and

achieves 19.5 on AP. With the help of multiple seman-

tic elements, our method improves from 19.5 (Base) to

24.3 (Multi-Semantics) (24.6% relatively). The frame-

work with shot boundary modeling using BNet raises the

performance from 24.3 (Multi-Semantics) to 42.2 (Multi-

Semantics+BNet) (73.7% relatively) which suggests that

in the scene segmentation task, modeling shot bound-

ary directly is useful. The method with local sequence

model (Multi-Semantics+BNet+Local Seq) achieves 2.7
absolute and 6.4% relative improvement than model (Multi-

Semantics+BNet) from 42.2 to 44.9. The full model

includes both local sequence model and global optimal

grouping (Multi-Semantics+BNet+Local Seq+Global) fur-

ther improves the results from 44.9 to 47.1, which shows

that a movie level optimization are important to scene seg-

mentation.

In all, with the help of multiple semantic elements, clip

level shot modeling, segment level local sequence model,

and movie level global optimal grouping, our best model

outperforms base model and former best model [1] by a

large margin, which improves 27.6 absolutely and 142%
relatively on base model (Base), and improves 19.0 abso-

lutely and 68% relatively on Siamese [1]. These verify the

effectiveness of this local-to-global framework.

5.3. Ablation Studies

Multiple semantic elements. We take the pipeline with

shot boundary modeling BNet, local sequence model and

global optimal grouping as the base model. As shown in

Table 4, gradually adding mid-level semantic elements im-

proves the final results. Starting from the model using place

only, audio improves 4.4, action improves 6.5, casts im-

proves 4.0, and improves 8.1 with all together. This result

indicates that place, cast, action and audio are all useful in-

formation to help scene segmentation.

Additionally, with the help of our multi-semantic ele-

ments, other methods [21, 24, 1] achieve 20% ∼ 30% rela-

tive improvements. This result further justifies our assump-

tion that multi-semantic elements contributing to the scene

segmentation.

Influence of temporal length. We choose different win-

dow sizes in the shot boundary modeling at clip level (BNet)

and different sequence lengths of Bi-LSTM at segment level
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Table 3. Scene segmentation result. In our pipeline, Multi-Semantics means multiple semantic elements, BNet means shot boundary

modeling boundary net, Local Seq means local sequence model, Global means global optimal grouping.

Method AP (↑) Miou (↑) Recall(↑) Recall@3s (↑)

Random guess 8.2 26.8 49.8 54.2

Rasheed et al., GraphCut [18] 14.1 29.7 53.7 57.2

Chasanis et al., SCSA [4] 14.7 30.5 54.9 58.0

Han et al., DP [10] 15.5 32.0 55.6 58.4

Rotman et al., Grouping [21] 17.6 33.1 56.6 58.7

Tapaswi et al., StoryGraph [24] 25.1 35.7 58.4 59.7

Baraldi et al., Siamese [1] 28.1 36.0 60.1 61.2

LGSS (Base) 19.5 34.0 57.1 58.9

LGSS (Multi-Semantics) 24.3 34.8 57.6 59.4

LGSS (Multi-Semantics+BNet) 42.2 44.7 67.5 78.1

LGSS (Multi-Semantics+BNet+Local Seq) 44.9 46.5 71.4 77.5

LGSS (all, Multi-Semantics+BNet+Local Seq+Global) 47.1 48.8 73.6 79.8

Human upper-bound 81.0 91.0 94.1 99.5

Table 4. Multiple semantic elements scene segmentation ablation

results, where four elements are studied including place, cast, ac-

tion and audio.

Method place cast act aud AP (↑)

Grouping [21] X 17.6

StoryGraph [24] X 25.1

Siamese [1] X 28.1

Grouping [21] X X X X 23.8

StoryGraph [24] X X X X 33.2

Siamese [1] X X X X 34.1

LGSS X 17.5

LGSS X 32.1

LGSS X 15.9

LGSS X 39.0

LGSS X X 43.4

LGSS X X 45.5

LGSS X X 43.0

LGSS X X X X 47.1

(Local Seq). The result is shown in Table 5. The exper-

iments show that a longer range of information improves

the performance. Interestingly, the best results come from 4

shots for a shot boundary modeling and 10 shot boundaries

as the input of a local sequence model, which involves 14

shot information in total. This is approximately the length

of a scene. It shows that this range of temporal information

is helpful to scene segmentation.

Choice of hyper-parameters in global optimal grouping.

We differ the iteration number of optimization (Iter #) and

Table 5. Comparison of different temporal window size at clip and

segment level. The vertical line differs on the window size of clip

level shot boundary modeling (BNet), the horizontal line differs

on the length of segment level sequence model (seq.).

BNet\seq 1 2 5 10 20

2 43.4 44.2 45.4 46.3 46.5

4 44.9 45.2 45.7 47.1 46.9

6 44.7 45.0 45.8 46.7 46.6

Table 6. Comparison of different hyper-parameters in global opti-

mal grouping and different choices of initial super shot number.

Iter #\Init # 400 600 800 1000

2 46.5 46.3 45.9 45.1

4 46.5 46.9 46.4 45.9

5 46.5 47.1 46.6 46.0

Converged value 46.5 47.1 46.6 46.0

the initial super shots number (Init #) and show the results

in Table 6.

We first take a look at each row and change the initial

super shots number. The setting with initial number 600
achieves the best results, since it is close to the target scene

number 50 ∼ 400 and meanwhile ensures enough large

search space. Then, when we look at each column, we ob-

serve that the setting with initial number 400 converges in

the fastest way. It achieves the best results very quickly after

2 iterations. And all the settings coverge within 5 iterations.
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Figure 4. Multiple semantic elements interpretation, where the

norm of similarity of each semantic element is represented by the

corresponding bar length. These four movie clips illustrate how

different elements contribute to the prediction of a scene.

Figure 5. Qualitative results of global optimal grouping in two

cases. In each case, the first and second row are the results be-

fore and after the global optimal grouping respectively. The red

line among two shots means there is a scene cut. The ground truth

of each case is that these shots belong to the same scene.

5.4. Qualitative Results

Qualitative results showing the effectiveness of our

multi-modal approach is illustrated in Figure 4, and the

qualitative results of global optimal grouping are shown in

Figure 5. 5

Multiple semantic elements. To quantify the importance

of multiple semantic elements, we take the norm of the co-

sine similarity for each modality. Figure 4 (a) shows an

example where the cast is very similar in consecutive shots

and help to contribute to the formation of a scene. In Fig-

ure 4 (b), the characters and their actions are hard to recog-

nize: the first shot is a long shot where the character is very

small, and the last shot only shows one part of the character

without a clear face. In these cases, a scene is recognized

thanks to the similar audio feature that is shared among

these shots. Figure 4 (c) is a typical “phone call” scene

where the action in each shot is similar. In Figure 4 (d), only

place is similar and we still conclude it as one scene. From

the above observations and analysis on more such cases, we

come to the following empirical conclusions: multi-modal

information is complementary to each other and help the

scene segmentation.

5More results are shown in the supplementary materials.

Table 7. Scene segmentation cross dataset transfer result (AP) on

existing datasets.

Method OVSD [21] BBC [1]

DP [10] 58.3 55.1

Siamese [1] 65.6 62.3

LGSS 76.2 79.5

DP-pretrained [10] 62.9 58.7

Siamese-pretrained [1] 76.8 71.4

LGSS-pretrained 85.7 90.2

Optimal grouping. We show two cases to demonstrate the

effectiveness of optimal grouping. There are two scenes in

Figure 5. Without global optimal grouping, a scene with

sudden view point change is likely to predict a scene transi-

tion (red line in the figure), e.g. in the first case, the coarse

prediction gets two scene cuts when the shot type changes

from a full shot to a close shot. In the second case, the

coarse prediction gets a scene cut when a extreme close up

shot appears. Our global optimal grouping is able to smooth

out these redundant scene cuts as we expected.

5.5. Cross Dataset Transfer

We test different methods DP [10] and Siamese [1] on

existing datasets OVSD [1] and BBC [21] with pretraining

on our MovieScenes dataset, and the results are shown in

Table 7. With pretraining on our dataset, the performances

achieve significant improvements, i.e. ∼ 10 absolute and

∼ 15% relative improvements in AP. The reason is that our

dataset covers much more scenes and brings a better gener-

alization ability to the model pretrained on it.

6. Conclusion

In this work, we collect a large-scale annotation set for

scene segmentation on 150 movies containing 270K anno-

tations. We propose a local-to-global scene segmentation

framework to cover a hierarchical temporal and semantic

information. Experiments show that this framework is very

effective and achieves much better performance than exist-

ing methods. A successful scene segmentation is able to

support a bunch of movie understanding applications. 6 All

the studies in this paper together show that scene analysis is

a challenging but meaningful topic which deserves further

research efforts.
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