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Abstract

Pose-guided person image generation is to transform

a source person image to a target pose. This task re-

quires spatial manipulations of source data. However,

Convolutional Neural Networks are limited by the lack

of ability to spatially transform the inputs. In this pa-

per, we propose a differentiable global-flow local-attention

framework to reassemble the inputs at the feature level.

Specifically, our model first calculates the global corre-

lations between sources and targets to predict flow fields.

Then, the flowed local patch pairs are extracted from

the feature maps to calculate the local attention coef-

ficients. Finally, we warp the source features using a

content-aware sampling method with the obtained local

attention coefficients. The results of both subjective and

objective experiments demonstrate the superiority of our

model. Besides, additional results in video animation and

view synthesis show that our model is applicable to other

tasks requiring spatial transformation. Our source code

is available at https://github.com/RenYurui/

Global-Flow-Local-Attention.

1. Introduction

Image spatial transformation can be used to deal with

the generation task where the output images are the spatial

deformation versions of the input images. Such deforma-

tion can be caused by object motions or viewpoint changes.

Many conditional image generation tasks can be seen as a

type of spatial transformation tasks. For example, pose-

guided person image generation [20, 25, 27, 40, 28, 29]

transforms a person image from a source pose to a target

pose while retaining the appearance details. As shown in

Figure 1, this task can be tackled by reasonably reassem-

bling the input data in the spatial domain.

However, Convolutional Neural Networks (CNNs) are

inefficient to spatially transform the inputs. CNNs calcu-

late the outputs with a particular form of parameter shar-

ing, which leads to an important property called equiv-

Figure 1. The visualization of data spatial transformation. For each

image pair, the left image is the generated result of our model,

while the right image is the input source image. Our model spa-

tially transforms the information from sources to targets at the fea-

tures level. The heat maps indicate the attention coefficients.

ariance to transformation [5]. It means that if the input

spatially shifts the output shifts in the same way. This

property can benefit tasks such as segmentation [4, 8], de-

tection [26, 11] and image translation with aligned struc-

tures [12, 34] etc. However, it limits the networks by lack-

ing abilities to spatially rearrange the input data. Spatial

Transformer Networks (STN) [13] solves this problem by

introducing a Spatial Transformer module to standard neu-

ral networks. This module regresses global transformation

parameters and warps input features with an affine trans-

formation. However, since it assumes a global affine trans-

formation between sources and targets, this method cannot

deal with the transformations of non-rigid objects.

Attention mechanism [30, 35] allows networks to take

use of non-local information, which gives networks abili-

ties to build long-term correlations. It has been proved to

be efficient in many tasks such as natural language pro-

cessing [30], image recognition [32, 10], and image gen-

eration [35]. However, for spatial transformation tasks in

which target images are the deformation results of source

images, each output position has a clear one-to-one rela-

tionship with the source positions. Therefore, the attention

coefficient matrix between the source and target should be

a sparse matrix instead of a dense matrix.

Flow-based operation forces the attention coefficient ma-

trix to be a sparse matrix by sampling a very local source

patch for each output position. These methods predict 2-D
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coordinate offsets specifying which positions in the sources

could be sampled to generate the targets. However, in or-

der to stabilize the training, most of the flow-based meth-

ods [39, 3] warp input data at the pixel level, which limits

the networks to be unable to generate new contents. Mean-

while, large motions are difficult to be extracted due to the

requirement of generating full-resolution flow fields [21].

Warping the inputs at the feature level can solve these prob-

lems. However, the networks are easy to be stuck within

bad local minima [22, 33] due to two reasons. (1) The input

features and flow fields are mutually constrained. The input

features can not obtain reasonable gradients without correct

flow fields. The network also cannot extract similarities to

generate correct flow fields without reasonable features. (2)
The poor gradient propagation provided by the commonly

used Bilinear sampling method further lead to instability in

training [14, 22].

In order to deal with these problems, in this paper, we

combine flow-based operation with attention mechanisms.

We propose a novel global-flow local-attention framework

to force each output location to be only related to a local

feature patch of sources. The architecture of our model can

be found in Figure 2. Specifically, our network can be di-

vided into two parts: Global Flow Field Estimator and Local

Neural Texture Renderer. The Global Flow Filed Estima-

tor is responsible for extracting the global correlations and

generating flow fields. The Local Neural Texture Renderer

is used to sample vivid source textures to targets accord-

ing to the obtained flow fields. To avoid the poor gradient

propagation of the Bilinear sampling, we propose a local

attention mechanism as a content-aware sampling method.

We compare our model with several state-of-the-art meth-

ods. The results of both subjective and objective experi-

ments show the superior performance of our model. We

also conduct comprehensive ablation studies to verify our

hypothesis. Besides, we apply our model to other tasks re-

quiring spatial transformation manipulation including view

synthesis and video animation. The results show the versa-

tility of our module. The main contributions of our paper

can be summarized as:

• A global-flow local-attention framework is proposed

for the pose-guided person image generation task. Ex-

periments demonstrate the effectiveness of the pro-

posed method.

• The carefully-designed framework and content-aware

sampling operation ensure that our model is able to

warp and reasonably reassemble the input data at the

feature level. This operation not only enables the

model to generate new contents, but also reduces the

difficulty of the flow field estimation task.

• Additional experiments on view synthesis and video

animation show that our model can be flexibly applied

to different tasks requiring spatial transformation.

2. Related Work

Pose-guided Person Image Generation. An early at-

tempt [20] on the pose-guided person image generation task

proposes a two-stage network to first generate a coarse im-

age with target pose and then refine the results in an adver-

sarial way. Essner et al. [2] try to disentangle the appear-

ance and pose of person images. Their model enables both

conditional image generation and transformation. However,

they use U-Net based skip connections, which may lead to

feature misalignments. Siarohin et al. [25] solve this prob-

lem by introducing deformable skip connections to spatially

transform the textures. It decomposes the overall deforma-

tion by a set of local affine transformations (e.g. arms and

legs etc.). Although it works well in person image gen-

eration, the requirement of the pre-defined transformation

components limits its application. Zhu et al. [40] propose a

more flexible method by using a progressive attention mod-

ule to transform the source data. However, useful informa-

tion may be lost during multiple transfers, which may result

in blurry details. Han et al. [7] use a flow-based method

to transform the source information. However, they warp

the sources at the pixel level, which means that further re-

finement networks are required to fill the holes of occlusion

contents. Liu et al. [18] and Li et al. [16] warp the inputs

at the feature level. But both of them need additional 3D

human models to calculate the flow fields between sources

and targets, which limits the application of these models.

Our model does not require any supplementary information

and obtains the flow fields in an unsupervised manner.

Image Spatial Transformation. Many methods have been

proposed to enable the spatial transformation capability of

Convolutional Neural Networks. Jaderberg et al. [13] intro-

duce a differentiable Spatial Transformer module that esti-

mates global transformation parameters and warps the fea-

tures with affine transformation. Several variants have been

proposed to improve the performance. Zhang et al. add con-

trolling points for free-form deformation [36]. The model

proposed in paper [17] sends the transformation parameters

instead of the transformed features to the network to avoid

sampling errors. Jiang et al. [14] demonstrate the poor gra-

dient propagation of the commonly used Bilinear sampling.

They propose a linearized multi-sampling method for spa-

tial transformation.

Flow-based methods are more flexible than affine trans-

formation methods. They can deal with complex deforma-

tions. Appearance flow [39] predicts flow fields and gener-

ates the targets by warping the sources. However, it warps

image pixels instead of features. This operation limits the

model to be unable to generate new contents. Besides, it

requires the model to predict flow fields with the same res-

olution as the result images, which makes it difficult for

the model to capture large motions [41, 21]. Vid2vid [31]

deals with these problems by predicting the ground-truth
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Figure 2. Overview of our model. The Global Flow Field Estimator is used to generate flow fields. The Local Neural Texture Renderer

yields results by spatially transforming the source features using local attention. Dotted lines indicate that our local attention module can

be used at different scales.

flow fields using FlowNet [3] first and then trains their flow

estimator in a supervised manner. They also use a gener-

ator for occluded content generation. Warping the sources

at the feature level can avoid these problems. In order to

stabilize the training, some papers propose to obtain the

flow-fields by using some assumptions or supplementary in-

formation. Paper [24] assumes that keypoints are located

on object parts that are locally rigid. They generate dense

flow fields from sparse keypoints. Papers [18, 16] use the

3D human models and the visibility maps to calculate the

flow fields between sources and targets. Paper [22] pro-

poses a sampling correctness loss to constraint flow fields

and achieve good results.

3. Our Approach

For the pose-guided person image generation task, tar-

get images are the deformation results of source images,

which means that each position of targets is only related to

a local region of sources. Therefore, we design a global-

flow local-attention framework to reasonably sample and

reassemble source features. Our network architecture is

shown in Figure 2. It consists of two modules: Global Flow

Field Estimator F and Local Neural Texture Renderer G.

The Global Flow Field Estimator is responsible for estimat-

ing the motions between sources and targets. It generates

global flow fields w and occlusion masks m for the local

attention blocks. With w and m, the Local Neural Tex-

ture Renderer renders the target images with vivid source

features using the local attention blocks. We describe the

details of these modules in the following sections. Please

note that to simplify the notations, we describe the network

with a single local attention block. As shown in Figure 2,

our model can be extended to use multiple attention blocks

at different scales.

3.1. Global Flow Field Estimator

Let ps and pt denote the structure guidance of the source

image xs and the target image xt respectively. Global Flow

Field Estimator F is trained to predict the motions between

xs and xt in an unsupervised manner. It takes xs, ps and pt

as inputs and generates flow fields w and occlusion masks

m.

w,m = F (xs,ps,pt) (1)

where w contains the coordinate offsets between sources

and targets. The occlusion mask m with continuous values

between 0 and 1 indicates whether the information of a tar-

get position exists in the sources. We design F as a fully

convolutional network. w and m share all weights of F

other than their output layers.

As the labels of the flow fields w are always unavailable

in this task, we use the sampling correctness loss proposed

by [22] to constraint w. It calculates the similarity between

the warped source feature and ground-truth target feature at

the VGG feature level. Let vs and vt denote the features

generated by a specific layer of VGG19. vs,w = w(vs)
is the warped results of the source feature vs using w. The

sampling correctness loss calculates the relative cosine sim-
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Figure 3. Overview of our Local Attention. We first extract the feature patch pair from the source and target according to the flow fields.

Then the context-aware sampling kernel is calculated by the kernel prediction net. Finally, we sample the source feature and obtain the

warped result located at l.

ilarity between vs,w and vt.

Lc =
1

N

∑

l∈Ω

exp(−
µ(vl

s,w,vl
t)

µl
max

) (2)

where µ(∗) denotes the cosine similarity. Coordinate set

Ω contains all N positions in the feature maps, and vl
s,w

denotes the feature of vs,w located at the coordinate l =
(x, y). The normalization term µl

max is calculated as

µl
max = max

l′∈Ω

µ(vl′

s ,v
l
t) (3)

It is used to avoid the bias brought by occlusion.

The sampling correctness loss can constrain the flow

fields to sample semantically similar regions. However, as

the deformations of image neighborhoods are highly corre-

lated, it would benefit if we could extract this relationship.

Therefore, we further add a regularization term to our flow

fields. This regularization term is used to punish local re-

gions where the transformation is not an affine transforma-

tion. Let ct be the 2D coordinate matrix of the target feature

map. The corresponding source coordinate matrix can be

written as cs = ct + w. We use Nn(ct, l) to denote local

n× n patch of ct centered at the location l. Our regulariza-

tion assumes that the transformation between Nn(ct, l) and

Nn(cs, l) is an affine transformation.

Tl = AlSl =

[

θ11 θ12 θ13
θ21 θ22 θ23

]

Sl (4)

where Tl =

[

x1 x2 ... xn×n

y1 y2 ... yn×n

]

with each coordinate

(xi, yi) ∈ Nn(ct, l) and Sl =





x1 x2 ... xn×n

y1 y2 ... yn×n

1 1 ... 1





with each coordinate (xi, yi) ∈ Nn(cs, l). The estimated

affine transformation parameters Âl can be solved using the

least-squares estimation as

Âl = (SH
l Sl)

−1SH
l Tl (5)

Our regularization is calculated as the ℓ2 distance of the er-

ror.

Lr =
∑

l∈Ω

∥

∥

∥
Tl − ÂlSl

∥

∥

∥

2

2

(6)

3.2. Local Neural Texture Renderer

With the flow fields w and occlusion masks m, our Lo-

cal Neural Texture Renderer G is responsible for generating

the results by spatially transforming the information from

sources to targets. It takes xs, pt, w and m as inputs and

generate the result image x̂t.

x̂t = G(xs,pt,w,m) (7)

Specifically, the information transformation occurs in the

local attention module. As shown in Figure 2, this mod-

ule works as a neural renderer where the target bones are

rendered by the neural textures of the sources. Let ft and

fs represent the extracted features of target bones pt and
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DeepFashion Market-1501 Number of

FID LPIPS JND FID LPIPS Mask-LPIPS JND Parameters

Def-GAN 18.457 0.2330 9.12% 25.364 0.2994 0.1496 23.33% 82.08M

VU-Net 23.667 0.2637 2.96% 20.144 0.3211 0.1747 24.48% 139.36M

Pose-Attn 20.739 0.2533 6.11% 22.657 0.3196 0.1590 16.56% 41.36M

Intr-Flow 16.314 0.2131 12.61% 27.163 0.2888 0.1403 30.85% 49.58M

Ours 10.573 0.2341 24.80% 19.751 0.2817 0.1482 27.81% 14.04M

Table 1. The evaluation results compared with several state-of-the-art methods including Def-GAN [25], VU-Net [2], Pose-Attn[40], and

Intr-Flow [16] over dataset DeepFashion [19] and Market-1501 [38]. FID [9] and LPIPS [37] are objective metrics. JND is obtained by

human subjective studies. It represents the probability that the generated images are mistaken for real images.

source images xs respectively. We first extract local patches

Nn(ft, l) and Nn(fs, l + wl) from ft and fs respectively.

The patch Nn(fs, l + wl) is extracted using bilinear sam-

pling as the coordinates may not be integers. Then, a kernel

prediction network M is used to predict local n × n kernel

kl as

kl = M(Nn(fs, l +wl),Nn(ft, l)) (8)

We design M as a fully connected network, where the lo-

cal patches Nn(fs, l + wl) and Nn(ft, l) are directly con-

catenated as the inputs. The softmax function is used as

the non-linear activation function of the output layer of M .

This operation forces the sum of kl to 1, which enables

the stability of gradient backward. Finally, the flowed fea-

ture located at coordinate l = (x, y) is calculated using

a content-aware attention over the extracted source feature

patch Nn(fs, l +wl).

f lattn = P (kl ⊗Nn(fs, l +wl)) (9)

where ⊗ denotes the element-wise multiplication over the

spatial domain and P represents the global average pool-

ing operation. The warped feature map fattn is obtained by

repeating the previous steps for each location l.

However, not all contents of target images can be found

in source images because of occlusion or movements. In

order to enable generating new contents, the occlusion mask

m with continuous value between 0 and 1 is used to select

features between fattn and ft.

fout = (1−m) ∗ ft +m ∗ fattn (10)

We train the network using a joint loss consisting of a

reconstruction ℓ1 loss, adversarial loss, perceptual loss, and

style loss. The reconstruction ℓ1 loss is written as

Lℓ1 = ‖xt − x̂t‖1 (11)

The generative adversarial framework [6] is employed to

mimic the distributions of the ground-truth xt. The adver-

sarial loss is written as

Ladv = E[log(1−D(G(xs,pt,w,m)))]

+ E[logD(xt)] (12)

where D is the discriminator of the Local Neural Texture

Renderer G. We also use the perceptual loss and style loss

introduced by [15]. The perceptual loss calculates ℓ1 dis-

tance between activation maps of a pre-trained network. It

can be written as

Lperc =
∑

i

‖φi(xt)− φi(x̂t)‖1 (13)

where φi is the activation map of the i-th layer of a pre-

trained network. The style loss calculates the statistic error

between the activation maps as

Lstyle =
∑

j

∥

∥

∥
G

φ
j (xt)−G

φ
j (x̂t)

∥

∥

∥

1

(14)

where G
φ
j is the Gram matrix constructed from activation

maps φj . We train our model using the overall loss as

L = λcLc+λrLr+λℓ1Lℓ1+λaLadv+λpLprec+λsLstyle

(15)

4. Experiments

4.1. Implementation Details

Datasets. Two datasets are used in our experiments: person

re-identification dataset Market-1501 [38] and DeepFashion

In-shop Clothes Retrieval Benchmark [19]. Market-1501

contains 32668 low-resolution images (128 × 64). The im-

ages vary in terms of the viewpoints, background, illumi-

nation etc. The DeepFashion dataset contains 52712 high-

quality model images with clean backgrounds. We split the

datasets with the same method as that of [40]. The personal

identities of the training and testing sets do not overlap.

Metrics. We use Learned Perceptual Image Patch Similar-

ity (LPIPS) proposed by [37] to calculate the reconstruc-

tion error. LPIPS computes the distance between the gen-

erated images and reference images at the perceptual do-

main. It indicates the perceptual difference between the in-

puts. Meanwhile, Fréchet Inception Distance [9] (FID) is

employed to measure the realism of the generated images. It

calculates the Wasserstein-2 distance between distributions

of the generated images and ground-truth images. Besides,
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Figure 4. The qualitative comparisons with several state-of-the-art models including Def-GAN [25], VU-Net [2], Pose-Attn[40], and Intr-

Flow [16]. The left part shows the results of the Fashion dataset. The right part shows the results of the Market-1501 dataset.

we perform a Just Noticeable Difference (JND) test to eval-

uate the subjective quality. Volunteers are asked to choose

the more realistic image from the data pair of ground-truth

and generated images.

Network Implementation and Training Details. Basi-

cally, auto-encoder structures are employed to design our

F and G. The residual block is used as the basic compo-

nent of these models. We train our model using 256 × 256
images for the Fashion dataset. Two local attention blocks

are used for feature maps with resolutions as 32 × 32 and

64× 64. The extracted local patch sizes are 3 and 5 respec-

tively. For Market-1501, we use 128 × 64 images with a

single local attention block at the feature maps with resolu-

tion as 32× 16. The extracted patch size is 3. We train our

model in stages. The Flow Field Estimator is first trained

to generate flow fields. Then we train the whole model in

an end-to-end manner. We adopt the ADAM optimizer with

the learning rate as 10−4. The batch size is set to 8 for all

experiments.

4.2. Comparisons

We compare our method with several stare-of-the-art

methods including Def-GAN [25], VU-Net [2], Pose-

Attn[40] and Intr-Flow [16]. The quantitative evaluation re-

sults are shown in Table 1. For the Market-1501 dataset, we

follow the previous work [20] to calculate the mask-LPIPS

to alleviate the influence of the backgrounds. It can be seen

that our model achieves competitive results in both datasets,

which means that our model can generate realistic results

with fewer perceptual reconstruction errors.

As the subjective metrics may not be sensitive to some

artifacts, its results may mismatch with the actual subjec-

tive perceptions. Therefore, we implement a just noticeable

difference test on Amazon Mechanical Turk (MTurk). This

experiment requires volunteers to choose the more realis-

tic image from image pairs of real and generated images.

The test is performed over 800 images for each model and

dataset. Each image is compared 5 times by different vol-

unteers. The evaluation results are shown in Table 1. It

can be seen that our model achieves the best result in the

challenging Fashion dataset and competitive results in the

Market-1501 dataset.

The typical results of different methods are provided in

Figure 4. For the Fashion dataset, VU-Net and Pose-Attn

struggle to generate complex textures since these models

lack efficient spatial transformation blocks. Def-GAN de-

fines local affine transformation components (e.g. arms and

legs etc.). This model can generate correct textures. How-

ever, the pre-defined affine transformations are not suffi-

cient to represent complex spatial variance, which limits the
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Flow-Based
Content-aware

FID LPIPS
Sampling

Baseline N - 16.008 0.2473

Global-Attn N - 18.616 0.2575

Bi-Sample Y N 12.143 0.2406

Full Model Y Y 10.573 0.2341

Table 2. The evaluation results of the ablation study.

performance of the model. Flow-based model Intr-Flow is

able to generate vivid textures for front pose images. How-

ever, it may fail to generate realistic results for side pose

images due to the requirement of generating full-resolution

flow fields. Meanwhile, this model needs 3D human mod-

els to generate the ground-truth flow fields for training.

Our model regresses flow fields in an unsupervised manner.

It can generate realistic images with not only the correct

global pattern but also the vivid details such as the lace of

clothes and the shoelace. For the Market-1501 Dataset, our

model can generate correct pose with vivid backgrounds.

Artifacts can be found in the results of competitors, such as

the sharp edges in Pose-Attn and the halo effects in Def-

GAN.

The numbers of model parameters are also provided to

evaluate the computation complexity in Table 1. Thanks to

our efficient attention blocks, our model does not require a

large number of convolution layers. Thus, we can achieve

high performance with less than half of the parameters of

the competitors.

4.3. Ablation Study

In this subsection, we train several ablation models to

verify our assumptions and evaluate the contribution of each

component.

Baseline. Our baseline model is an auto-encoder convolu-

tional network. We do not use any attention blocks in this

model. Images xs, pt, ps are directly concatenated as the

model inputs.

Global Attention Model (Global-Attn). The Global-Attn

model is designed to compare the global-attention block

with our local-attention block. We use a similar network ar-

chitecture as our Local Neural Texture Renderer G for this

model. The local attention blocks are replaced by global

attention blocks where the attention coefficients are calcu-

lated by the similarities between the source features fs and

target features ft.

Bilinear Sampling Model (Bi-Sample). The Bi-Sample

model is designed to evaluate the contribution of our

content-aware sampling method described in Section 3.2.

Both the Global Flow Field Estimator F and Local Neu-

ral Texture Renderer G are employed in this model. How-

ever, we use the Bilinear sampling as the sampling method

in model G.

Full Model (Ours). We use our proposed global-flow local-

attention framework in this model.

Source 

Image

Target 

Pose

Target 

Image
Baseline Global-Attn Bi-Sample Full Model

Figure 5. Qualitative results of the ablation study.

Source 

Image

Target 

Image
Global-Attn Bi-Sample Full ModelGlobal-Attn

Attention Map

Bi-Sample

Attention Map

Full Model

Attention Map

Figure 6. The visualization results of different attention modules.

The red rectangles indicate the target locations. The heat maps

show the attention coefficients. Blue represents low weights.

The evaluation results of the ablation study are shown in

Table 2. Compared with the Baseline, the performance of

the Global-Attn model is degraded, which means that un-

reasonable attention block cannot efficiently transform the

information. Improvements can be obtained by using flow-

based methods such as the Bi-Sample model and our Full

model which force the attention coefficient matrix to be a

7696



sparse matrix. However, the Bi-Sample model uses a pre-

defined sampling method with a limited sampling receptive

field, which may lead to unstable training. Our full model

uses a content-aware sampling operation with an adjustable

receptive field, which brings further performance gain.

Subjective comparison of these ablation models can be

found in Figure 5. It can be seen that the Baseline and

Global-Attn model generate correct structures. However,

the textures of the source images are not well-maintained.

The possible explanation is that these models generate im-

ages by first extracting global features and then propagating

the information to specific locations. This process leads to

the loss of details. The flow-based methods spatially trans-

form the features. They are able to reconstruct vivid de-

tails. However, the Bi-Sample model uses the pre-defined

Bilinear sampling method. It cannot find the exact sampling

locations, which leads to artifacts in the final results.

We further provide the visualization of the attention

maps in Figure 6. It can be seen that the Global-Attn model

struggles to exclude irrelevant information. Therefore, the

extracted features are hard to be used to generate specific

textures. The Bi-Sample model assigns a local patch for

each generated location. However, incorrect features are of-

ten flowed due to the limited sampling receptive field. Our

Full model using the content-aware sampling method can

flexibly change the sampling weights and avoid the artifacts.

5. Application on Other Tasks

In this section, we demonstrate the versatility of our

global-flow local-attention module. Since our model does

not require any additional information other than images

and structure guidance, it can be flexibly applied to tasks

requiring spatial transformation. Two example tasks are

shown as follows.

View Synthesis. View synthesis requires generating novel

views of objects or scenes based on arbitrary input views.

Since the appearance of different views is highly correlated,

the existing information can be reassembled to generate the

targets. The ShapeNet dataset [1] is used for training. We

generate novel target views using single view input. The

results can be found in Figure 7. We provide the results of

appearance flow as a comparison. It can be seen that appear-

ance flow struggles to generate occluded contents as they

warp image pixels instead of features. Our model generates

reasonable results.

Image Animation. Given an input image and a driving

video sequence depicting the structure movements, the im-

age animation task requires generating a video containing

the specific movements. This task can be solved by spa-

tially moving the appearance of the sources. We train our

model with the real videos in the FaceForensics dataset [23],

which contains 1000 videos of news briefings from different

reporters. The face regions are cropped for this task. We use

Source AppFlow Ours Ground-Truth

Figure 7. Qualitative results of the view synthesis task. We show

the results of our model and appearance flow [39] model. Click on

the image to start the animation in a browser.

Source Result Source Result

Figure 8. Qualitative results of the image animation task. Our

model generates the results video using reference image and edge

guidance. Click on the image to start the animation in a browser.

the edge maps as the structure guidance. For each frame, the

input source frame and the previous generated n frames are

used as the references. The flow fields are calculated for

each reference. The results can be found in Figure 8. It can

be seen that our model generates realistic results with vivid

movements.

6. Conclusion

In this paper, we solve the person image generation task

using deep spatial transformation. We analyze the spe-

cific reasons causing instable training when warping and

transforming sources at the feature level. Targeted solution

global-flow local-attention framework is proposed to enable

our model to reasonably reassemble the source neural tex-

tures. Experiments show that our model can generate target

images with correct poses while maintaining vivid details.

In addition, the ablation study shows that our improvements

help the network find reasonable sampling positions. Fi-

nally, we show that our model can be easily extended to ad-

dress other spatial deformation tasks such as view synthesis

and video animation.
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