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Figure 1: Estimation of appearance, shape and 6D pose (3D position and rotation) of fast moving objects. The input video
and 2D trajectories estimated by Non-Causal Tracking by Deblatting, TbD-NC [14], are processed by the proposed piece-
wise deblatting that generates, with sub-frame temporal resolution, the object appearance and shape (snapshots), from which

the complete 6-DOF trajectory is estimated.
Abstract

We propose a novel method that tracks fast moving ob-
Jjects, mainly non-uniform spherical, in full 6 degrees of
freedom, estimating simultaneously their 3D motion trajec-
tory, 3D pose and object appearance changes with a time
step that is a fraction of the video frame exposure time.
The sub-frame object localization and appearance estima-
tion allows realistic temporal super-resolution and precise
shape estimation. The method, called TbD-3D (Tracking by
Deblatting in 3D) relies on a novel reconstruction algorithm
which solves a piece-wise deblurring and matting problem.
The 3D rotation is estimated by minimizing the reprojection
error. As a second contribution, we present a new chal-
lenging dataset with fast moving objects that change their
appearance and distance to the camera. High-speed cam-
era recordings with zero lag between frame exposures were
used to generate videos with different frame rates annotated
with ground-truth trajectory and pose.

1. Introduction

Visual tracking encompasses a broad class of problems
that have received significant interest [7, 8]. Current state-

of-the-art methods employ a range of techniques, such as
deep Siamese networks [9, 18] and discriminative correla-
tion filters [20, 12]. The standard output of tracking meth-
ods is a 2D bounding box, either axis aligned or rotated.
Video segmentation methods output precise segmentation
masks [22, 21].

Recently, fast moving objects (FMOs) have been intro-
duced as one of the problems in tracking [15]. Such objects
are recorded as blurred streaks. They are common in sport
videos and many other scenarios, such as videos of falling
objects, hailstorm and flying insects, or more specialized
ones, e.g. visual navigation of microrobots in a magnetic
field. To avoid FMOs and the related phenomena, one can
use high-speed cameras operating at high frame rates, e.g.
240 fps or more. However, this brings additional require-
ments on resources, such as data transfer bandwidth and
storage. When capturing such objects, camera settings have
to be considered a priori before video acquisition.

The blurred trace of an object encodes information about
its velocity, shape and appearance. Estimating these quan-
tities should be thus in principle possible even from more
affordable cameras with 30 fps, but it is a challenging task
as the problem is heavily ill-posed. As shown in [15], stan-
dard tracking methods do not perform well on FMOs.
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Figure 2: Sub-frame appearance estimation of fast moving objects. Left: 30 fps input images with overlaid 2D projections
of recovered 3D trajectories in green. White points correspond to time instants in the middle of high-speed camera frames.
Right: cropped objects from a high-speed camera (top) and output of the proposed TbD-3D (bottom). 3D rotation is estimated
by minimizing the reprojection error, assuming a spherical object. The estimated rotation axis is visualized by a yellow cross.

For a fast moving object, a bounding box or a segmenta-
tion mask is not an adequate representation of its trajectory,
as it travels a non-negligible path in a single frame. Such
object may be localized more precisely, with a sub-frame
accuracy.

Tracking by Deblatting (TbD) [5] was the first method
to track fast moving objects by solving a joint deblurring
and matting (deblatting) problem. These techniques are
closer to blind deconvolution than to visual tracking meth-
ods. Non-causal post-processing proposed in [14] gives
more precise and complete trajectories. The output of both
above-mentioned methods is only a 2D trajectory. They as-
sume a 2D appearance and mask of an object to stay un-
changed over the duration of a frame. This is equivalent to
ignoring the 3D rotation of the object, the change of its dis-
tance to camera and of appearance due to the non-uniform
light field, reflections, shadows or deformations. Such sim-
plifications are only adequate for objects with almost uni-
form texture and moving in a plane parallel to the camera
projection plane. To date, the full nature of 3D object mo-
tion and appearance has not been considered, nor object lo-
cation in 3D nor angular velocity in 3D.

In this paper we are the first to estimate continuous-time
sub-frame changes in appearance of the object. While solv-
ing for the shape and appearance, we recover the 3D ro-
tation of the object and distance to the camera (currently
we are able to handle only close to spherical objects). The
output of the proposed method is a continuous object pose
with 6 degrees of freedom. The reconstruction pipeline is
summarized in Figure 1.

We make the following contributions:

e We propose TbD-3D (Tracking by Deblatting in 3D) —
the first method to reconstruct the appearance and the
shape of blurred moving objects with sub-frame tem-
poral resolution using piece-wise deblatting. We call
these reconstructions snapshots (as in Figure 2).

e The method estimates continuous-time pose with 6 de-
grees of freedom (3D location and rotation) for non-
uniform spherical objects. The rotation is estimated by
a new method which minimizes the reprojection error.

e We collect and make available a new challenging
dataset with fast moving objects that change their ap-
pearance and distance to the camera. High-speed cam-
era with zero lag between frame exposures is used to
generate videos with different low frame rates anno-
tated with ground-truth trajectory and pose data.

e Sub-frame reconstruction accuracy on object deforma-
tions that occur during contact with other objects is
demonstrated.

2. Related Work

Detection and tracking of fast moving objects was in-
troduced by Rozumnyi et al. [15]. Their work was limited
by several assumptions on object trajectory and appearance,
such as linear trajectory parallel to the camera projection
plane, uniform 2D appearance of the object, high contrast
to the background and no contact of the moving object with
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other objects. Some of these assumptions were relaxed in
a method called Tracking by Deblatting (TbD) [5], which
tracks fast moving objects by solving a deblurring problem
in every frame and processing the video in a causal man-
ner. TbD outperforms the previous approach by a wide
margin, yet trajectories estimated at adjacent frames are in-
dependent and the final trajectory for the whole sequence
is a set of segments. These limitations are addressed by
a follow-up method — non-causal Tracking by Deblatting
(TbD-NC) [14]. TbD-NC takes the output of TbD and esti-
mates the final trajectory which is continuous over the du-
ration of the whole sequence.

All these methods assume that the object trajectory is
parallel to the camera plane and that the object appearance
is static within one frame (no rotation). The appearance can
change between frames, but in arbitrary fashion as a long-
term appearance template is learned online. The only ex-
ception is the work of Kotera and Sroubek [6] that estimates
object rotation, yet only 2D in-plane rotation is considered
and the object shape is assumed to be known. The method
is thus applicable only to nearly flat objects moving on a flat
surface.

Deep learning has been applied to motion deblurring of
videos [19, 17] and to the generation of intermediate short-
exposure frames [4]. Their proposed convolutional neural
networks are trained only on small blurs; blur parameters
are not available as they are not directly estimated. Tracking
methods that consider blurred objects in [ 13, 10] assume ob-
ject motion that is approximately linear and relatively small
compared to the object size. Alpha blending of the tracked
object with the background is ignored and their output per
frame is only a bounding box, which is insufficient for fast
moving objects.

The tracking methods [15, 5, 14] for fast moving objects
use an image formation model that is defined as

I=H+F+(1—H=xM)B (1)

for a single color video frame I. The formation model is
a mixture of two components. The first component is the
object appearance F' (after projection to the image plane)
blurred by motion along the object trajectory, which is rep-
resented as a blur kernel H. The second part is the back-
ground B attenuated by object occlusion, where M, equiv-
alent to the indicator function of F, is the object shape after
projection to the image plane. Following [5], the blur is
simplified to a 2D convolution. The background B is esti-
mated as a median of the last 5 frames. They assume either
an almost static camera or a stabilized sequence.

The output of TbD-NC [14] is a 2D object trajectory
C¢(t): [0,N] — R? in an analytical form where N is the
number of frames in the video sequence. This output is then
used as an input to the proposed TbD-3D method.

Input F F* M M*
Figure 3: TbD-3D applied to 30 fps videos compared to im-
ages from a high-speed camera at 240 fps (marked with ).
F': snapshots of object appearance estimates of fast moving
objects. Each row corresponds to one sub-frame instant (red
dot on a green trajectory) of the input frame on the left. For
visualization purposes, the masks M are inverted.

3. Method

We propose the following pipeline to reconstruct a 6DoF
pose of a fast moving object:

1. From a given 2D trajectory, in our case computed
by the TbD-NC algorithm [ 4], reconstruct sub-frame
blur-free snapshots of the object by piece-wise deblat-
ting (Section 3.1).

2. Estimate the relative distance from the object to the
camera from the estimated shape mask (Section 3.2).

3. Using the assumption of a spherical object with locally
constant rotation find the rotation axis and velocity by
minimizing the reprojection error (Section 3.3).

An alternative method to estimate the 3D rotation of
FMOs from their snapshots is a classical 3D reconstruc-
tion pipeline. We tried several reconstruction and structure-
from-motion pipelines [16, | 1, 2, 3] and none of them were
able to deal with small objects containing few features.
They do not perform well even on snapshots from a high-
speed camera sequence, where the motion blur is negligible.

Tracking by Deblatting in 3D thus extends TbD and
TbD-NC by using trajectories estimated by these methods
to infer more attributes about the object and its motion.
The core of TbD consists of two alternating optimization
steps. The first step updates the object shape and appear-
ance (F, M) while the trajectory H is fixed, and the sec-
ond one updates the trajectory H while the object (F, M)
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Ground Truth

TbD-3D with Oracle

Figure 4: 3D trajectory estimation for selected sequences from the proposed TbD-3D dataset. Curve thickness codes distance
from the object to the camera (thicker curve means that the object is closer to the camera). TbD-3D with Oracle means that
the 2D trajectory is estimated from the original high-speed footage and only the third dimension is estimated. Otherwise, the
output of TbD-NC [14] is used as the 2D trajectory. Sequences correspond to 30 fps.

is fixed. Both steps are formulated as convex optimization
problems with non-smooth terms and constraints and solved
using the ADMM method [!]. While processing the video
sequence, TbD maintains a long-term appearance model F
used to regularize the estimation of F' in the new frame.

We have made two modifications to the TbD core steps.
First, we added a new regularization term to the shape-and-
appearance (F, M) estimation step to facilitate shape esti-
mation in cases when the tracked object is a ball and its
shape is thus circularly symmetric. The modified optimiza-
tion problem is

1 2
rg}g}iﬂH*F—i—(l—H*M)B—ﬂb

A - A
+ SIF = FI5 + ar|VEy + THRM — M3, ()

s.t. 0 < F < M < 1, where matrix inequalities are con-
sidered element-wise. The first term is the data likelihood
given by the image formation model (1). The second term
constrains the solution to be close to the template F and
the third term is Total Variation that enforces piece-wise
smooth object appearance. In the last, Ar-weighted term,
R is a linear operator that performs circular averaging, i.e.
the shape mask M is forced to be rotationally symmetric.

Second, in the estimation of H we replaced the L! regu-
larization of H by the constraint ), H[i] = 1, which is free
of weighting parameters that have to be tuned for different

sequences. The modified optimization problem is then

1
mbi[nEHH*F—i—(l—H*M)B—IHg,

3
st.H>0,) H[i]=1. )

3.1. Piece-wise Deblatting

TbD assumes that the object appearance and shape is
constant during single frame exposure. In reality, the ap-
pearance changes even within a single video frame due to
the object rotation and camera projection. We propose to
approximately model this gradual change as a sequence of
constant snapshots which we estimate. The snapshots can
be used for temporal super-resolution and also to determine
the intra-frame object rotation.

Suppose that the object trajectory in the form of a para-
metric curve C : [0, 1] — R? has been estimated for a given
video frame. We partition this curve to multiple contiguous
segments C; with their corresponding blurs denoted H; and
estimate the appearance and shape (F;, M;) of the object
at the time interval corresponding to C;. From the piece-
wise constant appearance assumption, we get the formation
model of the video frame [ as

I:ZHi*Fi—i—(l—ZiHi*Mi).B. @)

The optimization problem (2) for joint estimation of
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TIoU-3D Radius Error [pixels] Axis Error [°] Angle Error [°]

Sequence # TbD -NC -3D -3D-O0 -NC -3D -3D-0 TbD-3D TbD-3D-O TbD-3D TbD-3D-O

Mean Mean  Mean  Mean Mean Mean Mean Mean Std  Mean  Std Mean SE3  Mean  SE3
depthf1 46  0.550 0.579 0.625 0.937 3.348 1.333 1.035 59.796 14 60.881 21 0.124 3.8 2.269 5.5
depthf2 50 0.475 0.528 0.599 0.911 6.424 3.209 1.678 19.966 19 22.125 36  1.733 23.5 0.097 19.9
depthf3 37 0317 0.363 0.452 0.763 10.986 6.004 5.397 21.185 24 11.932 25 1.336 1.4 0.556 1.8
depth2 48  0.448 0.590 0.626 0.906 4.213 2.549 1.894 71.085 7 85.816 6 6.715 6.0 8.242 9.3
depthb2 81 0.366 0.444 0.388 0.949 2.101 7.080 0.850 68.061 3 69.126 3  9.760 13.0 7.838 13.3
outl 57 0.465 0.495 0.562 0.964  6.865 2.286 0.705 47.329 7 13.308 26 0.673 3.0 0.308 1.6
out2 50 0.503 0.533 0.561 0.981  4.251 1.354 0.369 18.259 3 45.009 14 0.152 2.3 0.236 1.5
outbl 41  0.350 0.384 0.431 0.939 4932 3.361 0.885 18.856 32 13.819 29 1.692 7.2 0.658 5.9
outf1 60 0.551 0.587 0.611 0.968 3.297 0924 0.614 25.174 13 12.743 14 0.015 4.1 0.041 2.1
Average 52 0.447 0.500 0.539 0.924  5.157 3.122 1.492 38.857 13 37.195 19 2467 7.2 2250 6.8

Table 1: TbD-3D dataset — comparison of TbD [5], TbD-NC [
TIoU-3D (15) to measure the accuracy of 3D object location, radius error, axis error as the average angle between the
estimated axis and the ground truth axis, and the angle error in degrees. For each sequence and each score, we highlight the
best performing method in bold. TbD-3D-O means TbD-3D with oracle: the 2D object location is known from the ground
truth. For axis and angle estimation, the difference between TbD-3D and TbD-3D-O is statistically insignificant and the
p-values in both cases are around 0.89. SE3: standard deviation times 102. The TbD-3D dataset corresponds to 30 fps frame
rate, 8 times lower than the ground truth data from the high-speed camera. Results for other frame rates are shown in Figure 5.

] and the proposed TbD-3D.

For each sequence, we report:

(F;, M;) on segments C; becomes

1 2
min — HZ~HZ'*Fi'i_(l_Z-Hi*Mi)B_IH

F’L)ML

HF F||2+OIF||VF||1+*ZIIRM M3

+75 > I = Fall+ a0 Y IIMi — Mgy, (5)

st. 0< F, < M; <1.

The last two terms, weighted by v and ~,s, are new
regularization terms enforcing similarity of both appearance
and shape of the object in neighboring time intervals. Fyis
a sub-frame extension of the appearance template used in
TbD, regularizing the appearance estimation in correspond-
ing segments.

The piecewise appearance estimation is implemented in
a hierarchical manner. First, we split C into two segments
Ct and C3 (superscrlpt denotes the h1erarchy level) and
solve (5) for Fi}, F} with both templates F1 = F2 = FY
where F' is the initial result of TbD. On the next level, we
do another binary splitting of C{ to C?,C32 and C3 to C3,C3
and again solve (5) with templates set to results from the
previous level, F1 F2 := F} and F3 = F4 = L
This process continues until the desirable number of split-
ting of C is achieved. Results of this estimation process are
illustrated in Figure 2.

3.2. 3D Trajectory

TbD-NC [14] provides a 2D part of the estimated tra-
jectory by fitting piece-wise polynomial curves. We extend
this approach to fitting piece-wise polynomial curve in 3D,
where the third dimension is the object distance to the cam-
era. We assume that the object is approximately spherical
with radius r, i.e. the area of mask defined as sum of all
pixel values is area(M) := Y, M[i] = nr?. The distance
d is inversely proportional to the perceived object radius r
and is given by

™

d o area(M) ©
Note that the absolute distance can be calculated if we know
camera parameters and the actual object radius. The es-
timated relative distances in sub-frame precision are ex-
pressed analytically by piece-wise continuous curve fitting.
First, bounces are found as initially estimated in 2D trajec-
tory and then additional bounces which are only visible in
3D are added, e.g. during motion perpendicular to the cam-
era plane. The bounces separate the trajectory into segments
and in each segment we fit a polynomial of degree up to 6.
The final trajectory is a function 7 (t): [0, N] C R — R3,
N 1is the number of frames, defined as

Ds
t)=> cuth telt
k=0

with S polynomials, where polynomial with index s has
degree ps and it is represented by its coefficient matrix

sflats]asz 15; (N
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Figure 5: Evaluation of the proposed TbD-3D method on the TbD-3D dataset with different frame rates. We report scores
for three settings: 30, 60 and 120 fps. From left to right: TIoU-3D (15) of TbD-3D compared to the TbD [5] and TbD-
NC [14] methods, error of rotation axis estimation, error of rotation angle estimation. The errors of rotation axis and angle
are measured by a mean average angle between the estimate and the ground truth from the high-speed footage at 240 fps.
Oracle with known 2D trajectory from ground truth is marked by ”-O”. The TbD-3D method performs better in the task of
3D location estimation and provides meaningful results for 3D rotation estimation w.r.t. the ground truth.

¢, € R>Ps+1 Time stamps t, split the whole sequence into
intervals between 0 and NV, such that 0 = g < t; < ... <
ts—1 < ts = N. The degree of the polynomial depends on
the number of frames it is fitted to; the interpolation scheme
is similar to [14].

3.3. Angular velocity

In the case of spherical objects, we are able to estimate
their angular velocity w € R®. Following the standard defi-
nition in physics, w is a 3D vector of the rotation axis orien-
tation whose magnitude represents the rotation angle along
the axis per time unit. Let R, be an operator transforming a
2D image of a ball by performing 3D rotation given by w of
a virtual 3D representation of the ball. More specifically, if
Fy, =R, I}, then F3 is given by mapping the 2D image F}
to a virtual 3D sphere, rotating the sphere by w and project-
ing back on the 2D image. The error of the transformation
between the two images is defined as

E(Fi, Frlw) = || Ry, Fi — Fax. (8

Since different parts of the ball are visible before and after
rotation, the sum in eq. (8) is carried out only in some pre-
defined region visible in both images after arbitrary consid-
ered rotation, so that errors corresponding to different rota-
tions are mutually comparable.

Having recovered the object appearance Fj and Fb at
two different video sequence timestamps ¢, and t5, we can
find the average angular velocity w between ¢; and ¢, as
the minimizer of the transformation error E(F}, Fa| (ta —
t1)w). Velocity estimation from just two restored images at
close timestamps is prone to errors, especially if either of
the images is estimated with artifacts. We therefore state
an assumption that angular velocity is locally constant in
small time interval of the motion (which is physically nearly

correct even in the long term if the ball is in free flight)
and estimate angular velocity more robustly in a sliding-
window manner from several restored images belonging to
the corresponding time-window.

Let Fy,..., F, be a set of estimated ball appearances at
timestamps %1, ...,t,; a short time-window of the whole
sequence. We estimate a single average angular velocity w
at this time-window as follows. Let w;; be the minimizer
of the transformation error from F; to F; and S;; inverse of
the attained error (‘score’):

w;; = argmin E(F;, Fj| (t; — t;)w), )
w

1
E(F;, Fj| (tj — ti)wij) + ¢

Sij = 10)

In other words, w;; is the vote of the corresponding image
pair for the true w and .S is the confidence of such vote. We
minimize (9) by searching the discretized space of feasible
angular velocities.

Simply averaging w;; results in non-robust estimate that
is sensitive to outliers. Instead we proceed with RANSAC-
like approach. Based on the discretization step used in the
minimization of (9), an inlier threshold p is defined as the
maximum acceptable error in determining w. We treat w;;’s
as hypotheses for the final estimate w and for each hypoth-
esis calculate its consensus set C; as

Cij = {(k, 1) |lwkr — wijll < p}. 1D
The winning candidate wy,, is the one with the best total
score of its consensus set,
(p, q) = argmax Z Sk (12)
(03 (knec;
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Figure 6: Deformations found using the TbD-3D method. They are not modeled explicitly, but are visible during contact
with other objects in the scene. Left: input images with trajectories overlaid in green. Right: crops from high-speed camera
footage (top), object appearance I’ and mask M reconstructions by the proposed TbD-3D method with the uniform split
of trajectories. For this experiment, we set the term on rotational symmetry Ag in eq. (5) to zero. We estimate sub-frame
snapshots using only the input frame on the left and the background. The trajectory is split into 8 (top row) or 25 (bottom

row) segments. Deformation during a soft ball bounce is visible between the two red bars in the bottom row.

The final estimate is then the weighted average of the votes
in the consensus set of the winning candidate

w >kl SkiWk
Zkl Skt

4. Experiments

(k,1) € Cpy. (13)

Kotera et al. [5] introduced Trajectory Intersection over
Union (TIoU) to measure the accuracy of estimated trajec-
tories, which is defined as

TIoU(C,C*) = / 10U (Mg, M) dt, (14)
t

where Mg‘(t) denotes the ground truth object mask M*
placed at a 2D point on either the estimated trajectory C or
the ground truth trajectory C*. Integral is approximated by
sum, sampling time at 8 evenly-spaced instants. We extend
this measure to 3D trajectories and define TIoU-3D as

TIoU-3D(7,T*) = / 10U (S5, S7-n) At (1)
t

where S;_( 0 is a ball corresponding to the ground truth ra-
dius and located at 7 (t), a 3D point along trajectory T at
time-stamp ¢. Similarly, 7* is the ground truth trajectory.
4.1. TbD-3D Dataset

We created a new annotated dataset containing fast mov-
ing objects. All previous datasets with FMOs, such as

FMO dataset [15] and TbD dataset [5], included only ob-
jects moving in a 2D plane parallel to the camera plane and
their appearance was close to static. Ground truth 2D object
location was provided, but no angular velocity.

The introduced dataset is the first dataset with non-
negligible 3D object motion and with changing appearance
of non-uniform fast moving objects. Objects are from a set
of three balls with complex texture. The dataset is called
TbD-3D and it contains nine sequences with annotated ob-
ject location, pose, and size from a high-speed camera. In
contrast to previous datasets, the perceived size of objects in
TbD-3D dataset varies throughout the whole sequence due
to depth of the scene, as shown in Figure 3.

Videos were recorded in raw format using a high-speed
camera at 240 fps with exposure time 1/240s (so called 360°
shutter angle — negligible lag between two frames). The
dataset sequences were generated by averaging 2, 4 and 8
frames, which corresponds to real videos captured at 30,
60, 120 fps, respectively. Indoor-scene movies with 30 fps
and %s shutter speed are not rare. Ground truth annotation
was done on the original raw footage at 240 fps. 3D object
location (2D position and radius) was annotated manually
and 3D object rotation was estimated using the proposed
method in Section 3.3; see Section 4.2 for details about
ground-truth annotation of the object rotation.

The proposed method is evaluated on the TbD-3D
dataset for all three frame-rate settings. Figure 5 shows
accuracy of the estimated 6DoF object pose: 3D location
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Figure 7: Rotation velocity magnitude and direction in different parts of the sequence (color coded). TbD-3D results — solid
lines, ground truth — dashed. Rotation is estimated only between bounces.

error measured by TIoU-3D (left), 2D rotation axis error
measured as a mean average deviation from the GT axis in
degrees (middle) and mean average error of 1D rotation an-
gle (right). We use TbD [5] and TbD-NC [14] as baselines,
which only estimate 2D trajectory. These methods ignore
depth changes and assume one object size for the whole se-
quence. To show the performance of TbD-3D when the in-
put 2D trajectory has no errors, we also provide scores of
TbD-3D with oracle (TbD-3D-O) where we use 2D trajec-
tory from the annotated 240-fps videos. TbD-3D-O esti-
mates only additional 4DoF of object pose and compared
to TbD-3D it performs better in average. The performance
drop of TbD-3D can be thus attributed to errors in 2D tra-
jectories estimated by TbD-NC. Table 1 provides more de-
tailed comparison on every sequence at the lowest frame
rate of 30 fps. Estimation of the rotation axis is known to
be highly unstable, yet for objects of size 50 x 50 pixels the
reported error of 37 degrees is in average only 8 pixels in
the image. Three examples of 3D trajectory reconstruction
on sequences ‘depth2’, ‘depthfl’ and ‘depthb2’ are shown
in Figure 4 and one example of angular velocity estimation
on sequence ‘out?’ is in Figure 7.

4.2. Rotation Estimation

Calculating ground truth rotation of FMOs, even when
the high-speed camera footage is available, is a challeng-
ing task. To evaluate the accuracy of the proposed method
for rotation estimation (Section 3.3) when applied on high-
speed footage, we captured sequences of a ball rolling on
the ground along a straight trajectory of known length. The
ground truth angular velocity is derived from physical prop-
erties of the rolling ball as we know its actual circumference
and the distance it traverses. The estimation of rotation axis
was 100x less accurate than the estimation of rotation an-
gle. The average error between the GT and estimated ro-
tation axis using the proposed method was 4.052 degrees,
while the average error between the GT and estimated ro-
tation angle was only 0.037 degrees, which corresponds to
1.2 % relative error.

A special case appears during contact with another ob-

ject in the scene. The object is deformed and modeling the
object there is out of the scope of this paper. However, we
can still detect such deformations as shown in Figure 6.

4.3. Applications

Temporal super-resolution is among the most interest-
ing applications of the proposed method. First, a video free
of FMOs is produced by replacing blurred objects with the
estimated background. Second, a higher frame rate video
is created by linear interpolation. Last, the trajectory is
split into the desired number of segments and the object
is blended into the sequence with its 6DoF appearance at
desired snapshot time-scale, following the image formation
model (1). Compared to the previous methods, which use
the same appearance for all frames among one low rate
trajectory, we synthesize the object at much higher tem-
poral resolution. Videos generated using temporal super-
resolution are provided in the supplementary material.

Other applications and future work include rotation es-
timation for tennis serves, full 3D reconstruction of the
blurred object, or handling unknown non-spherical shapes.

5. Conclusion

We proposed a method for estimating up to 6DoF tra-
jectory of fast moving objects which are severely blurred
by object motion. The assumption of a non-uniform spher-
ical object is needed, otherwise only a 3D object location
is estimated. The proposed TbD-3D method achieves good
results on a newly created dataset of non-uniform FMOs
with significant changes of appearance and distance to the
camera within the sequence or even a frame. Sub-frame ap-
pearance estimation enables us to see deformations which
last shorter than the exposure duration. We showed a more
precise temporal super-resolution compared to the previous
methods. The dataset and implementation will be made
publicly available.
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