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Abstract

For many of the physical phenomena around us, we have

developed sophisticated models explaining their behavior.

Nevertheless, measuring physical properties from visual ob-

servations is challenging due to the high number of causally

underlying physical parameters – including material proper-

ties and external forces. In this paper, we propose to measure

latent physical properties for cloth in the wind without ever

having seen a real example before. Our solution is an iter-

ative refinement procedure with simulation at its core. The

algorithm gradually updates the physical model parameters

by running a simulation of the observed phenomenon and

comparing the current simulation to a real-world observa-

tion. The correspondence is measured using an embedding

function that maps physically similar examples to nearby

points. We consider a case study of cloth in the wind, with

curling flags as our leading example – a seemingly simple

phenomena but physically highly involved. Based on the

physics of cloth and its visual manifestation, we propose an

instantiation of the embedding function. For this mapping,

modeled as a deep network, we introduce a spectral layer

that decomposes a video volume into its temporal spectral

power and corresponding frequencies. Our experiments

demonstrate that the proposed method compares favorably to

prior work on the task of measuring cloth material properties

and external wind force from a real-world video.

1. Introduction

There is substantial evidence [17, 10] that humans run

mental models to predict physical phenomena. We predict the

trajectory of objects in mid-air, estimate a liquid’s viscosity

and gauge the velocity at which an object slides down a

ramp. In analogy, simulation models usually optimize their

parameters by performing trial runs and selecting the best.

Over the years, physical models of the world have become

so visually appealing through simulations and rendering

[46, 28, 7, 36] that it is worthwhile to consider them for

physical scene understanding. This alleviates the need for

meticulous annotation of the pose, illumination, texture and

scene dynamics as the model delivers them for free.
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Figure 1. We propose to measure real-world physical cloth pa-

rameters without ever having seen the phenomena before. From

cloth simulations only, we learn a distance metric that encodes

both intrinsic and extrinsic physical properties. After learning, we

use the embedding function to measure physical parameters from

real-world video by comparison to its simulated counterpart.

In this paper, we consider flags and cloth in the wind as

a case study. Measurements and visual models of flags and

cloth are important for virtual clothing try-on [55], energy

harvesting and biological systems [37, 19]. The cloth’s

intrinsic material properties, together with the external wind

force, determine its dynamics. Untangling the dynamics

of fabric is challenging due to the involved nature of the

air-cloth interaction: a flag exerts inertial and elastic forces

on the surrounding air, while the air acts on the fabric through

pressure and viscosity [19]. As we seek to measure both the

cloth’s intrinsic material properties and the external wind

force, our physical model couples a non-linear cloth model

[46] with external wind force [48].

The task is challenging, as physical models of cloth tend to

have high numbers of unknown parameters and bear intricate

coupling of intrinsic and external forces. Our solution is

to compare pairs of real and simulated observations and

measure their physical similarity. As there is a fundamental

caveat in the use of simulation and rendering for learning:

“visually appealing” does not necessarily imply the result is

realistic, the main question is how to assess the similarity

of the causally underlying physical parameters rather than

visual correspondence. It might be the case that the image

looks real but never occurs in reality.
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Figure 2. We consider two cases of cloth in the wind. Top row:

random still images from our video recordings of real flags. Bottom

row: examples from the Bouman et al. hanging cloth dataset [6].

At the core of our measurement is a cloth simulation

engine with unknown parameters θ to be determined. The

outcome of a simulation (e.g. 3D meshes, points clouds,

flow vectors) is converted to the image space using a render

engine. We then compare the simulated visual data with a real-

world observation of the particular phenomenon (Figure 1).

Accordingly, we propose to learn a physical similarity metric

from simulations only, without ever perceiving a real-world

example. In the learned embedding space, observations

with similar physical parameters will wind up close, while

dissimilar example pairs will be further away. Guided by the

physical similarity, the simulation’s parameters are refined in

each step. As a result, we obtain a complete computational

solution for the refined measurements of physical parameters.

Our contributions are as follows: (1) We propose to train

a perception-based physical cloth measurement device from

simulations only, without ever observing a real-world man-

ifestation of the phenomena. Our measurement device is

formulated as a comparison between two visual observa-

tions implemented as a Siamese network that we train with

contrastive loss. (2) In a case study of cloth, we propose a

specific instantiation of the physical embedding function. At

its core is a new spectral decomposition layer that measures

the spectral power over the cloth’s surface. Our solution com-

pares favorably to existing work that recovers intrinsic and

extrinsic physical properties from visual observations. (3)

To evaluate our method, we record real-world video of flags

with the ground-truth wind speed gauged using an anemome-

ter. (4) Finally, we iteratively refine physics simulations

from a single real-world observation towards maximizing the

physical similarity between the real-world and its simulation.

2. Related Work

Previous work has measured physical properties by per-

ceiving real-world objects or phenomena – including mate-

rial properties [11], cloth stiffness and bending parameters

[6, 54], mechanical features [51, 26, 27, 23], fluid character-

istics [50, 40, 35] and surface properties [25]. The primary

focus of the existing literature has been on estimating intrin-

sic material properties from visual input. However, physical

phenomena are often described by the interaction between

intrinsic and extrinsic properties. Therefore, we consider the

more complex scenario of jointly estimating intrinsic mate-

rial properties and extrinsic forces from a single real-world

video through the iterative refinement of physics simulations.

Our case study focuses on the physics of cloth and flags,

both of which belong to the broader category of wind-excited

bodies. The visual manifestation of wind has received

modest attention in computer vision, e.g. the oscillation of

tree branches [53, 41], water surfaces [40], and hanging

cloth [6, 54, 47, 9]. Our leading example of a flag curling

in the wind may appear simple at first, but its motion is

highly complex. Its dynamics are an important and well-

studied topic in the field of fluid-body interactions [37, 42, 43].

Inspired by this work and existing visual cloth representations

that characterize wrinkles, folds and silhouette [4, 14, 49, 55],

we propose a novel spectral decomposition layer which

encodes the frequency distribution over the cloth’s surface.

Previous work has considered the task of measuring

intrinsic cloth parameters [4, 6, 54] or external forces [9]

from images or video. Notably, Bouman et al. [6] use complex

steerable pyramids to describe hanging cloth in a video, while

both Yang et al. [54] and Cardona et al. [9] propose a learning-

based approach by combining a convolutional network and

recurrent network. In our experiments we will compare our

cloth frequency-based representations with Cardona et al. [9]

on flags while Yang et al. [54] is a reference on the hanging

cloth dataset of Bouman et al. [6].

Our approach of measuring physical parameters by it-

erative refinement of simulations shares similarity to the

Monte Carlo-based parameter optimization of [51] and the

particle swarm refinement of clothing parameters from static

images [55]. In particular, the work of [55] resembles ours

as they infer garment properties from images for the purpose

of virtual clothing try-on. However, our work is different

in an important aspect: we estimate intrinsic and extrinsic

physical parameters from video while their work focuses on

estimating intrinsic cloth properties from static equilibrium

images. Recently, Liang et al. [24] have proposed a differen-

tiable cloth simulator which could potentially be used as an

alternative to our approach for cloth parameter estimation.

3. Method

We consider the scenario in which we make an observa-

tion of some phenomena with a physical model explaining

its manifestation available to us. Based on the perception of

reality, our goal is to measure the Dp unknown continuous

parameters of the physical model θ ∈ R
Dp , consisting of

intrinsic parameters θi and extrinsic parameters θe through

an iterative refinement of a computer simulation that im-

plements the physical phenomena at hand. In particular,

we consider observations in the form of short video clips

xtarget ∈ R
C×Nt×H×W , with C denoting the number of image

channels and Nt the number of H × W frames. In each
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Figure 3. We propose the perception-based measurement of physical scene properties. Given an observation of a real-world physical

phenomenon, here represented as video clip xtarget, our algorithm measures the underlying parameters of the physical scene. Central is a

simulation engine implementing the physical model, parametrized by intrinsic material properties θi and the characterization of external

forces θe. A render engine, with render parameters ζ , maps the simulator’s output to the image space producing video clip xsim. Using an

embedding function sφ(x), both real and simulated examples are mapped to a manifold on which physically similar examples are assigned to

nearby points. To measure the similarity between both clips, we evaluate a distance metric Di j (·, ·) in the embedding space. Its result serves

as the objective for an optimization module that refines the physical parameters θ towards the actual observation.

iteration, the simulator runs with current model parame-

ters θ to produce some intermediate representation (e.g. 3D

meshes, point clouds or flow vectors), succeeded by a render

engine with parameters ζ that yields a simulated video clip

xsim ∈ R
C×Nt×H×W . Our insight is that the physical simi-

larity between real-world observation and simulation can be

measured in some embedding space using pairwise distance:

Di, j = D
(

sφ(xi), sφ(x j)
)

: RDe ×R
De → R (1)

where sφ(x) : RC×Nt×H×W → R
De an embedding function

parametrized by φ that maps the data manifold R
C×Nt×H×W

to some embedding manifold R
De on which physically simi-

lar examples should lie close. In each iteration, guided by the

pairwise distance (1) between real and simulated instance,

the physical model is refined to maximize physical similarity.

This procedure ends whenever the physical model parameters

have been measured accurately enough or when the evalua-

tion budget is finished. The output comprises the measured

physical parameters θ∗ and corresponding simulation x
∗
sim

of the real-world phenomenon. An overview of the proposed

method is presented in Figure 3.

3.1. Physical Similarity

For the measurement to be successful, it is crucial to mea-

sure the similarity between simulation xsim and real-world

observation xtarget. The similarity function must reflect cor-

respondence in physical dynamics between the two instances.

The prerequisite is that the physical model must describe the

phenomenon’s behavior at the scale that coincides with the

observational scale. For example, the quantum mechanical

understanding of a pendulum will be less meaningful than

its formulation in classical mechanics when capturing its

appearance using a regular video camera.

Given the physical model and its implementation as a sim-

ulation engine, we generate a dataset of simulations with its

parameters θ randomly sampled from some predefined search

space. For each of these simulated representations of the

physical phenomenon, we use a 3D render engine to generate

multiple video clips x
i
sim,

with different render parameters

ζ i . As a result, we obtain a dataset with multiple renders

for each simulation instance. Given this dataset we propose

the following training strategy to learn a distance metric

quantifying the physical similarity between observations.

We employ a contrastive loss [15] and consider positive

example pairs to be rendered video clips originating from

the same simulation (i.e. sharing physical parameters) while

negative example pairs have different physical parameters.

Both rendered video clips of an example pair are mapped

to the embedding space through sφ(x) in Siamese fashion

[8]. In the embedding space, the physical similarity will

be evaluated using the squared Euclidean distance: Di, j =

D
(

sφ(xi), sφ(x j)
)

= ‖sφ(xi)− sφ(x j)‖
2
2
. If optimized over a

collection of rendered video clips, the contrastive loss asserts

that physically similar examples are pulled together, whereas

physically dissimilar points will be pushed apart. As a result,

by training on simulations only, we can learn to measure the

similarity between simulations and the real-world pairs.

3.2. Simulation Parameter Optimization

We will arrive at a measurement through gradual refine-

ment of the simulations (Figure 3). To optimize the physical

parameters we draw the parallel with the problem of hyperpa-
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rameter optimization [39, 3]. In light of this correspondence,

our collection of model parameters is analogous to the hyper-

parameters involved by training deep neural networks (e.g.

learning rate, weight decay, dropout). Formally, we seek to

find the global optimum of physical parameters:

θ∗ = arg min
θ

D
(

sφ(xtarget), sφ(xsim(θ))
)

, (2)

where the target example is fixed and the simulated example

depends on the current set of physical parameters θ. Adjust-

ing the parameters θ at each iteration is challenging as it is

hard to make parametric assumptions on (2) as function of θ

and accessing the gradient is costly due to the simulations’

computational complexity. Our goal is, therefore, to estimate

the global minimum with as few evaluations as possible.

Considering this, we adopt Bayesian optimization [39] for

updating parameters θ. Its philosophy is to leverage all avail-

able information from previous observations of (2) and not

only use local gradient information. We treat the optimiza-

tion as-is and use a modified implementation of Spearmint

[39] with the Matérn52 kernel and improved initialization

of the acquisition function [29]. Note that the embedding

function sφ(x) is fixed throughout this optimization.

4. Physics, Simulation and Appearance of Cloth

Up until now, we have discussed the proposed method

in general terms and made no assumptions on physical

phenomena. In this paper, we will consider two cases of

cloth exposed to the wind: curling flags and hanging cloth

(Figure 4). To proceed, we need to confine the parameters θ

and design an appropriate embedding function sφ(x).

4.1. Physical Model

The physical understanding of cloth and its interaction

with external forces has been assimilated by the computer

graphics community. Most successful methods treat cloth as

a mass-spring model: a dense grid of point masses organized

in a planar structure, inter-connected with different types

of springs which properties determine the fabric’s behavior

[1, 33, 46, 2, 28]. We adopt Wang’s et al. [46] non-linear

and anisotropic mass-spring model for cloth. This model

uses a piecewise linear bending and stretching formulation.

The stretching model is a generalization of Hooke’s law for

continuous media [38]. As our experiments focus on flags in

the wind for which the stretching properties are of minimal

relevance, our experiments will focus on flags in the wind,

typically made of strong weather-resistant material such as

polyester and nylon. Therefore, the material’s stretching

properties are of minimal relevance and we will emphasize

on the cloth’s bending model [46] and external forces [48].

Bending Model (θi). The bending model is based on the

linear bending force equation first proposed in [7]. The model

Structural springs 
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Flexion springs 
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(b) hanging cloth

(a) flag

Figure 4. Left: we consider two cases of cloth exposed in the wind:

(a) a flag curling in the wind; and (b) cloth fabric hanging from

a rod. In both cases, the fabric fabric is treated as a mass-spring

model in which a dense grid of point masses is inter-connected

with multiple springs. Right: the bending and stretching springs

determine the materials behavior. Flexion springs act over shared

edges whereas structural springs connect to direct neighbors.

formulates the elastic bending forceFe over triangular meshes

sharing an edge (Figure 4). For two triangles separated by

the dihedral angle ϕ, the bending force reads:

Fe = ke sin(ϕ/2)(N1 + N2)
−1 |E |u, (3)

where ke is the material dependent bending stiffness, N1,N2

are the weighted surface normals of the two triangles, E

represents the edge vector and u is the bending mode (see

Figure 1 in [7]). The bending stiffness ke is non-linearly

related to the dihedral angle ϕ. This is realized by treating

ke as piecewise linear function of the reparametrization

α = sin(ϕ/2)(N1 + N2)
−1. After this reparametrization, for a

certain fabric, the parameter space is sampled for Nb angles

yielding a total of 3Nb parameters across the three directions.

Wang et al. [46] empirically found that 5 measurements are

sufficient for most fabrics, producing 15 bending parameters.

External Forces (θe). For the dynamics of cloth, we consider

two external forces acting upon its planar surface. First,

the Earth’s gravitational acceleration (Fg = mag) naturally

pushes down the fabric. The total mass is defined by the

cloth’s area weight ρA multiplied by surface area. More

interestingly, we consider the fabric exposed to a constant

wind field. Again, modeling the cloth as a grid of point

masses, the drag force on each mass is stipulated by Stokes’s

equation Fd = 6πRηvw in terms of the surface area, the air’s

dynamic viscosity and the wind velocity vw [48, 28]. By all

means, this is a simplification of reality. Our model ignores

terms associated with the Reynolds number (such as the

cloth’s drag coefficient), which will also affect a real cloth’s

dynamics. However, it appears that the model is accurate

enough to cover the spectrum of cloth dynamics.
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Table 1. The predefined parameter range for optimization of

θ = (θi,θe) given the physical model of a flag curling in the wind.

The bending parameters ke correspond to the “Camel Ponte Roma”

base material from [46].

Parameter Params Search space

θi Bending stiffness 15 ke ∈ [10−1ke,10ke]

θi Fabric area weight 1 ρA ∈ [0.10,0.17] kg m−2

θe Wind velocity 1 vw ∈ [0,10] m s−1

4.2. Simulation Engine

We employ the non-differentiable ArcSim simulation en-

gine [28] which efficiently implements the complex physical

model described in Section 4.1. On top of the physical

model, the simulator incorporates anisotropic remeshing to

improve detail in densely wrinkled regions while coarsening

flat regions. As input, the simulator expects the cloth’s initial

mesh, its material properties and the configuration of exter-

nal forces. At each time step, the engine solves the system

for implicit time integration using a sparse Cholesky-based

solver. This produces a sequence of 3D cloth meshes based

on the physical properties of the scene. As our goal is to learn

a physical distance metric in image space between simulation

and a real-world observation, we pass the sequence of meshes

through a 3D render engine [5]. Given render parameters ζ

comprising of camera position, scene geometry, lighting con-

ditions and the cloth’s visual texture, the renderer produces a

simulated video clip (xsim) which we can compare directly

to the real-world observation (xtarget). We emphasize that

our focus is neither on inferring render parameters ζ from

observations nor on attaining visual realism for our renders.

Parameter Search Space (θi,θe). The ArcSim simulator

[28] operates in metric units, enabling convenient comparison

with real-world dynamics. As the base material for our

flag experiments, we use “Camel Ponte Roma” from [46].

Made of 60% polyester and 40% nylon, this material closely

resembles widely used flag fabrics [46]. The fabric’s bending

coefficients, stretching coefficients, and area weight were

accurately measured in a mechanical setup by the authors. We

adopt and fix their stretching parameters and use the bending

stiffness and area weight as initialization for our cloth material.

Specifically, using their respective parameters we confine a

search space that is used during our parameter refinement. We

determine ρA ∼ Uniform(0.10,0.17) kg m−2 after consulting

various flag materials at online retailers. And, we restrict the

range of the bending stiffness coefficients by multiplying the

base material’s ke in (3) by 10−1 and 10 to obtain the most

flexible and stiffest material respectively. As the bending

coefficients have a complex effect on the cloth’s appearance,

we independently optimize the 15 bending coefficients instead

of only tuning the one-dimensional multiplier. The full

parameter search space is listed in Table 1.

4.3. Spectral Decomposition Network

The dominant source of variation is in the geometry of the

waves in cloth rather than in its texture. Therefore, we seek a

perceptual model that can encode the cloth’s dynamics such

as high-frequent streamwise waves, the number of nodes

in the fabric, violent flapping at the trailing edge, rolling

motion of the corners and its silhouette [37, 42, 13]. As

our goal is to measure sim-to-sim and sim-to-real similarity,

a crucial underpinning is that our embedding function is

able to disentangle and extract the relevant signal for domain

adaptation [32, 20]. Therefore, we propose modeling the

spatial distribution of temporal spectral power over the

cloth’s surface. Together with direction awareness, this

effectively characterizes the traveling waves and flapping

behavior from visual observations.

Spectral Decomposition Layer. The proposed solution is

a novel spectral decomposition layer that distills temporal

frequencies from a video. Specifically, similar to [34], we

treat an input video volume as a collection of signals for each

spatial position (i.e. H ×W signals) and map the signals into

the frequency domain using the Discrete Fourier Transform

(DFT) to estimate the videos’ spatial distribution of temporal

spectral power. The DFT maps a signal f [n] for n ∈ [0,Nt−1]

into the frequency domain [30] as formalized by:

F( jω) =

Nt−1
∑

n=0

f [n]e−jωnT . (4)

We proceed by mapping the DFT’s complex output to a

real-valued representation. The periodogram of a signal

is a representation of its spectral power and is defined as

I(ω) = 1
Nt

|F( jω)|2 with F( jω) as defined in (4). This

provides the spectral power magnitude at each sampled

frequency. To effectively reduce the dimensionality and

emphasize on the videos’ discriminative frequencies, we

select the top-k strongest frequencies and corresponding

spectral power from the periodogram. Given a signal of

arbitrary length, this produces k pairs containing I(ωmaxi )

and ωmaxi for i ∈ [0, k] yielding a total of 2k scalar values.

Considering an input video volume, treated as a collection

of H × W signals of length Nt , the procedure extracts the

discriminative frequency and its corresponding power at each

spatial position. In other words, the spectral decomposition

layer performs the mapping R
C×Nt×H×W → R

2kC×H×W .

The videos’ temporal dimension is squeezed and the result

can be considered a multi-channel feature map – to be further

processed by any 2D convolutional layer. We reduce spectral

leakage using a Hanning window before applying the DFT.

The batched version of the proposed layer is formalized as

algorithm in the supplementary material.
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Figure 5. Overview of our SDN architecture sφ(x) for learning the physical correspondence between the simulation and real-world

observation of dynamic flags. Given a 3D video volume as input, we first apply a 0th-order temporal Gaussian filter followed by two

directional 1st-order Gaussian derivative filters and then spatially subsample both filtered video volumes by a factor two. The proposed

spectral decomposition layer then applies the Fourier transform and selects the maximum power and corresponding frequencies densely for

all spatial locations. This produces 2D multi-channel feature maps which we process with 2D ResNet blocks to learn the embedding.

Embedding Function. The specification of sφ(x), with

the spectral decomposition layer at its core, is illustrated

in Figure 5. First, our model convolves the input video x

with a temporal Gaussian filter followed by two spatially

oriented first-order derivative filters. Both resulting video

volumes are two-times spatially subsampled by means of

max-pooling. Successively, the filtered video representations

are fed through the spectral decomposition layer to produce

spectral power and frequency maps. The outputs are stacked

into a multi-channel feature map to be further processed by

a number of 2D convolutional filters with trainable weights

φ. We use 3 standard ResNet blocks [16] and a final linear

layer that maps to the R
De embedding space. We refer to

our network as Spectral Decomposition Network (SDN).

Network Details. Our network is implemented in PyTorch

[31] and is publicly available1. Unless mentioned otherwise,

all network inputs are temporally sampled at 25 fps. After

that, we use a temporal Gaussian with σt = 1 and first-order

Gaussian derivative filters with σx,y = 2. For training the

embedding function with the contrastive loss, we adopt a

margin of 1 and use the BatchAll sampling strategy [18, 12].

The spectral decomposition layer selects the single most

discriminative frequency (i.e. k = 1). Adding secondary

frequency peaks to the feature maps did not yield substantial

performance gains. The size of our embeddings is fixed

(De = 512) for the paper. Input video clips of size 224× 224

are converted to grayscale. We optimize the weights of the

trainable ResNet blocks using Adam [22] with mini-batches

of 32, learning rate 10−2 and a weight decay of 2 · 10−3.

5. Real and Simulated Datasets

Real-world Flag Videos. To evaluate our method’s ability

to infer physical parameters from real-world observations,

we have set out to collect video recordings of real-world flags

1https://tomrunia.github.io/projects/cloth/

with ground-truth wind speed. We used two anemometers

(Figure 6) to measure the wind speed at the flag’s position.

After calibration and verification of the meters, we hoisted

one of them in the flagpole to the center height of the flag

to ensure accurate and local measurements. A Panasonic

HC-V770 camera was used for video recording. In total, we

have acquired more than an hour of video over the course of

5 days in varying wind and weather conditions. We divide

the dataset in 2.7K train and 1.3K non-overlapping test video

clips and use 1-minute average wind speeds as ground-truth.

The train and test video clips are recorded on different days

with varying weather conditions. Examples are displayed in

Figure 6 and the dataset is available through our website.

FlagSim Dataset. To train the embedding function sφ(x) as

discussed in Section 3.1, we introduce the FlagSim dataset

consisting of flag simulations and their rendered animations.

We simulate flags by random sampling a set of physical

parameters θ from Table 1 and feed them to ArcSim. For

each flag simulation, represented as sequence of 3D meshes,

we use Blender [5] to render multiple flag animations x
i
sim

at different render settings ζ i . We position the camera at

a varying distance from the flagpole and assert that the

cloth surface is visible by keeping a minimum angle of

15◦ between the wind direction and camera axis. From

Figure 6. Left: Two anemometers used for gauging the wind speed.

Right top: Real flag recordings with corresponding wind speeds

measured by the anemometer hoisted in the flagpole. Right bottom:

simulated examples from our FlagSim dataset.
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Table 2. External wind speed prediction from real-world flag

observations on the dataset of Cardona et al. [9]. We regress the

wind speed (vw ∈ θe) in the range 0 m s−1 to 15.5 m s−1 and report

numbers on the evaluation set.

Model Input Modality RMSE ↓ Acc@0.5 ↑

Cardona et al. [9] 30 × 224 × 224 1.458 0.301

ResNet-18 1 × 224 × 224 1.390 0.274

ResNet-18 10 × 224 × 224 1.237 0.314

ResNet-18 20 × 224 × 224 1.347 0.296

SDN (ours) 30 × 224 × 224 1.179 0.337

a collection of 12 countries, we randomly sample a flag

texture. Background images are selected from the SUN397

dataset [52]. Each simulation produces 60 cloth meshes

at step size ∆T = 0.04 s (i.e. 25 fps) which we render at

300 × 300 resolution. Following this procedure, we generate

1,000 mesh sequences and render a total of 14,000 training

examples. We additionally generate validation and test

sets of 150/3,800 and 85/3,500 mesh sequences/renders

respectively. Some examples are visualized in Figure 6.

6. Results and Discussion

Real-world Extrinsic Wind Speed Measurement (θe). We

first assess the effectiveness of the proposed spectral decom-

position network by measuring the wind speed on the recently

proposed real-world flag dataset by Cardona et al. [9]. Their

method, consisting of an ImageNet-pretrained ResNet-18

[16] with LSTM, will be the main comparison. We also

train ResNet-18 with multiple input frames, followed by

temporal average pooling of the final activations [21]. After

training all methods, we report the root mean squared error

(RMSE) and accuracy within 0.5 m s−1 (Acc@0.5) in Table 2.

While our method has significantly fewer parameters (2.6M

versus 11.2M and 42.1M), the SDN outperforms the existing

work on the task of real-world wind speed regression. This

indicates the SDN’s effectiveness in modeling the spatial

distribution of spectral power over the cloth’s surface and

its descriptiveness for the task at hand. The supplementary

material contains the results on our FlagSim dataset.

SDN’s Physical Similarity Quality (θi,θe). We evaluate the

physical similarity embeddings after training with contrastive

loss. To quantify the ability to separate examples with similar

and dissimilar physical parameters, we report the triplet

accuracy [45]. We construct 3.5K FlagSim triplets from the

Table 3. Evaluation of our physical similarity sφ(x) for FlagSim

test examples. We report average triplet accuracies [45].

Input Frames 10 20 30 40 50

FlagSim Accuracy 89.3 92.1 96.3 90.1 92.4

Figure 7. Barnes-Hut t-SNE [44] visualization of the learned

flag embedding space. For visualization purpose we only display

examples with wind from the left. Top-right examples exhibit flags

at low wind speeds while bottom-left corresponds to strong winds.

test set as described in Section 3.1. We consider the SDN

trained for video clips of a varying number of input frames

and report its accuracies in Table 3. The results indicate the

effectiveness of the learned distance metric to quantify the

physical similarity between different observations. When

considering flags, we conclude that 30 input frames are best

with a triplet accuracy of 96.3% and therefore use 30 input

frames in the remainder of this paper. In Figure 7 we visualize

a subset of the embedding space and observe that the flag

instances with low wind speeds are clustered in the top-right

corner whereas strong wind speeds live in the bottom-left.

Real-world Intrinsic Cloth Parameter Recovery (θi). In

this experiment, we assess the effectiveness of our SDN for

estimating intrinsic cloth material properties from a real-

world video. We compare against Yang et al. [54] on the

hanging cloth dataset of Bouman et al. [6] (Figure 2). Each

of the 90 videos shows one of 30 cloth types hanging down

while being excited by a fan at 3 wind speeds (W1-3). The

goal is to infer the cloth’s stiffness and area weight. From our

SDN trained on FlagSim with contrastive loss, we extract the

embedding vectors for the 90 videos and project them into

a 50-dimensional space using PCA. Then we train a linear

regression model using leave-one-out following [6]. The

results are displayed in Figure 9. While not outperforming

the specialized method of [54], we find that our flag-based

features generalize to intrinsic cloth material recovery. This

is noteworthy, as our SDN was trained on flags of lightweight

materials exhibiting predominantly horizontal motion.
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Figure 8. Result of our iterative measurement for a target video capturing a flag in the wind. Top left: frame from the real-world target

video clip with the ground-truth wind speed measured using an anemometer. Top remaining: simulated examples throughout the refinement

process with corresponding simulation parameters. Bottom: development throughout the refinement process for 50 iteration steps. We

plot the distance between simulation and target instance in the embedding space and the estimated wind speed (m s−1). We annotate the

ground-truth wind speed with a dashed line. As the plot indicates, the refinement process converges towards the real wind speed.

Real-world Combined Parameter Refinement (θi,θe).

Putting everything together, our goal is measuring physics pa-

rameters based on real-world observations. We demonstrate

the full measurement procedure (Figure 3) by optimizing

over intrinsic and extrinsic model parameters (θi,θe) from

real-world flag videos (and present hanging cloth refinement

results in the supplementary material). First, we randomly

sample a real-world flag recording as subject of the mea-

surement. The parameter range of the intrinsic (16×) and

extrinsic (1×) is normalized to the domain [−1,+1] and are

all initialized to 0, i.e. their center values. We fix the render

parameters ζ manually as our focus is not on inferring those

from real-video. However, these parameters are not carefully

determined as the residual blocks in the embedding func-

tion can handle such variation (Figure 7). In each step, we

simulate the cloth meshes with current parameters θi,θe and

render its video clip with fixed render parameters ζ . Both

the simulation and real-world video clips are then projected

onto the embedding space using sφ(x), and we compute their

pairwise distance (1). Finally, the Bayesian optimization’s ac-

quisition function (Section 3.2) determines where to make the

next evaluation θi,θe ∈ [−1,+1] to maximize the expected

improvement, i.e. improving the measurement. The next

iteration starts by denormalizing the parameters and running

the simulation. We run the algorithm for 50 refinement steps.

In Figure 8, we demonstrate our method’s measurements

throughout optimization. Most importantly, we observe a

gradual decrease in the pairwise distance between simulation

and real-world example, indicating a successful measurement

of the physical parameters. Importantly, we note that the

wind speed converges towards the ground-truth wind speed

within a few iterations, as indicated with a dashed line. More

examples are given in the supplementary material.

7. Conclusion

We have presented a method for measuring intrinsic and

extrinsic physical parameters for cloth in the wind without

perceiving real cloth before. The iterative measurement

gradually improves by assessing the similarity between the

current cloth simulation and the real-world observation.

By leveraging only simulations, we have proposed a

method to train a physical similarity function. This enables

measuring the physical correspondence between real

and simulated data. To encode cloth dynamics, we have

introduced a spectral decomposition layer that extracts

the relevant features from the signal and generalizes

from simulation to real observations. We compare the

proposed method to prior work that considers flags in the

wind and hanging cloth and obtain favorable results. For

future work, given an appropriate physical embedding

function, our method could be considered for other physical

phenomena such as fire, smoke, fluid or mechanical problems.
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Figure 9. Intrinsic cloth material measurements from real videos.

We report the Pearson correlation coefficients (higher is better)

between predicted material type and both ground-truth stiffness/-

density on the Bouman et al. [6] hanging cloth dataset. The dashed

red line indicates human performance as determined by [6].
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