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Abstract

In this paper, we propose a method of visualizing 3D

motion with zero latency. This method achieves motion vi-

sualization by projecting special high-frequency light pat-

terns on moving objects without using any feedback mech-

anisms. For this objective, we focus on the time integra-

tion of light rays in the sensing system of observers. It

is known that the visual system of human observers inte-

grates light rays in a certain period. Similarly, the image

sensor in a camera integrates light rays during the expo-

sure time. Thus, our method embeds multiple images into a

time-varying light field, such that the observer of the time-

varying light field observes completely different images ac-

cording to the dynamic motion of the scene. Based on this

concept, we propose a method of generating special high-

frequency patterns of projector lights. After projection onto

target objects with projectors, the image observed on the

target changes automatically depending on the motion of

the objects and without any scene sensing and data analy-

sis. In other words, we achieve motion visualization without

the time delay incurred during sensing and computing.

1. Introduction

In computer vision, 3D motion estimation has a long his-

tory, and many efficient methods have been proposed under

various conditions [17, 4, 13, 14, 6]. Standard methods first

extract point correspondences and optic flows in sequential

images [7, 2, 10, 3]. The extracted point correspondences

and optic flows are then used to compute 3D motion and

the structures of the scene [17, 4, 14]. Active sensors, such

as 3D range sensors, are also used to measure the 3D dis-

tance, which is then used to compute 3D motion [15]. The

direct motion estimation method is also proposed based on

the Doppler shift of the reflected light on the moving ob-

ject [6].

Although 3D motion estimation methods have become

very advanced in recent years, all existing methods have an

essential and unavoidable problem caused by their system

structure: an inevitable time delay in measurements from

real dynamic scenes. Indeed, the estimated 3D motions are

not the current motions, but rather the past motions in the

scene.

In all existing methods, 3D motion is estimated in two

steps: image data or 3D data is first obtained using cameras

or 3D sensors; and 3D motion is then computed from the

observed data based on changes in the observations during

a specific time interval. As a result, these existing meth-

ods require a certain amount of time to estimate 3D mo-

tion, because they need to obtain at least two observations

by sensors at different instants in time before computing the

motion based on these multiple observations. Furthermore,

estimating 3D motion becomes unstable with a shorter sam-

pling interval of observations. This is because 3D motion is

computed from the change in observations, and the signal-

to-noise ratio of the change in observation degrades drasti-

cally in small intervals of observations. Hence, we cannot

shorten this interval for stable motion estimations. Obser-

vation and computational costs are consequently never zero,

even when expensive sensors and powerful computers are

used.

Observation and computation delays are severe problems

in real-time computer vision applications, such as driver as-

sistance systems for vehicles [16]. In these real-time sys-

tems, delayed motion estimations impose a delay on the

driver’s decisions and actions, risking serious accidents in

traffic environments.

In this paper, we propose a novel method of visualiz-

ing the dynamic information in a scene, by projecting im-

ages with projectors without using any sensors. With the

proposed method, the appearance of target objects changes

drastically according to their dynamic motion, as shown in

Fig. 1. Furthermore, the proposed method can visualize

motion information using complex images—for example,

when an angry face appears on a forward-moving surface,

whereas a smiling face appears on a backward-moving sur-

face. All the processes can be done merely by projecting

lights from projectors. As a result, the proposed method can

achieve 3D motion estimation and visualization exclusively

43211980



Figure 1. Motion visualization from image projection: the ob-

served image (color in this figure) on a target surface changes

spontaneously according to its motions without using any sensor-

feedback system such as a camera or 3D sensor. In this example,

the projected pattern (the string) changes according to the relative

motion of the vehicle.

by projecting lights and without any time delay.

For this objective, we focus on the time integration of

light rays in the sensing system of observers. It is known

that the visual system of human observers integrates light

rays in a certain period. Similarly, the image sensor in a

camera integrates light rays during the exposure time. Thus,

our method embeds multiple images into a time-varying

light field, such that the observer of the time-varying light

field observes completely different images according to the

dynamic motion of the scene.

The proposed method is a new framework for 3D mo-

tion estimation and representation. As such, it can be im-

plemented for various applications. For example, to control

vehicle headlights using the hardware described in [16], we

can visualize the relative speed of other vehicles and de-

termine the danger of collision without latency, merely by

projecting lights from the vehicles headlights.

To our knowledge, this is the first paper to achieve mo-

tion visualization with zero latency, and we believe that this

paper opens a new research field for 3D motion estimation

in computer vision.

2. Related Works

Our method is closely related to coded light projec-

tion and light-field displays. In order to measure the 3D

shape, coded light projections (i.e., structured light projec-

tions) have been studied for decades [1]. More recently,

the first version of the Kinect sensor [18] used spatially

coded lights to identify the corresponding points between

projected lights and observed image points and to recover

the 3D structure of a scene. Coded light projections have

also been used for other objectives. Nayer et al. proposed

a method of separating direct and global components using

spatial high-frequency illumination [12]. The temporal cod-

ing of projected lights was also used for 3D measurements,

among other applications [11]. Although many methods

have been developed with coded light projections, coded

lights are designed to be observed by sensors and analyzed

only subsequently. Therefore, existing methods with coded

light projections incur the computational cost to obtain fi-

nal results. By contrast, the proposed method visualizes 3D

motion without any computation, and hence without any

computational delay. Thus, our framework is completely

different from that of existing 3D measurements from coded

light projections.

Light-field displays have also been studied extensively

in recent years [9]. The light field is the subspace of a

7D plenoptic function. The plenoptic function is 7D space,

which consists of 3D position, 2D orientation, 1D wave-

length, and 1D time. In most cases, however, the light field

is considered 4D space—2D position and 2D orientation—

assuming that there no degradation to the light power in

light travel and neglecting variations to the wavelength and

time [9, 19, 8]. Thus, light-field displays are typically con-

sidered 4D devices. Wetzstein et al. [19] proposed a method

of organizing a 3D display using multiple layered 2D dis-

play panels. Huang et al. [8] used a 4D light-field dis-

play to correct the visual aberrations of observers, showing

deblurred images to near- or far-sighted observers without

corrective lenses. Because existing light-field display tech-

niques consider only the spatial position and orientation of

lights, these techniques cannot encode visual information

in the time domain. By contrast, we here consider light-ray

integration in the time domain. We show that it is possi-

ble to encode visual information into the time domain of

the light field and that the encoded visual information can

be decoded by object motion. Thus, we consider the 3D

motion of an object as a decoder of coded light.

3. Observation Model

We first consider an intensity observation model of ob-

servers such as humans and cameras. The image observed

by them can be considered to be a process of sensing the

light rays in the light field of the scene.

Let E(x, y, t) be a light ray from a point (x, y) at time

t toward an orientation of an observer. If the observer ob-

serves the light ray at a particular moment, the ray—i.e., the

light ray E(x, y, t)—is observed directly. However, general

observers, e.g., humans and cameras, do not observe a mo-

ment of light rays, but rather only integrated light-rays in the

time domain. Indeed, the effect of the integration appears

as a blurred motion when an observed object is in motion.

Thus, to observe dynamic scenes, we need to consider inte-

gration with respect to the time domain as follows:

I(x, y, To) =

∫

T0

T0−T

E(x, y, t) (1)

where T0 is the current time and T is the exposure time. In

ordinary observers, such as cameras and humans, time inte-

gration of the observed light rays occurs in general. For

example, although fluorescent lights blink with high fre-

quency, humans do not perceive this. Similarly, video pro-
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jectors with a micro-mirror array, such as digital light pro-

cessing (DLP) projectors, can represent varying brightness

and colors by using the flicker of light.

Here, Eq.(1) has an ambiguity in E. That is, the input

light E that satisfies Eq.(1) is not unique. In other words, an

observed intensity I(x, y, To) is identical even when the in-

put light E changes, provided that Eq. (1) is satisfied. This

is an important property of observed intensity in this paper.

In the proposed method, we embed multiple images into the

ambiguity of the observed intensity, such that these images

appear adaptively according to the motion of objects.

4. Motion Visualization Based on Light-Ray

Integration

We next consider image embedding based on the obser-

vation model described in the previous section. We first

consider the geometric relationship between a projector and

an observer to derive a method of embedding images. In

this paper, we assume that the relative position between the

projector and the observer is fixed. Then, we consider the

epipolar geometry between the projector and the observer.

4.1. Epipolar Geometry for Projectors and Ob
servers

Let P and P
′ be projection matrices of a projector and an

observer, respectively. Suppose a 3D point X in the scene is

projected to a point x in a projected image and is observed

as x
′ by an observer such as a camera. Then, the relation-

ship among them can be described as follows:

λx̃ = PX̃ (2)

λ′
x̃
′ = P

′
X̃ (3)

where (̃·) denotes the homogeneous representation of a vec-

tor. Then, a geometric constraint, the so-called epipolar

constraint[5], holds between x and x
′ as follows:

x̃
′⊤
Fx̃ = 0 (4)

where F denotes a 3× 3 fundamental matrix whose rank is

2.

The epipolar constraint stipulates that a pair of corre-

sponding points, x and x
′, lie on epipolar lines l and l

′,

respectively, as shown in Fig. 2. These epipolar lines are

computed as follows:

l
′ = Fx (5)

l = F
⊤
x
′ (6)

This epipolar constraint shows that the observer observes

a 3D point, which is illuminated by a pixel on the epipolar

line l corresponding to x
′ on the epipolar line l′. This means

that we only need to consider corresponding epipolar lines

to analyze the relationship between the projector and the

observer. Therefore, we consider the following derivation

exclusively on the epipolar lines.

Figure 2. Epipolar plane and epipolar lines: the epipolar plane is

defined by a 3D point X and the optical centers of an observer

and a projector. The epipolar lines are the intersections of image

planes and the epipolar plane.

Figure 3. Spatiotemporal image projected by a projector. The hor-

izontal axis shows the epipolar line and the vertical axis shows

time.
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Figure 4. Change in integration in the spatiotemporal image: the

black box in (a), blue box and red box in (b) show regions inte-

grated in the observed intensity under each object motion.

4.2. Motion Visualization by LightRay Integration

We next consider the changes of observation when a tar-

get object moves. As described in the previous section, at

point x′, an observer observes pixels on a corresponding

epipolar line l. In addition, epipolar lines in an image do

not intersect with each other except at the epipole. There-

fore, we consider only an epipolar line in this section.

Let us now consider the case where the projector projects

dynamic images. If we focus on an epipolar line, these dy-

namic images can be regarded as a spatiotemporal image,

as shown in Fig.3. In this figure, the horizontal axis shows

the epipolar line and the vertical axis shows changes over
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time. In the spatiotemporal image, we consider the change

in observation caused by the motion of the target object.

Let us consider the case where a projector illuminates a

planar screen and observed by a camera, as shown in Fig.4.

The exposure time of the camera is equivalent to the time

length of the spatiotemporal image. We first consider an

observation where the planar target screen does not move,

as shown in Fig.4(a). In this case, a corresponding pixel

on an epipolar line does not change, and thus the observer

observes the same point. Consequently, the observed image

is the integration of the black box in the figure.

We next consider the case where the planar screen moves

forward, as shown in Fig.4(b). In this case, the correspond-

ing point on the epipolar line moves to the left. Thus,

the integration of the spatiotemporal image also changes to

the blue box in this figure. Therefore, the observed image

changes drastically from that in the case without motion.

Similarly, if the planar screen moves backward, the corre-

sponding point moves to the right, and thus the integration

of spatiotemporal image changes to the red box. As a result,

the observed image also changes.

These three examples show that the observation changes

drastically according to the target motion. That is, object

motion can be visualized using the proposed method. Note

that although a planar surface is used for this discussion,

there is no constraint on the object shape, insofar as the

method is based on the change in depth of an observed tar-

get.

4.3. Spatiotemporal Image Observation

We next consider observational details in order to control

the observed image under object motion.

Let us consider the case where a 3D point X is illumi-

nated by a point x on the projected image, and the 3D point

X is observed at a point x′ on the camera image. When

the 3D point X moves toward the optical center of the cam-

era with speed v, the observed point x′ does not change,

whereas the illumination point xt on the projected image at

time t changes as follows:

xt = x+ α(vt)d (7)

where d is a unit vector in the direction of the epipolar line,

and α is a map from the change in depth to the change in

point x. On the epipolar line, this can be rewritten in 1D

notation as follows:

xt = x+ α(vt) (8)

Assuming that the function α(x) is linear, the equation can

be rewritten as follows:

xt = x+ tα(v) (9)

Let E(x, t) be the illumination value at point x and time

t. If the exposure time of the observer is T , the observed

intensity I(x′) at x′ on the camera image can be computed

as follows:

I(x′) =

∫

T

0

E(x+ tα(v), t)dt (10)

This continuous notation can be approximated by discrete

notation as follows:

I(x′) =

T−1
∑

t=0

E(x+ tα(v), t) (11)

Here, Eq.(11) indicates that the observed intensity changes

according to the motion v of the object. That is, the ob-

served image for each motion can be controlled by the spa-

tiotemporal image.

Note that the function α describes changes of disparity

by the change of depth. Although disparity is inversely pro-

portional to the depth and it is nonlinear, it can be approxi-

mated by a linear function, in a small range.

4.4. Projection Pattern Estimation

We next consider a method of estimating projection pat-

terns for motion visualization.

Let us consider the case where we want to show an objec-

tive image Î1 to the observer when the target object moves

with speed v1. Let Î1(x) be the intensity of Î1 at point x.

Then, the projected image for presenting this objective im-

age can be obtained by minimizing the following evaluation

value ǫ1:

ǫ1 =

N
∑

x=1

(

Î1(x)−

T−1
∑

t=0

E(x+ tα(v1), t)

)2

(12)

where N is the number of pixels on the epipolar line.

This evaluation can be minimized with an ordinary least-

means square (LMS) method. However, projectors cannot

project negative intensities in general, and they have limited

intensity:

0 ≤ I(x) ≤ Imax (13)

where Imax is the maximum intensity value. Conditional

LMS can solve this equation. In addition, we degrade the

contrast of the objective image. By this degradation, the

range of the projection intensity virtually enhanced relative

to the objective image.

We next consider the case where the target object moves

with M different speeds vi(i = 1, · · · ,M), and the ob-

server observes M different images Îi(i = 1, · · · ,M) ac-

cording to the motion. The projected images for such an

observation can be derived by minimizing the following ǫ:

ǫ =
M
∑

i=1

N
∑

x=1

(

Îi(x)−
T−1
∑

t=0

E(x+ tα(vi), t)

)2

(14)
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(a) in a vehicle (b) Environment
Figure 5. Exmerimental environment in outdoor scene. (a) Camera

and projector in a vehicle and (b) experimental scene.

Note that the number of samples T of exposure should

be more than M , because the equations do not have an ex-

plicit solution if T < M . The number of samples can be

increased using a high-frequency projector. By projecting

the derived spatiotemporal patterns, different motion can be

visualized with varying patterns of image.

5. Experimental Results

5.1. Results in Outdoor Scene

In this section, we show the efficiency of the proposed

method by providing results from real image experiments.

We first show the experimental results from an outdoor

scene. In this experiment, a camera and a projector were

equipped on a vehicle, as shown in Fig.5. The relative posi-

tion between the camera and the projector were fixed in the

vehicle. Unfortunately, the projector could project only 60

images each second. Therefore, we decreased the frames

per second (fps) of the camera, thus virtually increasing the

fps of the projector. The camera observed five images each

second. Therefore, 12 images were integrated into each ob-

servation.

The projector pattern was generated, such that the ob-

server could see the three different images shown in Fig.6

according to the motion of the vehicle: Image (a) for a

static scene, Image (b) for forwarding motion, and Image

(c) for backward motion. We degraded the contrast of each

image to enhance the image representation ability since

the projectable range of intensity was limited by Eq.(13)

We derived projected images using the proposed method.

These images were transformed by projective transforma-

tions, such that their horizontal axes were parallel to the

epipolar line with the camera. After the transformation, the

projected images were observed by the camera. The vehi-

cle moved forward and backward in front of a wall, and the

camera observed images projected onto the wall. The wall

had slight 3D structure as shown in Fig.5(b) and Fig.8

Figure8 shows the results observed by the camera. In

these results, three different images were observed corre-

sponding to the vehicles motion. The results indicate that

our proposed method can visualize 3D motion without any

sensing. In addition, the results indicate that our method is

(a) Static (b) Forward (c) Backward
Figure 6. Objective images for (a) a static scene, (b) forward mo-

tion, and (c) backward motion.

Figure 7. Projected images generated by our proposed method.

(a) Static scene (b) Forward

motion

(c) Backward

motion
Figure 8. Images observed by a camera: (a) an observed image

when the vehicle stopped, (b) an observed image when the vehicle

moved forward, and (c) an image observed with backward motion.

robust to changes in speed, insofar as the speed of the ve-

hicle could not be controlled accurately. Furthermore, the

scene included various types of noisy light rays from street

lights, buildings, and so on. Despite this noise, our method

worked well. This further indicates that our method is ro-

bust to noise. All the results indicate that our method can

visualize relative 3D motion in the real world without any

sensing or computing.

5.2. Results in Indoor Scene

We next show the experimental results for an indoor

scene. In this experiment, a camera and a projector were

placed, as shown in Fig.9. The camera was used exclusively

as an observer. The projector projected dynamic patterns

generated by the proposed method. The planar was placed
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Figure 9. Experimental environment

(a) Static (b) Forward (c) Backward
Figure 10. Objective images for (a) static object, (b) forward mo-

tion, and (c) backward motion.

(a) Static scene (b) Forward

motion

(c) Backward

motion
Figure 11. Observed images by a camera: (a) an observed image

when the screen is static, (b) an observed image when the screen

moved forward, and (c) an image observed with backward motion.

on a moving stage and moved forward and backward itera-

tively. The speed of the motion was approximately 1 cm/s.

The camera and the projector were fixed in the scene and

only the screen was moved.

The projector pattern was generated, such that the cam-

era could see the three different images shown in Fig.6 ac-

cording to the motion of the object: Image (a) for static ob-

ject, Image (b) for forward motion, and Image (c) for back-

ward motion.

The observed results under three different types of object

motion are shown in Fig.11. Although the observed images

differ slightly from the objective images, we find that the

proposed method provides us with entirely different images

for forwarding and backward motion and that the difference

in these motions is visible from the images. In addition, the

camera could observe almost the same image even when

the camera position slightly moved. The fact indicates that

our proposed method is robust against the movement of the

camera and the projector. The detail of this result is in the

supplemental material.

We next show the result when a target screen is more

(a) Forward motion (b) Backward motion
Figure 12. Observed images on the colored screen: (a) and (b) are

the images observed when the screen moved forward and back-

ward, respectively.

complicated. First, we projected the proposed patterns onto

a colored screen, as shown in Fig.12. The color patterns

were printed on the screen, and our proposed patterns were

projected onto the screen. In this case, reflected light rays

were attenuated by the albedo on the screen, such that the

observed patterns could be changed accordingly. Figure 12

shows the observed result when the screen moved (a) for-

ward and (b) backward. In these results, the color pattern

on the screen and the projected images were simultaneously

observed. This is because the number of integrated pixels

for each observed pixels was not so large. Consequently, the

observed pixels did not change drastically, even when the

albedo of the screen was not white. Note that the observed

results differ from the target image because the observed

images include not only the projected patterns but also the

images on the screen. However, human eyes can perceive

these projected images, even when the screen is not white,

owing to high adaptation abilities. Thus, our proposal can

appropriately project images even when target objects are

colored.

In addition, colored patterns on the screen were slightly

blurred because the target screen moved slowly. However,

projected patterns could be clearly observed because the

patterns were computed for clear observations when the

screen moved. Therefore, our proposed method clearly ob-

serves images even when the target screen moves.

We next show the case when a target object is not pla-

nar, as shown in Fig. 13. In this case, reflected light rays

are attenuated by changes in the angle between the light ray

and the surface. Figure 13 shows observed results with for-

warding motion and backward motion. In these results, we

can observe the target images on the screen object for the

same reasons as those mentioned above. Although the non-

planar screen distorted the observed images, the target im-

ages could be recognized appropriately. This indicates that

our method can achieve motion visualization, even if the

target object is not planar.

Because these results can be obtained merely by project-

ing images toward moving objects, the proposed method is

43261985



(a) Forward motion (b) Backward motion
Figure 13. Observed images on the non-planar surface: (a) and

(b) are the images observed when the screen moved forward and

backward, respectively.

efficient at visualizing object motion without latency.

6. Evaluation

6.1. Speed Change

We evaluated the accuracy of our proposed method. For

a quantitative evaluation, we used a synthetic environment.

In the synthetic environment, we simulated a projector, a

camera, and a planar object, as shown in Fig.15. The planar

object was moved toward the camera at various speeds. The

epipolar lines in the projected image and the observed im-

age were parallel to the horizontal axis of the images, and

the image point in the observed image moved by 1 pixel

when the target object moved approximately 1 mm toward

the camera.

We first examined the change of view along with the tar-

get object. As shown in Eq. (14), our proposed method es-

sentially visualizes discrete 3D motion. However, general

objects move at continuous speeds in the real world. There-

fore, we examined how the projected image was observed

when the target object moved at speeds different from the

target speed. In this experiment, three images were used

as objective images, as shown in Fig.11: backward (−5
mm/s), static, and forward (5 mm/s) motion. These were

observed at several speeds differing from the target speed.

Figure 14 shows the observed images at each speed.

The results show that clear images could be observed

when the target object moved at the same speed as the tar-

get speed. In addition, images similar to the objective im-

ages could be observed even when the speed of the target

differed slightly from the target speed. This fact indicates

that our proposed method is robust to changes in the tar-

get speed. Furthermore, the observation results gradually

changed when the speed of the target changed. For exam-

ple, a morphed image of parrots and Lena was observed

when the target moved by 0.6 cm/s. This indicates that our

proposed method can represent not only discrete 3D mo-

tion but also continuous motion. That is, users will perceive

morphed motion from a morphed observed image.

−7.0 mm/s −6.0 mm/s −5.0 mm/s −4.0 mm/s −3.0 mm/s

−2.0 mm/s −1.0 mm/s 0.0 mm/s 1.0 mm/s 2.0 mm/s

3.0 mm/s 4.0 mm/s 5.0 mm/s 6.0 mm/s 7.0 mm/s
Figure 14. Observed results at each speed.

Figure 15. Synthetic environment.

Figure 16. Objective images of five different motion speeds.

6.2. Resolution

We next evaluated the resolution of visualized speed. In

this experiment, the speed of the object motion was changed

from 0 mm/s to 5 mm/s at an interval of 1.25 mm/s. Thus,

five different motion speeds were estimated by the proposed

method. The objective images for these five motion speeds

are shown in Fig. 16. The projected images for visualizing

this motion were generated and projected by the proposed

method. Figure 17 shows the observed images under these

five different motion speeds. In the environment, variations

to observed images depended on the target speed evaluated.
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Figure 17. Observed images with five different motion speeds.
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Figure 18. Errors between the observed image and the objective

image at five different speeds. The horizontal axis shows the speed

of the object, and each line shows the root-mean-square error be-

tween the observed image and each objective image under differ-

ent object speeds.

Figure 18 shows the error of the observed image with

respect to each objective image. For example, the green

line shows the root-mean-square error (RMSE) between the

observed image and the objective image at 1.25 mm/s. It re-

quired minimum speed of 1.25 mm/s, as we expected. From

this graph, we find that the RMSE of true motion is very

small compared to those of other motions. Thus, the pro-

posed method can visualize several types of motion.

6.3. Frame Rate

Finally, we evaluated the relationship between the frame

rate of the projector and the accuracy of motion representa-

tion. The frame rate of the projector was varied from 5 fps

to 50 fps, while the frame rate of the observer was fixed at 1

fps. The number of motions distinguished by the proposed

method was also changed, from two to five. Under these

conditions, the RMSE of the observed image with respect

to the objective image was evaluated. Figure 19 shows the

RMSE of the observed images. From this figure, we find

that the accuracy of motion representation improves as the
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Figure 19. Relationship between the frame rate of the projector

and the accuracy of motion representation. The horizontal axis

shows the frame rate of the projector, and the vertical axis shows

the root-mean-square error of the observed images. The number

of motions distinguished by the proposed method was varied from

two to five.

frame rate of the projector increases. We also find that the

accuracy of motion representation degrades as the number

of motions increases. However, the accuracy of motion rep-

resentation can be recovered by increasing the frame rate of

the projector, even with a large number of motions. Thus, it

is important to use high-frequency projectors to represents

several types of object motion with the proposed method.

7. Conclusions

In this paper, we proposed a novel method of visualiz-

ing object motion using image projection. The proposed

method does not require any sensing devices, such as cam-

eras, and does not require any computation. With the pro-

posed method, the appearance of objects changes according

to their motion, and feedback from sensors is unnecessary.

Consequently, there is no delay when visualizing real ob-

ject motion. The proposed method is also robust: it does

not require sensing information, it is free from observation

errors, and it is free from the problem of incorrect corre-

spondences.

These features do not exist in conventional motion es-

timation methods, and we believe that this paper opens a

new research field for 3D motion estimation in computer

vision. Especially, our proposed concept that changes ob-

served images based on light integration without any sens-

ing and computation is much useful. This concept can vi-

sualize observer motion as well as the movement of the tar-

gets. This concept has various applications, for example,

the spontaneously changing signboards according to the ob-

server’s motion.
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