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Abstract

Conventional sensor systems record information about

directly visible objects, whereas occluded scene compo-

nents are considered lost in the measurement process. Non-

line-of-sight (NLOS) methods try to recover such hidden

objects from their indirect reflections – faint signal com-

ponents, traditionally treated as measurement noise. Exist-

ing NLOS approaches struggle to record these low-signal

components outside the lab, and do not scale to large-scale

outdoor scenes and high-speed motion, typical in automo-

tive scenarios. In particular, optical NLOS capture is fun-

damentally limited by the quartic intensity falloff of diffuse

indirect reflections. In this work, we depart from visible-

wavelength approaches and demonstrate detection, classi-

fication, and tracking of hidden objects in large-scale dy-

namic environments using Doppler radars that can be man-

ufactured at low-cost in series production. To untangle

noisy indirect and direct reflections, we learn from temporal

sequences of Doppler velocity and position measurements,

which we fuse in a joint NLOS detection and tracking net-

work over time. We validate the approach on in-the-wild

automotive scenes, including sequences of parked cars or

house facades as relay surfaces, and demonstrate low-cost,

real-time NLOS in dynamic automotive environments.

1. Introduction

Conventional sensor systems capture objects in their di-

rect line of sight, and, as such, existing computer vision

methods are capable of detecting and tracking only the vis-

ible scene parts [13, 15, 38, 37, 12, 23, 53, 30], whereas oc-

cluded scene components are deemed lost in the measure-

ment process. Non-line-of-sight (NLOS) methods aim at

recovering information about these occluded objects from

their indirect reflections or shadows on visible scene sur-

faces, which are again in the line of sight of the detector.

While performing scene understanding of occluded objects

may enable applications across domains, including remote

sensing or medical imaging, especially autonomous driving

applications may benefit from detecting approaching traffic

*Equal contribution.
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Figure 1: We demonstrate that it is possible to recover mov-

ing objects outside the direct line of sight in large automo-

tive environments from Doppler radar measurements. Us-

ing static building facades or parked vehicles as relay walls,

we jointly classify, reconstruct, and track occluded objects.

participants that are occluded.

Existing NLOS imaging methods struggle outside con-

trolled lab environments, and they struggle with large-scale

outdoor scenes and high-speed motion, such as in typical

automotive scenarios. The most successful NLOS imaging

methods send out ultra-short pulses of light and measure

their time-resolved returns [46, 34, 14, 8, 45, 5, 33, 29]. In

contrast to a conventional camera, such measurements al-

low existing methods to unmix light paths based on their

travel time [1, 21, 32, 34], effectively trading angular with

temporal resolution. As a result, pulse widths and detection

at a time scale of < 10 ps is required for room-sized scenes,

mandating specialized equipment which suffers from low

photon efficiency, high cost, and slow mechanical scan-

ning. As intensity decreases quartically with the distance

to the visible relay wall, current NLOS methods are lim-

ited to meter-sized scenes even when exceeding the eye-

safety limits for a Class 1 laser (e.g. Velodyne HDL-64E)

by a factor of 1000 [28]. Moreover, these methods are im-

practical for dynamic scenes as scanning and reconstruc-

tion takes up minutes [29, 5]. Unfortunately, alternative ap-
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proaches based on amplitude-modulated time-of-flight sen-

sors [16, 18, 17] suffer from modulation bandwidth lim-

itations and ambient illumination [25], and intensity-only

methods [11, 42, 6] require highly reflective objects. Large

outdoor scenes and highly dynamic environments remain an

open challenge.

In this work, we demonstrate that it is possible to detect

and track objects in large-scale dynamic scenes outside of

the direct line-of-sight using automotive Doppler radar sen-

sors, see Fig. 1. Departing from visible-wavelength NLOS

approaches which rely on diffuse indirect reflections on the

relay wall, we exploit the fact that specular reflections domi-

nate on the relay wall for mm-wave radar signals, i.e., when

the structure size is an order of magnitude larger than the

wavelength. As such, in contrast to optical NLOS tech-

niques, phased array antenna radar measurements preserve

the angular resolution and emitted radio frequency (RF)

power in an indirect reflection, which enables us to achieve

longer ranges. Conversely, separating direct and indirect

reflections becomes a challenge. To this end, we recover

indirectly visible objects relying on their Doppler signa-

ture, effectively suppressing static objects, and we propose

a joint NLOS detection and tracking network, which fuses

estimated and measured NLOS velocity over time. We train

the network in an automated fashion, capturing training la-

bels along with data with a separate positioning system, and

validate the proposed method on a large set of automotive

scenarios. By using facades and parked cars as reflectors,

we show a first application of NLOS collision warning at

urban intersections.

Specifically, we make the following contributions:

• We formulate an image formation model for Doppler

radar NLOS measurements. Based on this model, we

derive the position and velocity of an occluded object.

• We propose a joint NLOS detection and tracking net-

work, which fuses estimated and measured NLOS ve-

locity over time. For occluded object labeling, we ac-

quire our data with an automated positioning system.

• We validate our system on in-the-wild automotive sce-

narios, and as a first application of this new imaging

modality, demonstrate collision warning for vulnerable

road users before seeing them in direct line of sight.

• The experimental training and validation data sets and

models will be published1.

2. Related Work

Optical Non-Line-of-Sight Imaging A growing body of

work explores optical NLOS imaging techniques [34, 46,

14, 18, 33, 45, 5, 35, 50, 29]. Following Kirmani et al. [21],

who first proposed the concept of recovering occluded ob-

jects from time-resolved light transport, these methods di-

rectly sample the temporal impulse response of a scene by

sending out pulses of light and capturing their response

using detectors with high temporal precision of < 10 ps,
during which the pulses travel a distance of 3mm. While

early work relies on costly and complicated streak camera

setups [46, 47], a recent line of work uses single photon

avalanche diodes (SPAD) [8, 33, 29]. Katz et al. [20, 19]

demonstrate that correlations in the carrier wave itself can

be used to realize fast single shot NLOS imaging, however,

limited to scenes at microscopic scales [19].

Non-Line-of-Sight Tracking and Classification Several

recent works use conventional intensity images for NLOS

tracking and localization [22, 9, 10, 6, 11]. The ill-

posedness of the underlying inverse problem limits these

methods to localization with highly reflective targets [6, 11],

sparse dark background, or only scenes with additional

occluders present [42, 6]. Unfortunately, recent acoustic

methods [27] are currently limited to meter-sized lab scenes

and minutes of acquisition time. All of these existing meth-

ods have in common that they are impractical for large and

dynamic outdoor environments.

Radio Frequency Non-Line-of-Sight Imaging A further

line of work has explored imaging, tracking, and pose es-

timation through walls using RF signals [2, 3, 4, 39, 49,

52]. However, RF signals are not reflected when travel-

ing through typical interior wall material, such as drywall,

drastically simplifying through-the-wall vision tasks. As a

result, only a few works have explored NLOS radar imag-

ing and tracking [44, 36, 51]. These methods backprop-

agate raytraced high-order-bounce signals, which requires

scenes with multiple known (although they are occluded)

hidden relay walls. For the in-the-wild scenarios tackled

in this work without prior scene knowledge, only third-

bounce measurements, and with imperfect relay walls, e.g.,

a parked sequence of vehicles, these methods are imprac-

tical. Moreover, traditional filtering and backprojection es-

timation suffers from large ambiguities at more than 10m
in the presence of realistic measurement noise [36]. In this

work, we address this challenge with a data-driven joint de-

tection and tracking method, allowing us to demonstrate

practical NLOS detection in-the-wild using radar systems

which have the potential for low-cost mass production in

the near future.

3. Observation Model

When a radar signal gets reflected off a visible wall onto

a hidden object, some of the signal is scattered and reflected

back to the wall where it can be observed, see Fig. 2. Next,

we derive a forward model including such observations.

1https://github.com/princeton-computational-imaging/doppler nlos for

code and models.
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3.1. Non­Line­of­Sight FMCW Radar

Radar sensors emit electromagnetic (EM) waves, trav-

eling at the speed of light c, which are reflected by the

scene and received by the radar sensors. In this work,

we use a frequency-modulated continuous-wave (FMCW)

Doppler radar with multiple input multiple output (MIMO)

array configuration, which can resolve targets in range r,

azimuthal angle φ, and radial Doppler velocity vr. Instead

of a single sinusoidal EM wave, our FMCW radar sends out

linear frequency sweeps [7] over a frequency band B start-

ing from the carrier frequency fc, that is

g(t) = cos

(

2πfct+ π
B

Tm

t2
)

, (1)

with Tm being the sweep rise time. The instantaneous

frequency of this signal is 1/2π d/dt
(
2πfct+ π B/Tmt2

)
=

fc+B/Tmt, that is a linear sweep varying from fc to fc+B
with slope B/Tm, which is plotted in Fig. 3.

The emitted signal g propagates through the visible and
occluded parts of the scene, that is, this signal is convolved
with the scene’s impulse response. For a given emitter po-
sition l and receiver position c the received signal becomes

s(t, c, l,w) =

∫

Λ

α(x) ρ (x−w,w − x) · (2)

1

(rlw+rxw)2
1

(rxw+rwc)2
g

(

t−
rlw+2 rxw+rwc

c

)

dσ(x),

see Fig. 2, with w and x being the positions on the relay

wall and the object surface Λ, the surface measure σ on

Λ, α as the albedo, and ρ denoting the bi-directional re-

flectance distribution function (BRDF), which depends on

the incident direction ωi = x − w and outgoing direction

ωo = w − x. The distance r describes here the distance

between the subscript positions, and its squared inverse in

Eq. (2) models the intensity falloff due to spherical travel,

which we approximate as not damped by the specular wall,

and diffuse backscatter from object back to the receiver c.

Reflection Model The scattering behavior ρ depends on

the surface properties. Surfaces that are flat, relative to the

wavelength λ of ≈ 5mm for typical 76GHz-81GHz auto-

motive radars, will result in a specular response. As a result,

the transport in Eq. (2) treats the relay wall as a mirror, see

Fig. 2. We model the reflectance of the hidden and directly

visible targets following [11] with a diffuse and specular

term as

ρ (ωi, ωo) = αd ρd (ωi, ωo) + αs ρs (ωi, ωo)
︸ ︷︷ ︸

≈0

. (3)

In contrast to recent work [11, 27], we cannot rely on the

specular component ρs, as for large standoff distances, the

relay walls are too small to capture the specular reflec-

tion. Indeed, completely specular facet surfaces are used as

“stealth” technology to hide targets [31]. As retroreflective
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Figure 2: Radar NLOS observation. For mm-wavelengths,

typical walls appear flat, and reflect radar waves specularly.

We measure distance, angle and Doppler velocity of the in-

direct diffuse backscatter of an occluded object to recover

its velocity, class, shape, and location.

radar surfaces are extremely rare in nature [39], the diffuse

part ρd dominates ρ. Note that α(x)ρ (x−w,w − x) in

Eq. (2) is known as the intrinsic radar albedo, describing

backscatter properties, i.e., the radar cross section [41].

Range Measurement Assuming an emitter and detector

position c = l = w and a static single target ξ at distance

r = ‖c − x‖ with roundtime reflection τξ = 2r/c, Eq. (2)

becomes a single sinusoid

sξ(t) = αξg(t− τξ), (4)

where αξ describes here the accumulated attenuation along

the reflected path. FMCW radars mix the received signal sξ
with the emitted signal g, resulting in a signal pξ consist-

ing of the sum and a difference of frequencies. The sum is

omitted due to low-pass filtering in the mixing circuits, i.e.:

pξ(t) = sξ(t) · g(t) ≈
αξ

2
cos

(

2πfbeatt+ 4π
fcr

c

)

. (5)

The remaining difference due to the time difference be-
tween transmitted and received chirp, see Supplemental

Material, results in a frequency shift with beat frequency

fbeat =
B

Tm

2r

c
, and r = c

fbeatTm

2B
. (6)

The range can be estimated from this beat note according

to Eq. (6). To this end, FMCW radar systems perform a

Fourier analysis, where multiple targets with different path

lengths (Eq. (2)) appear in different beat frequency bins.

Doppler Velocity Estimation For the case when the object

is moving, radial movement vr along the reflection path re-

sults in an additional Doppler frequency shift in the received

signal
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Figure 3: Chirp sequence modulation principle for a sin-

gle receiver-transmitter antenna: N consecutive frequency

ramps are sent and received with a frequency shift fbeat cor-

responding to the distance of the reflector. Each frequency

ramp is sampled and the phase of the received signal is esti-

mated at each chirp and range bin. The phase shift between

consecutive chirps corresponds to the Doppler frequency.

fDoppler = 2 ·
vr
λ
. (7)

To avoid ambiguity between a frequency shift due to round-

trip travel opposed to relative movement, the ramp slope

B/Tm is chosen high, so that Doppler shifts are negligible

in Eq. (6). Instead, this information is recovered by observ-

ing the phase shift θ in the signals between two consecutive

chirps with spacing Ttot, see Fig. 3, that is

vr =
λ · θ

4π · Ttot

= v ·
x′ − c

‖x′ − c‖
. (8)

This velocity estimate is the radial velocity, see Fig. 2. Akin

to the range estimation, the phase shift θ (and velocity) is

also estimated by a Fourier analysis, but applied on the pha-

sors of N sequential chirps for each range bin separately.

Incident Angle Estimation To resolve incident radiation

directionally, radars rely on an array of antennas. Under a

far field assumption, i.e., r ≫ λ, for a single transmitter and

target, the incident signal is a plane wave. The incident an-

gle φ of this waveform causes a delay of arrival d sin(φ)/c
between the two consecutive antennas with distance d, see

Fig. 2, resulting in a phase shift Ω = 2πd sin(φ)/λ. Hence,

we can estimate

φ = arcsin
Ωλ

2πd
. (9)

For this angle estimation, a single transmitter antenna illu-

minates and all receiver antennas listen. A frequency anal-

ysis on the sequence of phasors corresponding to peaks in

the 2D range-velocity spectrum assigns angles, resulting in

a 3D range-velocity-angle data cube.

3.2. Sensor Post­Processing

The resulting raw 3D measurement cube contains 1024×
512 × 64 bins for range, angle, and velocity, respectively.

For low-reflectance scenes, typical noise, and clutter, tens of

millions of non-zero reflection points can be measured. To

tackle such measurement rates in real-time, we implement

a constant false alarm rate filter to detect high RCS values σ̃
following [40]. We retrieve a radar point cloud Ũ with less

than 104 points, allowing for efficient inference:

Ũ =
{
(φ̃, r̃, ṽr, σ̃)i | 1 ≤ i ≤ R

}
with R < 104. (10)

See Supplemental Material for details on post-processing.

4. Joint NLOS Detection and Tracking

In this section, we propose a neural network for the de-

tection and tracking of hidden objects from radar data.

4.1. Non­Line­of­Sight Detection

The detection task is to estimate oriented 2D boxes for

pedestrians and cyclists, given a Bird’s-eye-view (BEV)

point cloud Ũ as input. The overall detection pipeline con-

sists of three main stages: (1) input parameterization that

converts a BEV point cloud into a sparse pseudo-image; (2)

high-level representation encoding from the pseudo-image

using a 2D convolutional backbone; and (3) 2D bounding

box regression and detection with a detection head.

Input Parameterization We denote u as a d-dimensional

(d = 4) point in a raw radar point cloud Ũ with coordinates

x, y (derived from the polar coordinates φ̃, r̃), velocity ṽr,

and amplitude σ̃. We use the logarithm of the amplitude to

get an intensity measure s = log σ̃. As a first step, the point

cloud is discretized into an evenly spaced grid in the x-y
plane, resulting in a pseudo-image of size (d − 2, H,W )
where H and W indicate the height and width of the grid.

High-level Representation Encoding To efficiently en-

code high-level representations of the hidden detections, the

backbone network contains two modules: a pyramid net-

work and a zoom-in network. The pyramid network con-

tains two consecutive stages to produce features at increas-

ingly small spatial resolutions. Each stage downsamples its

input feature map by a factor of two using three 2D con-

volutional layers. Next, a zoom-in network upsamples and

concatenates the two feature maps from the pyramid net-

work. This zoom-in network performs transposed 2D con-

volutions with different strides. As a result, both upsam-

pled features have the same size and are then concatenated

to form the final output. All (transposed) convolutional lay-

ers use kernels of size 3 and are interlaced with BatchNorm

and ReLU, see Supplemental Material for details.

Detection Head The detection head follows the setup of

Single Shot Detector (SSD) [26] for 2D object detection.

Specifically, each anchor predicts a 3-dimensional vector

for classification (background / cyclist / pedestrian) and a
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Figure 4: NLOS detection and tracking architecture. The network accepts the current frame T and the past n radar point

cloud data as input, and outputs predictions for frame T and the following n frames. The features are downsampled twice in

the pyramid network, and then upsampled and concatenated by the zoom-in network. We merge the features from different

frames at both levels to encode high-level representation and fuse temporal information.
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Figure 5: NLOS geometry and velocity estimation from in-

direct specular wall reflections. The hidden velocity v can

be reconstructed from the radial velocity vr by assuming

that the road user moves parallel to the wall, i.e., on a road.

6-dimensional vector for bounding box regression (center,

dimension, orientation, and velocity of the box).

Relay Wall Estimation We use first-response pulsed lidar

measurements of a separate front-facing lidar sensor to re-

cover the geometry of the visible wall. Specifically, we

found that detecting line segments in a binarized binned

BEV is robust using [48], where each bin with size 0.01m is

binarized with a threshold of 1 detection per bin. We filter

out segments with a length shorter than 1m, constraining

the detected wall to smooth surfaces that our NLOS model

holds for, see Supplemental Material. Each segment is rep-

resented by its endpoints p1 and p2, cf. Fig. 5.

Third-Bounce Geometry Estimation Next, we derive the

real location x of a third-bounce or virtual detection x′, for

reference see Fig. 2 and Fig. 5. In order to decide whether

a point is a virtual detection, we first derive its intersection

w with the relay wall p = p2 − p1, that is

w = c+
(p1 − c)× p

(x′ − c)× p
(x′ − c), (11)

where × is the 2D cross product a × b = a1b2 − a2b1.

For a detection x′ to be a third-bounce detection, we have

two criteria. First, x′ and the receiver c must be on opposite

sides of the relay wall. We define the normal of the relay

wall nw as pointing away from the receiver c. Second, the

intersection w must be between p1 and p2, both expressed

as
nw · (x′ − p1) ≥ 0 ∧ ‖w − p1‖ ≤ ‖p‖

∧ ‖w − p2‖ ≤ ‖p‖ .
(12)

The first term is the signed distance, indicating whether x′

and c are on opposite sides of the wall and the other terms

determine whether w lies between p1 and p2. If Eq. (12) is

true, i.e., x′ is a third-bounce detection, we reconstruct the

original point x as

x =

(
w − c− 2 (nw · (w − c))nw

)
‖w − x′‖

‖w − c‖
. (13)

Third-Bounce Velocity Estimation After recovering x, we

estimate the real velocity vector v under the assumption

that the real velocity is parallel to the relay wall, see Fig. 5.

Specifically, it is

v = ‖v‖ sgn(vr) · sgn(γx′ − γw)
p

‖p‖
. (14)

Here, γx′ and γw are the angles of x′−c and nw relative to

the sensor’s coordinate system, respectively. In Eq. (14), the

sign of vr distinguishes approaching and departing hidden

object targets, while sgn(γx′ − γw) determines the object’s

allocation to the left or right half-plane with respect to the

normal nw. By convention, we define that p is rotated π
2

counterclockwise relative to nw. Using the measured radial

velocity vr = ‖v‖ · |cosϕ|, we get
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v = sgn(vr) · sgn(γx′ − γw) ·
|vr|

|cosϕ|
·

p

‖p‖
, (15)

with ϕ being the angle between x′ − c and v, cf. Fig. 5.

See the Supplemental Material for detailed derivations.

4.2. Non­Line­of­Sight Doppler Tracking

Our model jointly learns tracking with future frame pre-

diction, inspired by Luo et al. [30]. At each timestamp, cur-

rent and its n preceding frames form the input, and predic-

tions are for the current plus the following n future frames.

One of the main challenges is to fuse temporal informa-

tion. A straightforward solution is to add another dimension

and perform 3D convolutions over space and time. How-

ever, this approach is not memory-efficient and computa-

tionally expensive given the sparsity of the data. Alterna-

tives can be early or late fusion as discussed in [30]. Both

fusion schemes first process each frame individually, and

then start to fuse all frames together.

Instead of such one-time fusion, our approach leverages

the multi-scale backbone and performs fusion at different

levels. Specifically, we first perform separate input pa-

rameterization and high-level representation encoding for

each frame as described in Sec. 4.1. After the two stages

of the pyramid network, we concatenate the n + 1 feature

maps along the channel dimension for each stage. This re-

sults in two feature maps of sizes
(
(n+ 1)C1,

H
2
, W

2

)
and

(
(n+ 1)C2,

H
4
, W

4

)
, which are then concatenated as inputs

to the two upsampling modules of the zoom-in network, re-

spectively. The rest of the model is the same as before. By

aggregating temporal information across n+1 frames at dif-

ferent scales, the model is allowed to capture both low-level

per-frame details and high-level motion features. We refer

to Fig. 4 for an illustration of our architecture.

4.3. Loss Functions

Our overall objective function contains a localization

term and a classification term

L = αLloc + βLcls. (16)

The localization loss is a sum of the localization loss for the

current frame T and n frames into the future:

Lloc =

T+n∑

t=T

Lloct with Lloct =
∑

u∈{x,y,w,l,θ,v}

αu|∆u|, (17)

where ∆u is the localization regression residual be-
tween ground truth (gt) and anchors (a) defined by
(x, y, w, l, θ, v):

∆x = x
gt − x

a
, ∆y = y

gt − y
a
, ∆v = v

gt − v
a
,

∆w = log
wgt

wa
, ∆l = log

lgt

la
, ∆θ = sin(θgt − θ

a). (18)

We do not distinguish the front and back of the object,

therefore all θ’s are within the range [−π
2
, π
2
). For classi-

fication, we adopt the focal loss Lcls from [26].

GNSS

Wi-Fi

Ground Truth
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Occluder
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Figure 6: Prototype vehicle with measurement setup

(top left) and automated ground-truth localization system

(right). To acquire training data in an automated fashion,

we use GNSS and IMU for a full pose estimation of ego-

vehicle and the hidden vulnerable road users.

5. Data Acquisition and Training

Prototype Vehicle Setup The observation vehicle proto-

type is shown in Fig. 6. We use experimental FMCW radar

prototypes, mounted in the front bumper, with frequency

band 76GHz to 77GHz and chirp sequence modulation,

see Sec. 3. We use a mid-range configuration with 153m
maximum range and FoV of 140°, i.e., for urban scenar-

ios or intersections. A single measurement takes 22.6ms,
with a resolution of 0.15m, 1.8°, and 0.087m s−1. Simi-

lar sensors are available as development kits for a few hun-

dred USD, e.g. Texas Instruments AWR1642BOOST; the

mass-produced version costing a small fraction. The radar

sensors are complemented by an experimental 4-layer scan-

ning lidar with 0.25° and 0.8° resolution in azimuth and el-

evation. With a wide FoV of 145°, a single sensor installed

in the radiator grill suffices for our experiments. We use

a GeneSys ADMA-G PRO localization system consisting

of a combined global navigation satellite system (GNSS)

receiver and an inertial measurement unit (IMU) to track

ego-pose using an internal Kalman filter. The system has

an accuracy of up to 0.8 cm and 0.01m s−1 for the position

and velocity. For documentation purposes, we use a single

AXIS F1015 camera with 97° FoV behind the test vehicle’s

windshield. See Supplemental Material for details on all

sensors along with required coordinate system transforms.

Automated Ground-Truth Estimation Unfortunately, hu-

mans are not accustomed to annotating radar measurements,

and NLOS annotations are even more challenging. We

tackle this problem by adopting a variant of the tracking

device from [43]. We equip vulnerable road users, i.e., oc-

cluded pedestrians or bicyclists, with a hand-held GeneSys

ADMA-Slim tracking module synced with the capture ve-
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Figure 7: NLOS training and evaluation data set for large

outdoor scenarios. Top: Data set statistics (a), and hidden

object and observer distances (b) to the relay wall. Bottom:

Camera images including the (later on) hidden object.

hicle via Wi-Fi, see Fig. 6. In contrast to [43] we do not

purely rely on GNSS, but also use the IMU for pose estima-

tion of the hidden object, see Supplemental Material.

Training and Validation Data Set We capture a total of

100 sequences in-the-wild automotive scenes with 21 differ-

ent scenarios, i.e., we repeat scenarios with different NLOS

trajectories multiple times. The wide range of relay walls

appearing in this dataset is shown in Fig. 7 and includes

plastered walls of residential and industry buildings, marble

garden walls, a guard rail, several parked cars, garages, a

warehouse wall, and a concrete curbstone. The dataset is

equally distributed among hidden pedestrians and cyclists,

and adds up to over 32 million radar points, see Supplemen-

tal Material. We opt for these two kinds of challenging road

users, as bigger, faster, and more electrically conductive ob-

jects such as cars are much easier to detect for automotive

radar systems. We split the dataset into non-overlapping

training and validation sets, where the validation set con-

sists of four scenes with 20 sequences and 3063 frames.

6. Assessment

Evaluation Setting and Metrics For both, training and val-

idation, the region of interest is a large area of 60m× 80m.

We use resolution 0.1m to discretize both x, z axes into a

600×800 grid. We assign each ground truth box to its high-

est overlapping predicted box for training. The hidden clas-

sification and localization performance are evaluated with

Average Precision (AP) and average distance between the

predicted and ground truth box centers, respectively.

Class Cyclist Pedestrian Object

AP @0.5 @0.25 @0.1 @0.5 @0.25 @0.1 @0.5 @0.25 @0.1

Ours 29.35 56.43 62.40 44.74 62.19 68.15 41.36 66.34 75.41

SSD [26]2 10.07 37.87 51.50 27.19 49.24 56.24 19.87 46.29 60.98

PointPillars [24]2 2.02 15.02 28.00 7.83 22.16 26.76 9.61 45.69 58.68

Table 1: Detection classification (AP) comparison. We

compare our model to an SSD detector and the PointPil-

lars [24], details in Supplementary Material.

Localization

(Box Center Distance)

Model MAE MSE

Tracking (w. v) 0.12 0.03

Tracking (w/o. v)3 0.13 0.04

Model Visibility MOTA MOTP

Tracking NLOS 0.58 0.93

(w. v) LOS 0.85 0.91

Tracking NLOS 0.52 0.94

(w/o. v)3 LOS 0.81 0.90

Table 2: Localization and tracking performance on NLOS

and LOS data, with MAE and MSE in meters. Velocity

prediction (and supervision) indicated by v.

Qualitative Validation Fig. 8 shows results for realistic au-

tomotive scenarios with different wall types. Note that the

size of ground truth bounding box varies due to the char-

acteristics of radar data. The third row shows a scenario

where no more than three detected points are measured for

the hidden object, and the model has to rely on velocity and

orientation of these sparse points to make a decision on box

and class prediction. Despite such noise, we do observe

that the model outputs stable predictions. As illustrated in

the fourth row, predicted boxes are very consistent in size

and orientation across frames despite the extreme radar de-

tection sparsity. The first frame in the fourth row shows

a detection where a hidden object became visible by lidar

but not radar. Note that all other scenes have occluder ge-

ometries visible in the lidar measurements. For rare cases

where the ground truth information is imperfect due to jitter

of the ground truth acquisition system, we can reason about

sequences of frames instead of a single one. While the pre-

dicted box seemingly does not match the ground truth well

in this particular frame, it is, in fact, detected correctly, val-

idating the proposed joint detection and tracking approach.

Fig. 9 shows qualitative tracking trajectories for two differ-

ent scenes. The model is able to track an object only with

occasional incorrect ID switch.

Quantitative Detection Results We report AP at IoU

thresholds 0.1, 0.25 and 0.5 for cyclist/pedestrian detection

in Tab. 1. We also list the mean AP of predicting object/non-

object by merging cyclist/pedestrian labels. We compare

our model to a simplified SSD [26] and the PointPillars [24]

for BEV point cloud detection, see Supplemental Material.

Since most bounding boxes in our collected data are chal-

lenging small boxes with sizes smaller than 0.5m × 0.5m,

a very small offset may significantly affect the detection

performance at a high IoU threshold. However, in prac-

2Trained with proposed third-bounce geometry and velocity estimates.
3Input is velocity-based pre-processed data, see Supplemental Material.
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tice, a positive detection with an IoU as small as 0.1 is still

a valid detection for collision warning applications. Com-

bined with the high localization accuracy, see Tab. 2 (left),

the proposed approach allows for long-range detection and

tracking of hidden object in automotive scenarios, even for

small road users as pedestrians and bicycles.

Quantitative Tracking Results Tab. 2 lists the localization

and tracking performance of the proposed approach. Re-

lying on multiple frames and measured Doppler velocity

estimates, the proposed method achieves high localization

accuracy of 0.1m in MAE despite measurement clutter

and small diffuse cross section of the hidden pedestrian and

bicycle objects. We evaluate the tracking performance on

NLOS and visible line-of-sight (LOS) frames separately in

Tab. 2. For challenging NLOS data, while the number of

unmatched objects (Multiple Object Tracking Accuracy –

MOTA) increases, the model is still able to precisely locate

most of the matched objects (Multiple Object Tracking Pre-

cision – MOTP). These results validate the proposed joint

NLOS detector and tracker for collision avoidance applica-

tions. Tab. 2 also compares models with and without veloc-

ity supervision, showing that velocity supervision improves

both localization and tracking accuracy.

7. Conclusion
In this work, we introduce a novel method for joint

non-line-of-sight detection and tracking of occluded objects

using automotive Doppler radar. Learning detection and

tracking end-to-end from a realistic NLOS automotive radar

data set, we validate that the proposed approach allows for

collision warning for pedestrians and cyclists in real-world

autonomous driving scenarios – before seeing them with

existing direct line-of-sight sensors. In the future, detec-

tion from higher-order bounces, and joint optical and radar

NLOS could be exciting next steps.
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