
DualConvMesh-Net:

Joint Geodesic and Euclidean Convolutions on 3D Meshes

Jonas Schult∗, Francis Engelmann∗, Theodora Kontogianni, Bastian Leibe

RWTH Aachen University

{schult, engelmann, kontogianni, leibe}@vision.rwth-aachen.de

Abstract

We propose DualConvMesh-Nets (DCM-Net) a family of

deep hierarchical convolutional networks over 3D geomet-

ric data that combines two types of convolutions. The first

type, geodesic convolutions, defines the kernel weights over

mesh surfaces or graphs. That is, the convolutional kernel

weights are mapped to the local surface of a given mesh.

The second type, Euclidean convolutions, is independent of

any underlying mesh structure. The convolutional kernel

is applied on a neighborhood obtained from a local affin-

ity representation based on the Euclidean distance between

3D points. Intuitively, geodesic convolutions can easily sep-

arate objects that are spatially close but have disconnected

surfaces, while Euclidean convolutions can represent inter-

actions between nearby objects better, as they are oblivious

to object surfaces. To realize a multi-resolution architec-

ture, we borrow well-established mesh simplification meth-

ods from the geometry processing domain and adapt them

to define mesh-preserving pooling and unpooling opera-

tions. We experimentally show that combining both types

of convolutions in our architecture leads to significant per-

formance gains for 3D semantic segmentation, and we re-

port competitive results on three scene segmentation bench-

marks. Our models and code are publicly available1.

1. Introduction

Geometric deep learning [3, 4, 12, 26, 35, 43] aims at

transferring the successes of CNNs from regular, discrete

domains, e.g., 1D audio, 2D images or 3D voxel grids, onto

irregular data representations such as graphs, point clouds

or 3D meshes. Currently, geometric deep learning is di-

vided into two main areas relying on different data repre-

sentations: 3D scene understanding and 3D shape analysis.

The former looks at tasks such as semantic segmenta-

tion [9, 17, 21, 40, 45, 47, 62], instance segmentation [14,

15, 19, 28, 59, 60] and part segmentation [21, 45, 53, 62].

Here, the focus lies primarily on processing point cloud

∗Equal contribution.
1github.com/VisualComputingInstitute/dcm-net/

Geodesic Neighborhood Euclidean Neighborhood

Figure 1: Comparison of geodesic (left) and Euclidean neigh-

borhoods (right). Our DCM-Net combines geodesic and Eu-

clidean convolutions. Geodesic convolutions follow the surface of

individual objects, which can be beneficial to learn specific object

shapes. Euclidean convolutions can bridge over small gaps, which

can encourage the flow of relevant context information between

spatially nearby but geodesically distant objects, while being able

to connect disconnected parts due to scanning artifacts. The color

gradient shows the geodesic and Euclidean distances between the

● center point and its neighbors. The scan section is taken from

the ScanNet dataset [8].

data. One choice is to project raw point clouds into a dis-

crete 3D grid representation, which enables standard 3D

CNNs to be applied, i.e., by sliding kernels over neighbor-

ing voxels [10, 42, 55, 63, 64]. Alternative approaches op-

erate directly on raw point clouds [2, 29, 39, 45, 46, 53, 65].

In this case, the challenge consists in defining convolutional

operators over point sets. Commonly, the convolutional ker-

nels are applied to local point neighborhoods obtained from

spherical or k-nn neighborhoods defined over the Euclidean

distance between pairs of points. We refer to these con-

volutions as Euclidean convolutions (see Figure 1, right).

Consequently, regardless of point cloud or voxel represen-

tations, these convolutions are agnostic to the surface infor-

mation and, therefore, sensitive to surface deformations.

Unlike 3D scene understanding, 3D shape analysis is

concerned with tasks such as shape correspondence [3],

shape descriptors [33], and shape retrieval [43]. As op-

posed to the methods mentioned earlier, shape analysis fo-

8612

cuses on the surface information encoded in meshes or

graphs. Here, convolutional kernels are defined over lo-

cal patches or neighborhoods on the surface of a mesh or

graph. These neighborhoods are localized by the geodesic

distance between nodes on the surface mesh, i.e., points

that are reachable by one edge connection along the surface

mesh. We therefore refer to them as geodesic convolutions

(see Figure 1, left). A notable property of geodesic convo-

lutions is their invariance to surface deformations, which is

generally desired in tasks such as shape correspondence.

In this work, we investigate the role of geodesic and Eu-

clidean convolutions in the task on 3D semantic segmen-

tation of 3D meshes. So far, few approaches have made

use of explicit surface information and geodesic convolu-

tions for semantic scene segmentation [24, 30, 54], whereas

Euclidean convolutions are very popular in the field, e.g.,

[2, 7, 29, 56, 65]. As visualized in Figure 1, both approaches

have their own characteristics. While geodesic convolu-

tions follow the surface to learn specific object shapes,

Euclidean convolutions encourage the feature propagation

over geodesically remote areas to accumulate contextual in-

formation. It is therefore natural to ask how these advan-

tages can be combined in a common architecture. This is

the question we address in this work.

We propose a novel deep hierarchical architecture,

DualConvMesh-Nets, that starts from a mesh representation

and combines both types of convolutions. In order to design

such a hierarchical architecture that is capable of learning

useful Euclidean and geodesic features at different scales, it

is critical to define a mesh pooling algorithm which main-

tains a meaningful mesh structure throughout all mesh lev-

els. We therefore adapt vertex clustering (VC) [50] and

Quadric Error Metrics (QEM) [20], two well-established

mesh simplification approaches from the geometry process-

ing domain, in order to define meaningful pooling and un-

pooling operations on meshes. We introduce Pooling Trace

Maps as an efficient way to keep track of vertex connectivity

for pooling and unpooling. As a practical way of reducing

the dependency to local vertex densities, we propose Ran-

dom Edge Sampling (RES) for radius neighborhoods [27] .

Our proposed DCM-Net architecture achieves compet-

itive results on the popular ScanNet v2 benchmark [8], as

well as on Stanford 3D Indoor Scenes dataset [1]. For graph

convolutional approaches, we define a new state-of-the-art

on both datasets. Furthermore, we achieve state-of-the-art

performance on the recent Matterport3D [5] benchmark.

In summary, the main contributions of this paper are:

1 We propose a novel family of deep convolutional net-

works, DCM-Nets, that operate in both the Euclidean and

geodesic space. 2 We adapt two theoretically well-

founded mesh simplification algorithms as means of pool-

ing and unpooling in order to create multi-scale architec-

tures on meshes, and we experimentally compare their per-

formance. 3 We introduce a novel sampling method on

graph neighborhoods, Random Edge Sampling, which al-

lows us to train networks with smaller sample sizes while

evaluating them with better approximations. 4 We present

a thorough ablation study, which empirically proves that

combining Euclidean and geodesic convolutions provides

a consistent benefit using radius neighborhoods, regardless

of the pooling method used in the architecture.

2. Related work

Convolutions on point clouds. A simple way of han-

dling point clouds is to transform them into a voxel grid

representation that enables standard CNNs to be applied

[8, 10, 42, 63, 64]. By construction, such approaches are

limited to applying convolutional kernels on voxel neigh-

borhoods, as it is not trivial to define geodesic neighbor-

hoods on regular grids. Even recent methods focusing on

efficient sparse voxel convolutions [7, 21] have similar lim-

itations. Numerous other approaches operate directly on

raw point clouds using convolutional kernels that are ap-

plied to the local neighborhoods of points obtained using

k-nn or spherical neighborhoods [2, 38, 39, 46, 58]. Al-

ternative methods define the position of the kernel weights

explicitly in the Euclidean space relative to point posi-

tions [2, 29, 56, 65]. In both cases, the convolutional kernels

are defined over the Euclidean space and are independent of

the actual underlying object surface. In contrast, we addi-

tionally consider surface information using geodesic convo-

lutions in combination with the Euclidean convolutions.

Convolutions on meshes and graphs. Spectral filtering

methods build on eigenvalue decomposition of the graph

Laplacian [12, 26, 35, 51]. While they work well on clean

synthetic data, they are sensitive to reconstruction noise

and do not generalize well across different graph struc-

tures. Local filtering methods, such as geodesic CNN [41],

anisotropic CNN [3] or the work of Monti et al. [43] rely

on handcrafted local coordinate systems defined over lo-

cal patches on mesh surfaces. Verma et al. [57] replace

these hand-designed pseudo-coordinates with a learned

mapping between filter weights and graph patches. Tex-

tureNet [30] applies traditional CNNs to high resolution tex-

tures originating from geodesic mesh surfaces. Tangent-

Convolutions [54] implicitly use surface information from

estimated point normals by projecting point features on a

local tangent plane and apply 2D CNNs. Whereas all previ-

ously mentioned methods perform convolutions on vertices,

MeshCNN [23] defines them over the edges of a mesh.

In summary, these methods use surface information from

a mesh or graph to run geodesic convolutions. Similarly, we

consider geodesic convolutions as graph convolutions de-

fined over the mesh and take special provisions to enable

pooling operations such that all simplifications of the origi-

nal mesh still contain meaningful geodesic information.

8613

Mesh Pooling

Mesh Unpooling

Pooling Trace Map

Mesh Full Resolution M0 Pooled Mesh M1 Pooled Mesh M2

Figure 2: Pooling on meshes. To perform geodesic convolutions on multiresolution representations, the geodesic mesh neighborhood

needs to be preserved throughout the pooling operations. We leverage vertex clustering and Quadric Error Metrics which both preserve

meaningful geodesic neighborhoods in all mesh levels. These pooling operations rely on a pooling trace map (shown in red) that keeps

track of vertex connectivity and is used for (un)pooling between adjacent mesh levels Mℓ with simple look-up operations.

Pooling operations on point clouds and meshes. Hier-

archical networks operate on multiple resolution levels of

a 3D model (see Figure 2), resulting in an increased re-

ceptive field of convolutions and robustness to small trans-

formations. To obtain fine-to-coarse representations, dif-

ferent pooling operations exist. An important property of

a pooling operation is whether it preserves the geometric

and geodesic affinity information. On point clouds, random

sampling of points or Farthest Point Sampling (FPS) are

popular and effective approaches [39, 46, 62]. They work

well on point clouds; however, when applied to mesh ver-

tices the interconnectivity of vertices is lost. Hanocka et

al. [23] perform mesh pooling by learning which edges to

collapse. Unlike previous works, Tatarchenko et al. [54]

propose to pool on a regular 3D grid. On meshes, Deffer-

rard et al. [12] and Verma et al. [57] use the Graclus algo-

rithm [13], while Ranjan et al. [48] and Pan et al. [24] rely

on the mesh simplifying Quadric Error Metrics [20]. These

mesh simplification approaches aim at reducing the number

of vertices while introducing minimal geometric distortion

by collapsing vertex pairs along the way. However, this can

lead to high-frequency signals in noisy areas.

In this work, we leverage two theoretically well-founded

methods from the geometry processing domain: vertex clus-

tering (VC) [50] and Quadric Error Metrics (QEM) [20].

In order to allow multiresolution processing, we introduce

Pooling Trace Maps (see Figure 2) to ensure well-defined

pooling and unpooling operations on meshes.

Sampling neighborhoods. Hermosilla et al. [27] and

Thomas et al. [56] argue that k-nn graph approaches suf-

fer from non-uniform point densities in point clouds. Thus,

they propose to use radius graphs to define the notion of

neighborhoods for vertices in the Euclidean space. How-

ever, very densely populated regions can lead to arbitrar-

ily large neighborhoods, which introduces a computational

burden for the algorithm. Sampling the neighborhood space

becomes inevitable. Therefore, Hermosilla et al. [27] use

Poisson Disk Sampling, which preserves the relative den-

sity distribution of the point cloud but restricts the maximal

density per cubic unit by the radius of the non-overlapping

poisson disks. Then, the Kepler Conjecture [22] gives an

upper bound for the neighborhood size. Thomas et al. [56]

control the density of the point cloud by low-pass filtering

it via grid subsampling. In concurrent work, Lei et al. [36]

randomly sub-sample the neighborhood to obtain at most

K samples for approximating the neighborhood set. In this

work, we propose Random Edge Sampling which is similar

in spirit to [36] but has a special appeal in its probabilistic

interpretation of reducing the neighborhood size.

3. Method

We propose a novel family of deep hierarchical network

architectures. DCM-Nets combine the previously men-

tioned benefits of geodesic graph convolutions on 3D sur-

face meshes and Euclidean graph convolutions on 3D ver-

tices in the spatial domain. An important feature of our pro-

posed architecture family is its modularity, which allows us

to measure the effects of all components individually. To

apply geodesic graph convolutions on multiple mesh levels,

we describe the necessary mesh-centric pooling operations,

i.e., our extensions to vertex clustering and Quadric Error

Metrics. The input to our method is a 3D mesh with vertex

features, e.g., color and normals, and the outputs are learned

features for each vertex of the input mesh, which are used

for dense prediction tasks such as semantic segmentation.

Network architecture. Inspired by U-Net [49], our

model is defined as an encoder-decoder architecture, where

the encoder is symmetric to the decoder, including skip-

connections between both. Our deep hierarchical architec-

ture is depicted in Figure 3. At each mesh level Mℓ, mul-

tiple dual convolutions are applied. Dual convolutions per-

form geodesic and Euclidean convolutions in parallel, and

subsequently concatenate the resulting feature maps. As

suggested by He et al. [25], we add residual connections

such that gradients can by-pass the convolutions for bet-

ter convergence. For pooling, we leverage vertex clustering

and Quadric Error Metrics.

8614

M
esh

M
0

M
esh

M
1

M
esh

M
2

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>. . .

<latexit sha1_base64="uSQWHpe3A1gFwjUglwnjLf6N4Zk=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyVRQY8FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmttwFyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBvkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+3LhnfV8B6ua816UUcZzuAc6uDBDTThHlrgAwMBz/AKb45yXpx352M5WnKKzCn8gfP5A+qSjqs=</latexit>

+ DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>. . .

<latexit sha1_base64="uSQWHpe3A1gFwjUglwnjLf6N4Zk=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyVRQY8FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmttwFyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBvkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+3LhnfV8B6ua816UUcZzuAc6uDBDTThHlrgAwMBz/AKb45yXpx352M5WnKKzCn8gfP5A+qSjqs=</latexit>

+

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>. . .

<latexit sha1_base64="uSQWHpe3A1gFwjUglwnjLf6N4Zk=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyVRQY8FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmttwFyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBvkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+3LhnfV8B6ua816UUcZzuAc6uDBDTThHlrgAwMBz/AKb45yXpx352M5WnKKzCn8gfP5A+qSjqs=</latexit>

+ DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>. . .

<latexit sha1_base64="uSQWHpe3A1gFwjUglwnjLf6N4Zk=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyVRQY8FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmttwFyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBvkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+3LhnfV8B6ua816UUcZzuAc6uDBDTThHlrgAwMBz/AKb45yXpx352M5WnKKzCn8gfP5A+qSjqs=</latexit>

+

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>

DualConv
<latexit sha1_base64="FiNRsZQMkhOyRgHfeh6vQFjHGug=">AAAB+nicbVDLTgIxFO34RHwNunTTSExYkRk10SUJLlxiIo8EJqRTCjR02kl7ByUjn+LGhca49Uvc+TcWmIWCJ2lycs49ubcnjAU34Hnfztr6xubWdm4nv7u3f3DoFo4aRiWasjpVQulWSAwTXLI6cBCsFWtGolCwZjiqzvzmmGnDlbyHScyCiAwk73NKwEpdt9AB9mhz6U1CRFXJ8bTrFr2yNwdeJX5GiihDret+dXqKJhGTQAUxpu17MQQp0cCpYNN8JzEsJnREBqxtqSQRM0E6P32Kz6zSw32l7ZOA5+rvREoiYyZRaCcjAkOz7M3E/7x2Av3rIOUyToBJuljUTwQGhWc94B7XjIKYWEKo5vZWTIdEEwq2rbwtwV/+8ippnJf9i7J/d1mslLI6cugEnaIS8tEVqqBbVEN1RNEDekav6M15cl6cd+djMbrmZJlj9AfO5w/hCZRQ</latexit>. . .

<latexit sha1_base64="uSQWHpe3A1gFwjUglwnjLf6N4Zk=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyVRQY8FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmttwFyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBvkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+3LhnfV8B6ua816UUcZzuAc6uDBDTThHlrgAwMBz/AKb45yXpx352M5WnKKzCn8gfP5A+qSjqs=</latexit>

+

Pooling
<latexit sha1_base64="1wjkXfeTlJ1gLk3LarD8f9tYi/M=">AAAB+XicjVDLSgMxFL3js9bXqEs3wSJ0VToq6LLgxmUF+4B2KJk004ZmkiG5UyxD/8SNC0Xc+ifu/BvTx0JFwQOBwzn33FxOlEphsVr98FZW19Y3Ngtbxe2d3b19/+CwaXVmGG8wLbVpR9RyKRRvoEDJ26nhNIkkb0Wj65nfGnNjhVZ3OEl5mNCBErFgFJ3U8/0u8nuXy+taux2Dac8vBZXqHORvUoIl6j3/vdvXLEu4QiaptZ2gmmKYU4OCST4tdjPLU8pGdMA7jiqacBvm88un5NQpfRJr455CMle/JnKaWDtJIjeZUBzan95M/M3rZBhfhblQaYZcscVHcSYJajKrgfSF4QzlxBHKjHC3EjakhjJ0ZRX/V0LzrBKcV4Lbi1KtvKyjAMdwAmUI4BJqcAN1aACDMTzAEzx7uffovXivi9EVb5k5gm/w3j4BU4eUBQ==</latexit>

Pooling
<latexit sha1_base64="1wjkXfeTlJ1gLk3LarD8f9tYi/M=">AAAB+XicjVDLSgMxFL3js9bXqEs3wSJ0VToq6LLgxmUF+4B2KJk004ZmkiG5UyxD/8SNC0Xc+ifu/BvTx0JFwQOBwzn33FxOlEphsVr98FZW19Y3Ngtbxe2d3b19/+CwaXVmGG8wLbVpR9RyKRRvoEDJ26nhNIkkb0Wj65nfGnNjhVZ3OEl5mNCBErFgFJ3U8/0u8nuXy+taux2Dac8vBZXqHORvUoIl6j3/vdvXLEu4QiaptZ2gmmKYU4OCST4tdjPLU8pGdMA7jiqacBvm88un5NQpfRJr455CMle/JnKaWDtJIjeZUBzan95M/M3rZBhfhblQaYZcscVHcSYJajKrgfSF4QzlxBHKjHC3EjakhjJ0ZRX/V0LzrBKcV4Lbi1KtvKyjAMdwAmUI4BJqcAN1aACDMTzAEzx7uffovXivi9EVb5k5gm/w3j4BU4eUBQ==</latexit>

Unpooling
<latexit sha1_base64="rpOlM37glCRvwV4uRxQqW8i2JLQ=">AAAB+3icdVDLSgMxFM34rPU11qWbwSJ0VWas0LoruHFZwWkL7VAyaaYNzSRDckdahvkVNy4UceuPuPNvTB+IzwOBwzn3JDcnTDjT4Lrv1tr6xubWdmGnuLu3f3BoH5XaWqaKUJ9ILlU3xJpyJqgPDDjtJoriOOS0E06u5n7njirNpLiFWUKDGI8EixjBYKSBXeoDnZpc5otESnPLKB/YZbd62ajV6g3Hq7oL/CZltEJrYL/1h5KkMRVAONa657kJBBlWwAinebGfappgMsEj2jNU4JjqIFvsnjtnRhk6kVTmCHAW6tdEhmOtZ3FoJmMMY/3Tm4t/eb0UokaQMZGkQAVZPhSl3AHpzItwhkxRAnxmCCaKmV0dMsYKEzB1FU0J///9k7TPq16t6t1clJuVVR0FdIJOUQV5qI6a6Bq1kI8ImqJ79IierNx6sJ6tl+XomrXKHKNvsF4/ADsNlSE=</latexit>

Unpooling
<latexit sha1_base64="rpOlM37glCRvwV4uRxQqW8i2JLQ=">AAAB+3icdVDLSgMxFM34rPU11qWbwSJ0VWas0LoruHFZwWkL7VAyaaYNzSRDckdahvkVNy4UceuPuPNvTB+IzwOBwzn3JDcnTDjT4Lrv1tr6xubWdmGnuLu3f3BoH5XaWqaKUJ9ILlU3xJpyJqgPDDjtJoriOOS0E06u5n7njirNpLiFWUKDGI8EixjBYKSBXeoDnZpc5otESnPLKB/YZbd62ajV6g3Hq7oL/CZltEJrYL/1h5KkMRVAONa657kJBBlWwAinebGfappgMsEj2jNU4JjqIFvsnjtnRhk6kVTmCHAW6tdEhmOtZ3FoJmMMY/3Tm4t/eb0UokaQMZGkQAVZPhSl3AHpzItwhkxRAnxmCCaKmV0dMsYKEzB1FU0J///9k7TPq16t6t1clJuVVR0FdIJOUQV5qI6a6Bq1kI8ImqJ79IierNx6sJ6tl+XomrXKHKNvsF4/ADsNlSE=</latexit>

Figure 3: Our deep hierarchical architecture comprises several dual convolutions by-passed by skip connections in each mesh level and

performs (un)pooling with pooling trace maps generated from mesh simplification algorithms.

Section 4.1 will present an ablation study, in which we

disable each convolution type individually in order to mea-

sure its impact. We refer to an instantiation of our network

that only operates in a single space as SingleConvMesh-

Net (SCM-Net), whereas our full model operating in both

spaces simultaneously is referred to as DualConvMesh-Net

(DCM-Net). Note that SCM-Nets are a subset of the fam-

ily of DCM-Nets since they equal DCM-Net if the num-

ber of filters is set to 0 everywhere for one of the spaces.

An in-depth description including filter sizes and activation

functions of both the SCM-Net and DCM-Net architecture

is given in the supplementary material.

Euclidean and geodesic graph convolutions. We perform

graph convolutions on the graph Gℓ =
(

Vℓ, Eℓ
)

induced by

the underlying mesh Mℓ in hierarchy level ℓ. The ver-

tices of level ℓ are embedded in Euclidean 3D space, i.e.,

Vℓ =R
3. The edge set Eℓ =Eℓ

g ∪ Eℓ
e is the union of the

geodesic edge set Eℓ
g , induced by the faces of Mℓ, and the

Euclidean edge set Eℓ
e, obtained from the k-nn or radius

graph neighborhood of each vertex vℓ
i ∈ V ℓ. Note that we

neglect the level superscript ℓ when it eases readability. We

implement convolutional layers over point features xi asso-

ciated with vertex vi as for example in EdgeConv [61] or

FeaStNet [57]. Specifically, the output feature yi ∈ R
E of

vertex vi with input feature xi ∈ R
F is computed as

yi =
1

|Ni|

∑

j∈Ni

ϕ ([xi,xj − xi]; θ) (1)

where Ni is the geodesic/Euclidean neighborhood of the

vertex vi, |Ni| its cardinality, ϕ is a nonlinear function im-

plemented as an MLP with trainable parameters θ and [· , ·]
is the concatenation. Note that the number of kernel pa-

rameters θ is independent of the kernel size induced by the

neighborhood Ni. This is in contrast to 2D CNNs, where

the number of parameters increases with the kernel size. By

normalizing with |Ni|, the convolutional layer is robust to

variations in the number of neighbors.

On the very first convolution in the network, we define

a translation invariant version of our convolutional layer

which relies only on edge information. Specifically, we ap-

ply ϕ(·) to xj − xi and do not concatenate the initial fea-

tures containing absolute positions, (c.f . Equation 1). This

makes it possible to train on scene crops, but evaluate on

full rooms, which leads to broader context information for

each vertex and decreases runtime during evaluation.

In contrast to DGCNN [61], we do not recalculate the

neighborhoods in the learned feature space but we reuse the

initial neighborhoods in the Euclidean and geodesic spaces.

Skipping this dynamic recalculation of neighbors allows us

to create deeper graph convolutional networks while en-

abling faster and more memory-efficient computations.

Alternative convolutional layers defined over relative

vertex positions may also be used, such as PointConv [62]

or DPCC [58]. However, in this work we focus on the

neighborhood Ni which differentiates geodesic convolu-

tions from Euclidean ones (see Figure 1): Geodesic graph

convolutions define the geodesic neighborhood NG
i of a

vertex vi as the 1- hop neighborhood, i.e., all points that

are reachable from the center vertex by one edge connec-

tion along the surface mesh. As such, the geodesic neigh-

borhood NG
i contains only points in the localized geodesic

proximity of vertex vi. Euclidean graph convolutions rely

on the Euclidean neighborhood NE
i of a vertex vi that is

only constrained by the Euclidean distance. In this work,

we obtain the Euclidean neighborhood NE
i using a k-nn or

radius graph. We compare both approaches in Section 4.1.

Random Edge Sampling (RES). Hermosilla et al. [27]

argue that radius neighborhoods increase the robustness to

non-uniformly sampled point clouds in contrast to k-nn

ones. Since the simplification with QEM does not guarantee

uniformly sampled mesh simplification, we rely on radius

neighborhoods. However, radius neighborhoods may lead

to arbitrarily many neighbors. We thus resort to sampling

methods for reducing the computational load.

8615

Motivated by Dropout [52], we define a novel sampling

method on graph neighborhoods, called random edge sam-

pling (RES). RES randomly samples edges from the Eu-

clidean edge set on all mesh levels. We define a function

D : Ni → [0, 1] which maps the vertex neighborhood Ni

of a given vertex vi to its corresponding sampling proba-

bility, which is subsequently applied to all edges between

vertices vi and vj ∈ Ni. D is defined as follows:

D(Ni) =

{

1 if |Ni| ≤ T

(|Ni| − (T − 1))
−ld(T+1)−1

if |Ni| > T
(2)

Only edges (vi,vj) connecting vertices vj of the vertex

neighborhood Ni whose size exceeds the threshold T are

subject to sampling. We argue that the approximation with a

neighborhood of small size is already limited and therefore,

the neighborhood should not be further decimated. We vi-

sualize D(Ni) in Figure 4. Varying the threshold T equals

to varying the expected number of vertices we draw from

the vertex neighborhood distribution. By doing so, we in-

troduce a larger variety to the training data and thus increase

the generalization capability of our approach, while simul-

taneously reducing the computational load. We experience

that decreasing the threshold for training still leads to a good

approximation of the neighborhood.

Mesh simplification as a means of pooling. We in-

terpret pooling operations as generating a hierarchy of

mesh levels (M0, ...,Mℓ, ...,ML) of increasing simplicity

interlinked by pooling trace maps (T 0, ..., T ℓ, ..., T L−1)
(see Figure 2). M0 is the mesh at its original resolution and

ML is the coarsest representation after the final simplifica-

tion operation. A pooling trace map T ℓ maps the elements

of a vertex partition {vℓ
i}⊂Vℓ bijectively to a single repre-

sentative vertex vℓ+1 ∈Vℓ+1 in the next mesh level ℓ+1.

Vertices of the mesh level Mℓ+1 are interconnected by the

edge set Eℓ+1
g obtained by the mesh simplification algo-

rithm. Similar to [24], on the features of {vℓ
i}, we propose

to apply permutation invariant aggregation functions, e.g.,

sum(·), max(·) or mean(·). To obtain pooled features for

vℓ+1, we use mean aggregation for our experiments, in ac-

cordance to the definition of graph convolutions (Eq. 1).

As two well-approved methods from the geometry pro-

cessing domain, we extend Vertex Clustering (VC) [50] and

Quadric Error Metrics (QEM) [20] with pooling trace maps

to achieve (un)pooling through simple look-up operations.

We modify the VC approach as follows: We place a

3D uniform grid with cubical cells of a fixed side length

s over the input graph and group all vertices that fall into

the same cell. We define vℓ+1 as the centroid vℓ+1 =
|{vℓ

i}|
−1

∑

vℓ
i . Moreover, we store the mapping between

the representative vertex vℓ+1 and its corresponding ver-

tices {vℓ
i} in the pooling trace map. A similar approach

is followed in [54]. However, in order to perform geodesic

convolutions on pooled graphs, the surface information, i.e.,

0 T 2T 3T

0.5

1.0

neighborhood size |Ni|

sa
m

p
li

n
g

p
ro

b
.

Figure 4: Sampling probabilities for Random Edge Sampling.

Using the function D(N〉), RES only samples edges interconnect-

ing the vertex vi with neighboring vertices vj ∈ Ni if the neigh-

borhood set Ni does not exceed the threshold T .

the edges, needs to be preserved as well. To achieve this, we

first delete all edges between vertices that fall into the same

cell, then we connect the representative vertices of those

cells that were previously connected with at least one edge.

Although the cell size s performs a low-pass filtering of the

mesh vertex density and furthermore limits the introduced

geometric error, this method is sensitive to the exact place-

ment and orientation of the grid.

Alternatively, we consider QEM [20]. In contrast to VC,

this approach incrementally contracts vertex pairs (v1,v2)
to a new representative v̄ according to an approximate error

of the geometric distortion this contraction introduces. We

keep track of these contractions and thus are able to gener-

ate pooling trace maps. Since QEM performs vertex con-

traction, we may contract vertices which are not adjacent in

the mesh. This compensates for small scanning artifacts.

The same trace maps are used for unpooling a mesh from

Mℓ+1 to Mℓ by copying the features of vℓ+1 to its corre-

sponding vertex vℓ
i . As VC aims for uniform vertex den-

sity and QEM for minimal geometric distortion, we com-

pare both approaches in our ablation study in Section 4.1.

4. Experiments

We evaluate our method on three large scale 3D scene

segmentation datasets, which contain meshed point clouds

of various indoor scenes.

Stanford Large-Scale 3D Indoor Spaces (S3DIS)[1] con-

tains dense 3D point clouds from 6 large-scale indoor areas,

consisting of 271 rooms from 3 different buildings. The

points are annotated with 13 semantic classes. It also in-

cludes 3D meshes, which are not semantically annotated.

On average, each mesh contains 2 · 105 triangular faces [1].

As the resolution of these meshes is low compared to Scan-

Net v2 or Matterport3D, we oversample all faces and inter-

polate the color and ground truth information from the se-

mantically annotated points. Our final predictions are then

interpolated to the original point cloud to generate compa-

rable results on the benchmark. We follow the common

train/test split [1, 58, 55] and train on all areas except Area

5, which we keep for testing. we provide cross-validation

mean IoU scores on all areas in the supplementary material.

8616

Method
mIoU Convolutional

CategoryScanNet S3DIS

PointNet [45] - 41.1 Permutation
Invariant
Networks

PointNet++ [46] 33.9 -

FCPN [11] 44.7 -

3DMV [9] 48.3 -

2D-3DJPBNet [6] 63.4 -

MVPNet [31] 64.1 62.4
TangentConv [54] 43.8 52.6

SurfaceConvSurfaceConvPF* [24] 44.2 -

TextureNet [30] 56.6 -

PointCNN [39] 45.8 57.3

PointConv

ParamConv [58] - 58.3
DPC [16] 59.2 61.3

MCCN [27] 63.3 -

PointConv [62] 66.6 -

KPConv [56] 68.4 67.1

SparseConvNet [21] 72.5 - Voxelized
SparseConvMinkowskiNet [7] 73.4 65.3

DeepGCN [37] - 52.5

GraphConv

SPGraph [40] - 58.0
SPH3D-GCN* [36] 61.0 59.5

HPEIN [32] 61.8 61.9
DCM-Net (Ours) 65.8 64.0

Table 1: Comparison to state-of-the-art. Semantic segmenta-

tion mIoU scores on the offical ScanNet benchmark [8] and S3DIS

Area-5 [1]. We outperform other graph convolutional approaches

on all benchmarks. * indicates concurrent work. Full network def-

initions in the supplementary. ScanNet benchmark was accessed

on 11/15/2019. S3DIS results as reported in original publications.

ScanNet v2 Benchmark [8]. We furthermore evaluate our

architecture on the ScanNet v2 benchmark dataset. Scan-

Net contains 3D meshed point clouds of a wide variety of

indoor scenes with reconstructed surfaces, textured meshes,

and semantic ground truth annotations. The dataset contains

20 valid semantic classes. We perform all our experiments

using the public training, validation, and test split of 1201,

312 and 100 scans, respectively. To validate our proposed

components, the ablation study is conducted on the ScanNet

validation set, where we report mean IoU scores.

Matterport3D [5]. Similar to ScanNet v2, Matterport3D

contains meshed reconstructions of 90 building-scale RGB-

D scans. We use the same evaluation protocol as introduced

in 3DMV [9] and TextureNet [30] and report mean class ac-

curacy scores on 21 classes on the test set.

Implementation and Training Details. We use VC and

QEM to precompute the hierarchical mesh levels Mℓ in-

terlinked with pooling trace maps T ℓ. For VC, we set the

cubical cell lengths to 4 cm, 8 cm, 16 cm, and 32 cm, re-

spectively, for each mesh level. We experience that directly

applying QEM on the full-resolution mesh results in high-

frequency signals in noisy areas. Before applying QEM, we

therefore first apply VC on the original mesh with a cubical

Input Mesh Ground Truth Prediction

● unlabeled ● wall ● floor ● cabinet ● bed ● chair ● sofa

● table ● door ● picture ● counter ● desk ● curtain ● fridge

● shower curtain ● toilet ● sink ● bathtub ● otherfurn

Figure 5: Results on ScanNet v2 validation [8]. Our method cor-

rectly predicts challenging classes such as images and curtains,

while maintaining clear boundaries. In the second row, our method

correctly predicts shower ● curtain even though the ground truth

is falsely labeled as regular curtain ●. Similarly in row three the

partial ground truth label of the bottom right corner is properly pre-

dicted fully. There are some reasonable mistakes like the desk ●

in row three labeled as table ●.

cell length of 4 cm. For each mesh level, QEM simplifies

the mesh until the vertex number is reduced to 30% of its

preceding mesh level. As input features, we use the posi-

tion, color, and normal of each vertex in the mesh. At each

mesh level, we perform three dual convolutions (see Fig-

ure 3). We train the network end-to-end by minimizing the

cross entropy loss using the Adam optimizer [34] with an

initial learning rate of 10−3 and exponential learning rate

decay of 0.5 after every 40 epochs and a batch size of 4.

It is common practice among recent approaches to dis-

card training samples of low quality. Methods only differ in

the used criteria: Qi et al. [45] reject training examples if

the number of points in a training crop falls below a certain

threshold. Analogously to our method, [46] rejects crops

when the number of unlabeled points exceeds a threshold

of 70%. We reject training crops, which have more than

80% unlabeled vertices, which corresponds to 0.8% of the

18, 530 cropped training samples of the ScanNet v2 train

set. We do not apply this filtering during inference.

We conduct our experiments with random edge sam-

pling with threshold T = 15 while training and T = 25 while

testing, as we observed that a lower threshold for train-

8617

Method mAcc wall floor cab bed chair sofa table door wind shf pic cntr desk curt ceil fridg show toil sink bath other

PointNet++ [46] 43.8 80.1 81.3 34.1 71.8 59.7 63.5 58.1 49.6 28.7 1.1 34.3 10.1 0.0 68.8 79.3 0.0 29.0 70.4 29.4 62.1 8.5
SplatNet [53] 26.7 90.8 95.7 30.3 19.9 77.6 36.9 19.8 33.6 15.8 15.7 0.0 0.0 0.0 12.3 75.7 0.0 0.0 10.6 4.1 20.3 1.7

TangentConv [54] 46.8 56.0 87.7 41.5 73.6 60.7 69.3 38.1 55.0 30.7 33.9 50.6 38.5 19.7 48.0 45.1 22.6 35.9 50.7 49.3 56.4 16.6
3DMV [9] 56.1 79.6 95.5 59.7 82.3 70.5 73.3 48.5 64.3 55.7 8.3 55.4 34.8 2.4 80.1 94.8 4.7 54.0 71.1 47.5 76.7 19.9

TextureNet [30] 63.0 63.6 91.3 47.6 82.4 66.5 64.5 45.5 69.4 60.9 30.5 77.0 42.3 44.3 75.2 92.3 49.1 66.0 80.1 60.6 86.4 27.5

DCM-Net (Ours) 66.2 78.4 93.6 64.5 89.5 70.0 85.3 46.1 81.3 63.4 43.7 73.2 39.9 47.9 60.3 89.3 65.8 43.7 86.0 49.6 87.5 31.1

Table 2: Mean class accuracy scores on Matterport3D Test [5]. We outperform other approaches in 11 out of 21 classes. We use the

same network definition as for the ScanNet v2 benchmark. Scores from [30].

ing reduces the computational load of the algorithm while

learning useful features. Since we use a random sampling

method for neighborhoods, the predictions vary in each

run. We therefore run each evaluation 10 times and provide

mean and standard deviations in our ablation study. Our

models are implemented in PyTorch (Geometric) [18, 44]

and trained on a Tesla V100 16GB.

Data Augmentation. From each mesh in ScanNet v2,

we obtain 3m× 3m crops with a stride of 1.5m from

the ground plane. Since S3DIS and Matterport3D provide

denser meshes, we reduce the crop size to 2m× 2m with a

stride of 1m. Each cropped mesh is transformed by a ran-

dom affine transformation, colors and positions are normal-

ized to the range [0, 1]. Despite training on cropped meshes,

we can perform inference on full meshes as the model is in-

variant to absolute vertex positions.

Results. Table 1 shows the performance of our approach

compared to recent competing approaches on the ScanNet

benchmark test dataset as well as S3DIS Area 5, grouped by

the approaches’ inherent categories. We are able to report

state-of-the-art results for graph convolutional approaches

by a significant margin of 4% mIoU for the ScanNet bench-

mark, as well as 2.1% mIoU for S3DIS Area 5. Only 4
approaches report better results on ScanNet. SparseCon-

vNet [21] and MinkowskiNet [7] use Voxelized Sparse Con-

volutions, which currently perform best on ScanNet, but

which are inherently limited for other tasks in that they can-

not make use of detailed surface information. We also eval-

uated our algorithm on the novel Matterport3D dataset [5]

and report overall state-of-the-art results on that benchmark

in Table 2. Figure 5 shows our qualitative results on the

ScanNet validation set. In the supplementary material, we

provide our results on S3DIS in the k-fold test setting, as

well as detailed descriptions of our models.

4.1. Ablation study.

We conduct an ablation study to support our claims that

1 a mesh-centric pooling method in the shape of Quadric

Error Metrics, and 2 the combination of geodesic and Eu-

clidean graph convolutions, and 3 random edge sampling

for effectively sampling the neighborhood space indepen-

dently contribute to an overall improved performance. In

10 15 25 35

62.0

62.7

63.8

threshold T during inference

m
Io

U

Figure 6: Varying the threshold T during inference. We observe

that a smaller number of samples during test is sufficient for learn-

ing useful neighborhood features (T = 15). During test, we gain

1.1% mIoU by increasing the threshold to T = 35. (Experiments

conducted on S3DIS Area 5 with 10 runs for each threshold).

pool arch neighb mIoU (± stdev) ∆

VC Single geo 57.1 −0.3
QEM Single geo 56.8

VC Single knn 60.1 +0.8
QEM Single knn 60.9

VC Single rad 61.9 (± 0.20) +2.0
FPS Single rad 63.5 (± 0.13) +0.4

QEM Single rad 63.9 (± 0.20)

VC Dual knn/geo 59.7 +3.2
QEM Dual knn/geo 62.9

VC Dual rad/geo 62.8 (± 0.12) +4.5
QEM Dual rad/geo 67.3 (± 0.22)

Table 3: Comparison of pooling methods. We compare Ver-

tex Clustering (VC), Farthest Point Sampling (FPS), and Quadric

Error Metrics (QEM) as pooling methods.

our study, we compare vertex clustering (VC), Quadric Er-

ror Metrics (QEM) and Farthest Point Sampling (FPS) as

means of pooling in our DCM-Net architecture. We con-

duct experiments with the DCM-Net and SCM-Net instan-

tiations of our architecture with different notions of neigh-

borhoods for the Euclidean (k-nn and radius (rad)) as well

as the geodesic domain (geo). For each EdgeConv in the

SCM-Net architecture, we set the hidden feature size to 128
and the output size to 64. To enable a fair comparison, we

halve the hidden and output feature size of DCM-Net ar-

chitectures, such that the total number of feature channels

is equal between the two versions. Note that this results in

more than 15% less parameters for DCM-Net architectures

while performing better.

8618

pool arch neighb mIoU (± stdev) ∆

VC Single geo 57.1 +2.6
VC Single knn 60.1 −0.4
VC Dual knn/geo 59.7

QEM Single geo 56.8 +6.1
QEM Single knn 60.9 +2.0
QEM Dual knn/geo 62.9

VC Single geo 57.1 +5.7
VC Single rad 61.9 (± 0.20) +0.9
VC Dual rad/geo 62.8 (± 0.12)

QEM Single geo 56.8 +10.5
QEM Single rad 63.9 (± 0.20) +3.4
QEM Dual rad/geo 67.3 (± 0.22)

Table 4: Combining geodesic and Euclidean convolutions in

our DCM-Net brings significant performance improvements, es-

pecially compared to solely geodesic convolutions.

Varying the expected sample size during test. In Equa-

tion 2, we introduce RES for reducing the expected size of

the neighborhood set and therefore reducing the computa-

tional load. In Figure 6, we show the relationship between

training a network with a relatively small sampled neighbor-

hood and evaluating the algorithm with other set sizes. We

experience that a small neighborhood size, e.g., T = 15, dur-

ing training is still sufficient to learn useful features. During

test, we obtain better approximations of the neighborhood

with larger thresholds, e.g., T = 35, and report significantly

better segmentation performances of +1% mIoU. By de-

coupling the neighborhood size of the train and test times,

we can adapt the expected size of the neighborhood to the

computational resources given in the respective setting.

Comparison of pooling methods. In Section 3, we mo-

tivate to adapt the mesh simplification algorithms Vertex

Clustering and Quadric Error Metrics as means of pooling

using pooling trace maps. In Table 3, we evaluate the influ-

ence of different pooling methods in our architecture. As an

additional experiment, we perform pooling using Farthest

Point Sampling [46] on the underlying point cloud since it

neglects the mesh structure. Therefore, we can only per-

form Euclidean graph convolutions in this setting. QEM

performs significantly better than other pooling methods

when using radius neighborhoods or the DCM-Net, while

being on par with VC when considering k-nn or geodesic

neighborhoods for SCM-Nets. We assume that the inter-

play between radius neighborhoods and QEM leads to this

result. In contrast to VC, QEM does not aim for uniform

vertex density. k-nn neighborhoods are sensible to varying

vertex densities, as their spatial size is not limited [27].

Comparison of geodesic and Euclidean convolutions. In

Section 3, we prompt the question whether a combination

of geodesic and Euclidean convolutions leads to perfor-

mance gains. In Table 4, we compare models using only

pool arch neighb mIoU (± stdev) ∆

QEM Dual geo/geo 56.3 +11.0
QEM Dual rad/rad 62.6 (± 0.21) +4.7
QEM Dual rad/geo 67.3 (± 0.22)

QEM Single rad 63.9 (± 0.20) −1.3
QEM Dual rad/rad 62.6 (± 0.26)

QEM Single geo 56.8 −0.5
QEM Dual geo/geo 56.3

Table 5: Architectural influence. For the DCM-Net, we see

improvements when using geodesic and Euclidean neighborhoods

in parallel, in contrast to only using the same neighborhood notion.

geodesic convolutions, only Euclidean convolutions, and

both combined in dual convolution modules, while keep-

ing the pooling method fixed. We experience a clear trend

that geodesic SCM-Net architectures fall behind their Eu-

clidean counterparts, whereas the effect for radius neigbhor-

hoods is stronger than for k-nn ones. While the DCM-Net

combining VC with k-nn falls behind its SCM-Net coun-

terpart, the combination of geodesic and Euclidean neigh-

borhoods in a DCM-Net architecture in all other settings

outperforms the corresponding SCM-Net architectures. To

evaluate the confounding factor of storage limitation for

SCM-Nets with radius neighborhoods and QEM pooling,

we test our model on a Titan RTX with 24GB. We expe-

rience a performance of 65.9%, i.e., +2% to the model

trained on a 16GB V100. To additionally prove that these

performance gains do not just originate from the change to

a DCM-Net architecture, we conduct further experiments

in Table 5. Introducing our DCM-Net architecture leads to

worse results in direct comparison with the SCM-Net archi-

tecture when using the same notion of neighborhood twice.

We thus conclude that the improvements brought by the

combination of neighborhoods is based on the design de-

cision of combining geodesic and Euclidean neighborhoods

and is not just due to architectural artifacts.

5. Conclusion
In this paper, we have motivated a mesh-centric view on

3D scene segmentation and we have proposed DCM-Nets to
take advantage of the geometric surface information avail-
able in meshes. We hope that our work encourages fellow
researchers to perform convolutions in both the geodesic
and Euclidean domain, as we have empirically shown that
this combination brings significant improvements indepen-
dent to the architecture used. Future work might include in-
corporating geodesic convolutions for better separating in-
stances in the task of 3D instance segmentation, as well as
extending our work for leveraging point convolutions.

Acknowledgements. We thank Ali Athar, Markus Knoche, Tobias

Fischer and Mark Weber for helpful discussions. This work was supported

by the ERC Consolidator Grant DeeViSe(ERC-2017-COG-773161). The

experiments were performed with computing resources granted by RWTH

Aachen University under project rwth0470 and thes0617.

8619

References

[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3D Seman-

tic Parsing of Large-Scale Indoor Spaces. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 2, 5, 6

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

Convolutional Neural Networks by Extension Operators.

ACM Transactions on Graphics (TOG), 2018. 1, 2

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and

Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. In Neural Infor-

mation Processing Systems (NIPS), 2016. 1, 2

[4] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric Deep Learn-

ing: Going beyond Euclidean data. IEEE Signal Processing

Magazine, 2017. 1

[5] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-

d data in indoor environments. International Conference on

3D Vision (3DV), 2017. 2, 6, 7

[6] Hungyueh Chiang, Yenliang Lin, Yuehcheng Liu, and Win-

ston H Hsu. A unified point-based framework for 3d seg-

mentation. International Conference on 3D Vision (3DV),

2019. 6

[7] Christopher Choy, Jun Young Gwak, and Silvio Savarese.

4D Spatio-Temporal ConvNets: Minkowski Convolutional

Neural Networks. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019. 2, 6, 7

[8] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:

Richly-annotated 3D Reconstructions of Indoor Scenes. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 1, 2, 6

[9] Angela Dai and Matthias Nießner. 3DMV: Joint 3D-Multi-

View Prediction for 3D Semantic Scene Segmentation. In

IEEE European Conference on Computer Vision (ECCV),

2018. 1, 6, 7

[10] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,

Jürgen Sturm, and Matthias Nießner. ScanComplete: Large-

Scale Scene Completion and Semantic Segmentation for 3D

Scans. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 1, 2

[11] Rethage Dario, Wald Johanna, Sturm Juergen, Navab Nassir,

and Tombari Federico. Fully-Convolutional Point Networks

for Large-Scale Point Clouds. In IEEE European Conference

on Computer Vision (ECCV), 2018. 6

[12] M Defferrard, X Bresson, and P Vandergheynst. Convolu-

tional Neural Networks on Graphs with Fast Localized Spec-

tral Filtering. In Neural Information Processing Systems

(NIPS), 2016. 1, 2, 3

[13] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis. Weighted

Graph Cuts without Eigenvectors: A Multilevel Approach.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, (PAMI), 2007. 3
[14] Cathrin Elich, Francis Engelmann, Theodora Kontogianni,

and Bastian Leibe. 3D Birds-Eye-View Instance Segmen-

tation. In German Conference on Pattern Recognition

(GCPR), 2019. 1

[15] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian

Leibe, and Matthias Nießner. 3D-MPA: Multi Proposal Ag-

gregation for 3D Semantic Instance Segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2020. 1

[16] Francis Engelmann, Theodora Kontogianni, and Bastian

Leibe. Dilated Point Convolutions: On the Receptive Field

Size of Point Convolutions on 3D Point Clouds. In Inter-

national Conference on Robotics and Automation (ICRA),

2020. 6

[17] Francis Engelmann, Theodora Kontogianni, Jonas Schult,

and Bastian Leibe. Know What Your Neighbors Do: 3D

Semantic Segmentation of Point Clouds. In IEEE European

Conference on Computer Vision (ECCV’W), 2018. 1

[18] Matthias Fey and Jan E. Lenssen. Fast graph representa-

tion learning with PyTorch Geometric. In ICLR Workshop on

Representation Learning on Graphs and Manifolds, 2019. 7

[19] Narita Gaku, Seno Takashi, Ishikawa Tomoya, and Kaji

Yohsuke. PanopticFusion: Online Volumetric Semantic

Mapping at the Level of Stuff and Things. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS),

2019. 1

[20] Michael Garland and Paul S. Heckbert. Surface simplifica-

tion using Quadric Error Metrics. In Computer Graphics and

Interactive Techniques, 1997. 2, 3, 5

[21] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3D Semantic Segmentation with Submanifold

Sparse Convolutional Networks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 1,

2, 6, 7

[22] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat

Dang, John Harrison, Truong Le Hoang, Cezary Kaliszyk,

Victor Magron, Sean McLaughlin, Thang Tat Nguyen,

Truong Quang Nguyen, Tobias Nipkow, Steven Obua,

Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta,

Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu,

and Roland Zumkeller. A formal proof of the kepler conjec-

ture. In Forum of Mathematics, Pi, 2017. 3

[23] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar

Fleishman, and Daniel Cohen-Or. MeshCNN: A Network

with an Edge. ACM Transactions on Graphics (TOG), 2019.

2, 3

[24] Pan Hao, Liu Shilin, Liu Yang, and Tong Xin. Convolutional

Neural Networks on 3D Surfaces Using Parallel Frames.

arXiv preprint arXiv:1808.04952, 2018. 2, 3, 5, 6

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 3

[26] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convo-

lutional Networks on Graph-Structured Data. arXiv preprint

arXiv:1506.05163, 2015. 1, 2

[27] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Alvar

Vinacua, and Timo Ropinski. Monte Carlo Convolution for

8620

Learning on Non-Uniformly Sampled Point Clouds. ACM

Transactions on Graphics (Proceedings of SIGGRAPH Asia

2018), 2018. 2, 3, 4, 6, 8

[28] Ji Hou, Angela Dai, and Matthias Nießner. 3D-SIS: 3D

Semantic Instance Segmentation of RGB-D Scans. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 1

[29] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise Convolutional Neural Network. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 1,

2

[30] Jingwei Huang, Haotian Zhang, Li Yi, Thomas A.

Funkhouser, Matthias Nießner, and Leonidas J. Guibas. Tex-

tureNet: Consistent Local Parametrizations for Learning

from High-Resolution Signals on Meshes. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.

2, 6, 7

[31] Maximilian Jaritz, Jiayuan Gu, and Hao Su. Multi-view

pointnet for 3d scene understanding. In The IEEE Interna-

tional Conference on Computer Vision (ICCV) Workshops,

2019. 6

[32] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-

Wing Fu, and Jiaya Jia. Hierarchical point-edge interaction

network for point cloud semantic segmentation. In The IEEE

International Conference on Computer Vision (ICCV), 2019.

6

[33] Jin Xie, Yi Fang, Fan Zhu, and Edward Wong. Deepshape:

Deep learned shape descriptor for 3d shape matching and re-

trieval. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. 1

[34] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In International Conference on

Learning Representations, (ICLR), 2015. 6

[35] Thomas Kipf and Max Welling. Semi-Supervised Classifi-

cation with Graph Convolutional Networks. In International

Conference on Learning Representations, (ICLR), 2017. 1, 2

[36] Huan Lei, Naveed Akhtar, and Ajmal Mian. Spherical Kernel

for Efficient Graph Convolution on 3D Point Clouds. arXiv

preprint arXiv:1909.09287, 2019. 3, 6

[37] Guohao Li, Matthias Müller, Ali Thabet, and Bernard

Ghanem. Deepgcns: Can gcns go as deep as cnns? In The

IEEE International Conference on Computer Vision (ICCV),

2019. 6

[38] Jiaxin Li, Ben M. Chen, and Gim H. Lee. So-Net: Self-

Organizing Network for Point Cloud Analysis. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. 2

[39] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen. PointCNN: Convolution On X-

Transformed Points. In Neural Information Processing Sys-

tems (NIPS), 2018. 1, 2, 3, 6

[40] Landrieu Loic and Martin Simonovsky. Large-scale Point

Cloud Semantic Segmentation with Superpoint Graphs. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018. 1, 6

[41] Jonathan Masci, Davide Boscaini, Michael M. Bronstein,

and Pierre Vandergheynst. Geodesic Convolutional Neu-

ral Networks on Riemannian Manifolds. In IEEE In-

ternational Conference on Computer Vision Workshops

(ICCV’W), 2015. 2

[42] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D Con-

volutional Neural Network for real-time object recognition.

In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2015. 1, 2

[43] Federico Monti, Davide Boscaini, Jonathan Masci,

Emanuele Rodola, Jan Svoboda, and Michael M. Bronstein.

Geometric Deep Learning on Graphs and Manifolds Using

Mixture Model CNNs. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 1, 2

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In Neural Information Processing

Systems Workshop (NIPSW), 2017. 7

[45] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: Deep Learning on Point Sets for 3D Classification

and Segmentation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 1, 6

[46] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. PointNet++: Deep Hierarchical Feature Learning

on Point Sets in a Metric Space. In Neural Information Pro-

cessing Systems (NIPS), 2017. 1, 2, 3, 6, 7, 8

[47] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel

Urtasun. 3D Graph Neural Networks for RGBD Semantic

Segmentation. In IEEE International Conference on Com-

puter Vision (ICCV), 2017. 1

[48] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J. Black. Generating 3D Faces using Convolutional

Mesh Autoencoders. In IEEE European Conference on Com-

puter Vision (ECCV), 2018. 3

[49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional Networks for Biomedical Image Seg-

mentation. In Medical Image Computing and Computer-

Assisted Intervention (MICCAI), 2015. 3

[50] Jarek Rossignac and Paul Borrel. Multi-resolution 3d ap-

proximations for rendering complex scenes. In Modeling in

Computer Graphics, 1993. 2, 3, 5

[51] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017. 2

[52] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. In Journal of

Machine Learning Research (JMLR), 2014. 5

[53] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse Lattice Networks for Point Cloud Pro-

cessing. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018. 1, 7

[54] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent Convolutions for Dense Prediction in 3D.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018. 2, 3, 5, 6, 7

8621

[55] Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunY-

oung Gwak, and Silvio Savarese. Segcloud: Semantic seg-

mentation of 3d point clouds. In International Conference

on 3D Vision (3DV), 2017. 1, 5

[56] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J.

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), 2019. 2, 3, 6

[57] Nitika Verma, Edmond Boyer, and Jakob Verbeek. FeaStNet:

Feature-Steered Graph Convolutions for 3D Shape Analysis.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2018. 2, 3, 4

[58] S. Wang, S. Suo, W.C. Ma, A. Pokrovsky, and R. Urta-

sun. Deep Parametric Continuous Convolutional Neural Net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2, 4, 5, 6

[59] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-

mann. SGPN: Similarity Group Proposal Network for 3D

Point Cloud Instance Segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 1

[60] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and

Jiaya Jia. Associatively Segmenting Instances and Semantics

in Point Clouds. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 1

[61] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

Graph CNN for Learning on Point Clouds. ACM Transac-

tions on Graphics (TOG), 2019. 4

[62] Wenxuan Wu, Zhongang Qi, and Fuxin Li. PointConv:

Deep Convolutional Networks on 3D Point Clouds. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 1, 3, 4, 6

[63] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 1, 2

[64] Roynard X., Deschaud J.-E., and Goulette F. Classification

of Point Cloud Scenes with Multiscale Voxel Deep Network.

arXiv preprint arXiv:1804.03583, 2018. 1, 2

[65] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

SpiderCNN: Deep Learning on Point Sets with Parameter-

ized Convolutional Filters. In IEEE European Conference

on Computer Vision (ECCV), 2018. 1, 2

8622

