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Figure 1: An overview of the FineGym dataset. We provide coarse-to-fine annotations both temporally and semantically.

There are three levels of categorical labels. The temporal dimension (represented by the two bars) is also divided into two

levels, i.e., actions and sub-actions. Sub-actions could be described generally using set categories or precisely using element

categories. Ground-truth element categories of sub-action instances are obtained via manually constructed decision-trees.

Abstract

On public benchmarks, current action recognition tech-

niques have achieved great success. However, when used

in real-world applications, e.g. sport analysis, which re-

quires the capability of parsing an activity into phases and

differentiating between subtly different actions, their perfor-

mances remain far from being satisfactory. To take action

recognition to a new level, we develop FineGym1, a new

dataset built on top of gymnastic videos. Compared to ex-

isting action recognition datasets, FineGym is distinguished

in richness, quality, and diversity. In particular, it provides

temporal annotations at both action and sub-action levels

with a three-level semantic hierarchy. For example, a “bal-

ance beam” event will be annotated as a sequence of el-

ementary sub-actions derived from five sets: “leap-jump-

hop”, “beam-turns”, “flight-salto”, “flight-handspring”,

and “dismount”, where the sub-action in each set will be

further annotated with finely defined class labels. This new

1Dataset and codes can be found at https://sdolivia.github.

io/FineGym/

level of granularity presents significant challenges for ac-

tion recognition, e.g. how to parse the temporal structures

from a coherent action, and how to distinguish between sub-

tly different action classes. We systematically investigate

representative methods on this dataset and obtain a number

of interesting findings. We hope this dataset could advance

research towards action understanding.

1. Introduction

The remarkable progress in action recognition [39, 42,

40, 25, 37, 49], particularly the development of many new

recognition models, e.g. TSN [44], TRN [55], and I3D [3],

have been largely driven by large-scale benchmarks, such as

ActivityNet [11] and Kinetics [23]. On these benchmarks,

latest techniques have obtained very high accuracies.

Even so, we found that existing techniques and the

datasets that underpin their development are subject to an

important limitation, namely, they focus on coarse-grained

action categories, e.g. “hockey” vs. “gymnastics”. To dif-
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ferentiate between these categories, the background context

often plays an important role, sometimes even more sig-

nificant than the action itself. However, in certain areas,

coarse-grained classification is not enough. Take sport ana-

lytics for example, it usually requires a detailed comparison

between fine-grained classes, e.g. different moves during a

vault. For such applications, the capability of fine-grained

analysis is needed. It is worth noting that the fine-grained

capability here involves two aspects: 1) temporal: being

able to decompose an action into smaller elements along the

time axis; 2) semantical: being able to differentiate between

sub-classes at the next level of the taxonomic hierarchy.

To facilitate the study of fine-grained action understand-

ing, we develop FineGym, short for Fine-grained Gymnas-

tics, which is a large-scale high-quality action dataset that

provides fine-grained annotations. Specifically, FineGym

has several distinguished features: 1) Multi-level semantic

hierarchy. All actions are annotated with semantic labels at

three levels, namely event, set, and element. Such a seman-

tic hierarchy provides a solid foundation for both coarse-

and fine-grained action understanding. 2) Temporal struc-

ture. All action instances of interest in each video are iden-

tified, and they are manually decomposed into sub-actions.

These annotated temporal structures also provide important

support to fine-grained understanding, from another aspect.

3) High quality. All videos in the dataset are high-resolution

records of high-level professional competitions. Also, care-

ful quality control is enforced to ensure the accuracy, reli-

ability, and consistency of the annotations. These aspects

together make it a rich dataset for research and a reliable

benchmark for assessment. Moreover, we have summarized

a systematic framework for collecting data and annotations,

e.g. labeling via decision trees, which can also be applied to

the construction of other datasets with similar requirements.

Taking advantage of the new exploration space offered

by FineGym, we conducted a series of empirical studies,

with the aim of revealing the challenges of fine-grained ac-

tion understanding. Specifically, we tested various action

recognition techniques and found that their performance on

fine-grained recognition is still far from being satisfactory.

In order to provide guidelines for future research, we also

revisited a number of modeling choices, e.g. the sampling

scheme and the input data modalities. We found that for

fine-grained action recognition, 1) sparsely sampled frames

are not sufficient to represent action instances. 2) Motion

information plays a significantly important role, rather than

visual appearance. 3) Correct modeling of temporal dynam-

ics is crucial. 4) And pre-training on datasets which target

for coarse-grained action recognition is not always bene-

ficial. These observations clearly show the gaps between

coarse- and fine-grained action recognition.

Overall, our work contributes to the research of action

understanding in two different ways: 1) We develop a

new dataset FineGym for fine-grained action understanding,

which provides high-quality and fine-grained annotations.

In particular, the annotations are in three semantic levels,

namely event, set, and element, and two temporal levels,

namely action and sub-action. 2) We conduct in-depth stud-

ies on top of FineGym, which reveal the key challenges that

arise in the fine-grained setting, which may point to new

directions of future research.

2. Related Work

Coarse-grained Datasets for Action Recognition. Be-

ing the foundation of more sophisticated techniques, the

pursuit of better datasets never stops in the area of ac-

tion understanding. Early attempts could be traced back to

KTH [35] and Weizmann [1]. More challenging datasets

are proposed subsequently, including UCF101 [40], Kinet-

ics [3], ActivityNet [11], Moments in Time [32], and others

[25, 18, 50, 2, 52, 38, 33, 22, 46, 31, 20]. Some of them

also provide annotations beyond category labels, ranging

from temporal locations [18, 50, 2, 11, 52, 38] to spatial-

temporal bounding boxes [33, 22, 46, 31, 20]. However,

all of these datasets target for coarse-grained action under-

standing (e.g. hockey, skateboarding, etc.), in which the

background context often provides distinguishing signals,

rather than the actions themselves. Moreover, as reported

in [44, 29], sometimes a few frames are sufficient for action

recognition on these datasets.

Fine-grained Datasets for Action Recognition. There

are also attempts towards building datasets for fine-grained

action recognition [6, 34, 19, 15, 24, 29]. Specifically,

both Breakfast [24] and MPII-Cooking 2 [34] provides an-

notations for individual steps of various cooking activi-

ties. In [24] the coarse actions (e.g. Juice) are decom-

posed into action units (e.g. cut orange), and in [34] the

verb parts are defined to be fine-grained classes (e.g. cut

in cutting onion). Something-Something [19] collects 147

classes of daily human-object interactions, such as mov-

ing something down and taking something from some-

where. Diving48 [29] is built on 48 fine-grained div-

ing actions, where the labels are combinations of 4 at-

tributes, e.g. back+15som+15twis+free. Compared to these

datasets, our proposed FineGym has the following charac-

teristics: 1) the structure hierarchy is more sophisticated (2

temporal levels and 3 semantic levels), and the number of

finest classes is significantly larger (e.g. 530 in FineGym

vs. 48 in Breakfast); 2) the actions in FineGym involve

rapid movements and dramatic body deformations, raising

new challenges for recognition models; 3) the annotations

are obtained with reference to expert knowledge, where a

unified standard is enforced across all classes to avoid am-

biguities and inconsistencies.

Methods for Action Recognition. Upon FineGym we have

empirically studied various state-of-the-art action recog-
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nition methods. These methods could be summarized

in three pipelines. The first pipeline adopts a 2D CNN

[39, 44, 13, 10] to model per-frame semantics, followed by

a 1D module to account for temporal aggregation. Specif-

ically, TSN [44] divides an action instance into multiple

segments, representing the instance via a sparse sampling

scheme. An average pooling operation is used to fuse per-

frame predictions. TRN [55] and TSM [30] respectively re-

place the pooling operation with a temporal reasoning mod-

ule and a temporal shifting module. Alternatively, the sec-

ond pipeline directly utilizes a 3D CNN [42, 3, 43, 45, 8]

to jointly capture spatial-temporal semantics, such as Non-

local [45], C3D [42], and I3D [3]. Recently, an interme-

diate representation (e.g. human skeleton in [48, 4, 5]) is

used by several methods, which could be described as the

third pipeline. Besides action recognition, other tasks of ac-

tion understanding, including action detection and localiza-

tion [14, 47, 54, 21, 16, 36], action segmentation [26, 9], and

action generation [28, 41], also attract many researchers.

3. The FineGym Dataset

The goal of our FineGym dataset is to introduce a new

challenging benchmark with high-quality annotations to the

community of action understanding. While more types of

annotations will be included in succeeding versions, current

version of FineGym mainly provides annotations for fine-

grained human action recognition on gymnastics.

Practically, categories of actions and sub-actions in Fin-

eGym are organized according to a three-level hierarchy,

namely events, sets, and elements. Events, at the coarsest

level of the hierarchy, refer to actions belonging to differ-

ent gymnastic routines, such as vault (VT), floor exercise

(FX), uneven-bars (UB), and balance-beam (BB). Sets are

mid-level categories, describing sub-actions. A set holds

several technically and visually similar elements. At the

finest granularity are element categories, which equips sub-

actions with more detailed descriptions than the set cate-

gories. e.g. a sub-action instance of the set beam-dismounts

could be more precisely described as double salto backward

tucked or other element categories in the set. Meanwhile,

FineGym also provides two levels of temporal annotations,

namely locations of all events in a video and locations of

sub-actions in an action instance (i.e. event instance). Fig-

ure 2 reveals the annotation organization of FineGym.

Below we at first review the key challenges when build-

ing FineGym, followed by a brief introduction on the con-

struction process, which covers both data preparation, anno-

tation collection and quality control. Finally, statistics and

properties of FineGym are elaborated.

3.1. Key Challenges

Building such a complex and fine-grained dataset brings

a series of unprecedented challenges, including: (1) How to

collect data? Generally, data for large-scale action datasets

are mainly collected in two ways, namely crawling from the

Internet and self-recording from invited workers. However,

while fine-grained labels of FineGym contain rich details,

e.g. double salto backward tucked with 2 twist, videos col-

lected in these ways can hardly match the details precisely.

Instead, we collect data from video records of high-level

professional competitions. (2) How to define and organize

the categories? With the rich granularities of FineGym

categories and the subtle differences between instances of

the finest categories, manually defining and organizing Fin-

eGym categories as in [19, 34] is impractical. Fortunately,

we could resort to official documentation provided by ex-

perts [7], which naturally define and organize FineGym cat-

egories in a consistent way. This results in 530 well defined

categories. (3) How to collect annotations? As mentioned,

the professional requirements and subtle differences of Fin-

eGym categories prevent us from utilizing crowdsourcing

services such as the Amazon Mechanical Turk. Instead, we

hire a team trained specifically for this job. (4) How to con-

trol the quality? Even with a trained team, the richness and

diversity of possible annotations inevitably require an ef-

fective and efficient mechanism for quality control, without

which we may face serious troubles as errors would propa-

gate along the hierarchies of FineGym. We thus enforce a

series of measures for quality control, as described in 3.2.

3.2. Dataset Construction

Data Preparation. Our procedure for data collection takes

the following steps. We start by surveying the top-level

gymnastics competitions held in recent years. Then, we

collect official video records of them from the Internet, en-

suring these video records are complete, distinctive and of

high-resolutions, e.g. 720P and 1080P. Finally, we cut them

evenly into chunks of 10-minutes for further processing.

Through these steps, the quality of data is ensured by the

choice of official video records. The temporal structures of

actions and sub-actions are also guaranteed as official com-

petitions are consistent and rich in content. Moreover, data

redundancy is avoided through manual checking.

Annotation Collection. We adopt a multi-stage strategy

to collect the annotations for both the three-level seman-

tic category hierarchy (i.e. event, set and element labels)

and the two-level temporal structures of action instances.

The whole annotation process is illustrated in Figure 1, and

described as follows: 1) Firstly, annotators are asked to

accurately locate the start and end time of each complete

gymnastics routine (i.e. an complete action instance con-

taining several sub-actions) in a video record, and then se-

lect the correct event label for it. In this step, we discard

all incomplete routines, such as the ones that have an in-

terruption. 2) Secondly, 15 sets from 4 events are selected

from the latest official codebook [7], for they provide more
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Figure 2: FineGym organizes both the semantic and temporal annotations hierarchically. The upper part shows three levels

of categorical labels, namely events (e.g. balance beam), sets (e.g. dismounts) and elements (e.g. salto forward tucked). The

lower part depicts the two-level temporal annotations, i.e. the temporal boundaries of actions (in the top bar) and sub-action

instances (in the bottom bar).
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Figure 3: Illustration of the decision-tree based reasoning

process for annotating element labels within a given set (e.g.

FX-turns).

distinctive element-level classes. We further discard the

element-level classes that have visually imperceptible dif-

ferences and unregulated moves. Consequently, when given

an event, an annotator will locate all the sub-actions from

the defined sets and provide their set-level labels. 3) Each

sub-action further requires an element label, which is hard

to decide directly. We thus utilize a decision-tree2 consist-

ing of attribute-based queries to guide the decision. Starting

from the root, which has a set label, an annotator travels on

the tree until he meets a leaf node, which has an element

label. See Figure 3 for a demonstration.

Quality Control. To build a high-quality dataset which of-

fers clean annotations at all hierarchies, we adopt a series

of mechanisms including: training annotators with domain-

2Details of the decision-trees are included in the supplemental material.

event # set cls # element cls # inst # sub inst

VT 1 67 2034 2034

FX 5 64+20+23+4 912 8929

BB 5 58+25+26+26 976 11586

UB 4 52+22+57+2 961 10148

10 in total 15 530 4883 32697

Table 1: The statistics of FineGym v1.0.

specific knowledge, pretesting the annotators rigorously be-

fore formal annotation, preparing referential slides as well

as demos, and cross-validating across annotators.

3.3. Dataset Statistics

Table 1 shows the statistics of FineGym v1.0, which is

used for empirical studies in this paper.3 Specifically, Fine-

Gym contains 10 event categories, including 6 male events

and 4 female events. Particularly, we selected 4 female

events therefrom to provide more fine-grained annotations.

The number of instances in each element category ranges

from 1 to 1, 648, reflecting the natural heavy-tail distribu-

tion of them. 354 out of the defined 530 element cate-

gories have at least one instance.4 To meet different de-

mands, besides the naturally imbalanced setting, we also

provide a more balanced setting by thresholding the num-

ber of instances. Details are included in Sec.4.2. In terms of

other statistics, there are currently 303 competition records,

amounted to ∼ 708 hours. For the 4 events with finer

3More data is provided in the v1.1 release, see the webpage for details.
4The overall distribution of element categories is presented in the sup-

plementary material.
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Figure 4: Examples of fine-grained sub-action instances in FineGym. The left part shows instances belonging to three element

categories within the set UB-circles, from top to bottom: “clear pike circle backward with 1 turn”, “pike sole circle backward

with 1 turn”, and “pike sole circle backward with 0.5 turn. On the right, there are instances from three element categories of

the set FX-leap-jump-hop, from top to bottom: “split jump with 1 turn”, “split leap with 1 turn”, and “switch leap with 1

turn”. It can be seen such fine-grained instances contain subtle and challenging differences. Best viewed in high resolution.

annotations, Vault has a relatively shorter duration (8s in

average) and intenser motions, while others have a rela-

tively longer duration (55s in average). Being temporally

more fine-grained, the annotated sub-action instances usu-

ally cover less than 2 seconds, satisfying the prerequisite to

being temporally short for learning more fine-grained infor-

mation [19].

3.4. Dataset Properties

FineGym has several attracting properties that distin-

guish it from existing datasets.

High Quality. The videos in FineGym are all official

recordings of top-level competitions, action instances in

which are thus professional and standard. Besides, over

95% of these videos are of high resolutions (720P and

1080P), so that subtle differences between action instances

are well preserved, leaving a room for future annotations

and models. Also, due to the utilization of a well-trained

annotation team and official documents of category defini-

tions and organizations, annotations in FineGym are consis-

tent and clean across different aspects.

Richness and Diversity. As discussed, FineGym con-

tains multiple granularities both semantically and tempo-

rally. While the number of categories increases signifi-

cantly when we move downwards along the semantic hi-

erarchy, the varying dynamics captured in temporal gran-

ularities lay a foundation for more comprehensive tempo-

ral analysis. Moreover, FineGym is also rich and diverse

in terms of viewpoints and poses. For example, many rare

poses are covered in FineGym due to actions like twist and

salto.

Action-centric Instances. Unlike several existing

datasets where the background is also a major factor for dis-

tinguishing different categories, all instances in FineGym

have relatively consistent backgrounds. Moreover, being

the same at first glance, instances from two different cat-

Model Info Event Set

Method Modality Mean Top-1 Mean Top-1

TSN [44]

RGB 98.42 98.18 89.85 95.25

Flow 93.40 93.25 91.64 96.42

2Stream 98.47 99.86 91.97 97.69

Table 2: Results of Temporal Segment Network (TSN)

in terms of coarse-grained (i.e. event and set level) action

recognition.

egories may only have subtle differences, especially at the

finest semantic granularity. e.g. the bottom two samples in

the right of Figure 4 differ in whether the directions of legs

and the turn are consistent at the beginning. We thus be-

lieve FineGym is one of the challenging datasets that re-

quires more focus on the actions themselves.

Decision Trees of Element Categories. As we annotate

element categories using manually built decision trees con-

sisting of attribute-based queries, the path from a tree’s root

to one of its leaf node naturally offers more information than

just an element label, such as the attribute sets and the dif-

ficulty score of an element. Potentially one could use these

decision trees for prediction interpretation and reasoning.

4. Empirical Studies

On top of FineGym, we systematically evaluate repre-

sentative action recognition methods across multiple granu-

larities, and also include a demonstrative study on a typical

action localization method using MMAction [53]. All train-

ing protocols follow the original papers unless stated other-

wise. Our main focus is on understanding fine-grained ac-

tions (i.e. element-level), whose challenging characteristics

could lead to new inspirations. Finally, we provide some

heuristic observations for future research on this direction.
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Model Info Gym288 Gym99

Method Modality Mean Top-1 Mean Top-1

Random - 0.3 - 1.0 –

ActionVLAD [17] RGB 16.5 60.5 50.1 69.5

TSN [44]

RGB 26.5 68.3 61.4 74.8

Flow 38.7 78.3 75.6 84.7

2Stream 37.6 79.9 76.4 86.0

TRN [55]

RGB 33.1 73.7 68.7 79.9

Flow 42.6 79.5 77.2 85.0

2Stream 42.9 81.6 79.8 87.4

TRNms [55]

RGB 32.0 73.1 68.8 79.5

Flow 43.4 79.7 77.6 85.5

2Stream 43.3 82.0 80.2 87.8

TSM [30]

RGB 34.8 73.5 70.6 80.4

Flow 46.0 81.6 80.3 87.1

2Stream 46.5 83.1 81.2 88.4

I3D [3] RGB 27.9 66.7 63.2 74.8

I3D∗ [3] RGB 28.2 66.1 64.4 75.6

NL I3D [45] RGB 27.1 64.0 62.1 73.0

NL I3D∗ [45] RGB 28.0 67.0 64.3 75.3

ST-GCN [48] Pose 11.0 34.0 25.2 36.4

(a) Results of elements across all events.

Model Info VT, 6cls FX, 35cls

Method Modality Mean Top-1 Mean Top-1

Random - 16.7 - 2.9 –

ActionVLAD [17] RGB 32.7 44.6 56.4 65.0

TSN [44]

RGB 27.8 46.6 58.6 67.5

Flow 23.1 42.6 70.7 78.5

2Stream 27.0 47.5 73.1 81.6

TRN [55]

RGB 32.1 48.0 65.8 72.0

Flow 28.9 44.2 74.9 81.2

2Stream 31.4 47.1 77.5 84.6

TRNms [55]

RGB 31.5 46.6 66.6 73.4

Flow 29.1 43.9 74.8 81.1

2Stream 30.1 47.3 78.2 84.9

TSM [30]

RGB 29.2 42.2 62.2 68.8

Flow 26.2 42.4 76.2 81.9

2Stream 28.8 44.8 76.9 83.6

I3D [3] RGB 31.5 42.1 53.7 59.5

I3D∗ [3] RGB 33.4 47.8 52.2 60.2

NL I3D [45] RGB 30.6 46.0 53.4 59.8

NL I3D∗ [7] RGB 30.8 47.3 50.9 57.6

ST-GCN [48] Pose 19.5 38.8 35.3 40.1

(b) Results of elements within a event.

Model Info FX-S1, 11cls UB-S1, 15cls

Method modality Mean Top-1 Mean Top-1

Random - 9.1 - 6.7 –

ActionVLAD [17] RGB 45.0 52.3 51.9 64.6

TSN [44]

RGB 31.2 49.9 44.8 65.6

Flow 69.6 78.0 65.3 78.9

2Stream 68.2 78.5 65.0 80.0

TRN [55]

RGB 58.2 55.0 53.6 70.9

Flow 73.3 79.9 71.5 82.5

2Stream 74.4 81.9 83.0 71.0

TRNms [55]

RGB 58.5 64.4 55.8 71.4

Flow 75.8 82.6 70.8 82.2

2Stream 72.9 80.8 70.8 83.2

TSM [30]

RGB 45.6 53.3 50.9 66.4

Flow 75.8 81.7 73.1 82.5

2Stream 72.9 79.4 70.1 80.8

I3D [3] RGB 33.3 38.9 32.2 49.1

I3D∗ [3] RGB 36.1 42.9 31.0 48.1

NL I3D [45] RGB 31.4 39.0 29.3 48.5

NL I3D∗ [45] RGB 35.8 40.1 26.9 48.5

ST-GCN [48] Pose 21.6 30.8 13.7 28.1

(c) Results of elements within a set.

Table 3: Element-level action recognition results of representative methods. Specifically, results of recognizing element

categories across all events, within an event, and within a set, are respectively included in (a), (b), and (c).

4.1. Event­/Set­level Action Recognition

We present a brief demonstrative study for the event and

set level action recognition, as their characteristics resem-

ble the coarse-grained action recognition that is well stud-

ied in multiple benchmarks. Specifically, we choose the

widely adopted Temporal Segment Networks (TSN) [44]

as the representative. It divides an instance into 3 seg-

ments and samples one frame from each segment to form

the input. Visual appearance (RGB) and motion (Optical

Flow) features of the input frames are separately processed

in TSN, making it a good choice for comparing the contri-

bution of each feature source. The results of event and set

level action recognition are listed in Table 2, from which

we observe: 1) 3 frames, accounting for less than 5% of

all frames, are sufficient for recognizing event and set cat-

egories, suggesting categories at these two levels could be

well classified using isolated frames. 2) Compared to mo-

tion features, appearance features contribute more at the

event-level, and vice versa at the set level. This means the

reliance on static visual cues such as background context

is decreased as we step into a finer granularity. Such trend

continues and becomes clearer at the finest granularity, as

shown in the element-level action recognition.

4.2. Element­level Action Recognition

We mainly focus on the element-level action recognition,

which raises significant challenges for existing methods.

Specifically, representative methods belonging to various

pipelines are selected, including 2D-CNN (i.e. TSN [44],

TRN [55], TSM [30], and ActionVLAD [17]), 3D-CNN

methods (i.e. I3D [3], Non-local [45]), as well as a skeleton-

based method ST-GCN [48].

These methods are thoroughly studied in three sub-tasks,

namely recognition of elements across all events, elements

within an event, and elements within a set, as shown in Fig-

ure 3 (a), (b), and (c) respectively. For elements across

all events, we adopt both a natural long-tailed setting and

a more balanced setting, respectively referred to as Gym288

and Gym99. Details of these settings are included in the

supplemental material. For elements within an event, we

separately select from Gym99 all elements of two specific

events, namely Vault (VT) and Floor Exercise (FX). The el-

ements of FX come from 4 different sets, while the elements

of VT come from a single set (VT is a special event with

only one set). Finally for elements within a set, we select

the set FX-G1 covering leaps, jumps and hops of FX, and

the set UB-G1 covering circles in Uneven Bars (UB).

From the results of these tasks in Table 3, we have sum-

marized several observations. (1) Given the long-tail nature

of the instance distribution, all methods are shown to overfit

to the elements having the most number of instances, espe-

cially on the setting Gym288. (2) Due to the subtle differ-

ences between elements, visual appearances in the form of

RGB values contribute significantly less than that in coarse-

grained action recognition. And motion features contribute

a lot in most cases except for the Vault in elements within

an event, for motion dynamics of elements in Vault are very

intense. (3) Capturing temporal dynamics is important as

TRN and TSM outperform TSN by large margins. (4) I3D

and Non-local network pre-trained on ImageNet and Ki-

netics obtain similar results with 2D-CNN methods, which

may be due to the large gap between temporal patterns of

element categories and those from Kinetics. (5) Skeleton-
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Figure 5: Top-row represents the results of person detection and pose estimation [12, 27] for a Vault routine, and the bottom-

row visualizes the optical flow [51] features. It can be seen that detections and pose estimations of the gymnast are missed

in multiple frames, especially in frames with intense motion. Best viewed in high resolution.

GymFine, mAP@α

Temporal level 0.50 0.60 0.70 0.80 0.90 Avg

Action 60.0 57.9 57.1 54.6 35.0 49.4

Sub-action 22.2 15.4 9.2 3.9 0.6 9.6

Table 4: Temporal action localization results of SSN [54]

at coarse- (i.e. actions) and fine-grained (i.e. sub-actions)

levels. The metric is mAP@tIoU. The average (Avg) values

are obtained by ranging tIoU thresholds from 0.5 to 0.95

with an interval of 0.05.

# Frame Gym99 UCF101 [40] ActivityNet v1.2 [11]

1 35.46 85.0 82.0

3 61.4 86.5 83.6

5 70.8 86.7 84.6

7 74.4 86.4 84.0

12 78.82 - -

Table 5: Performances of TSN when varying the number of

sampled frames during training.

based ST-GCN struggles due to the challenges in skeleton

estimation on gymnastics instances, as shown in Figure 5.

4.3. Temporal Action Localization

We also include an illustrative study for temporal ac-

tion localization, as FineGym could support a wide range

of tasks. Practically, temporal action localization could be

conducted for event actions within video records or sub-

actions within action instances, resulting in two sub-tasks.

We select Structured Segment Network (SSN) [54] as the

representative, relying on its open-sourced implementation.

The results of SSN on these two tasks are listed in Table

4, where localizing sub-actions is shown to be much more

challenging than localizing actions. While the boundaries

of actions in a video record are more distinctive, identifying

the boundaries of sub-actions may require a comprehensive

understanding of the whole action.

4.4. Analysis

In this section, we enumerate the key messages we have

observed in the conducted empirical studies.

Is sparse sampling sufficient for action recognition?

The sparse sampling scheme has been widely adopted in ac-

tion recognition, due to its high efficiency and promising ac-

curacy demonstrated in various datasets [40, 11]. However,

this trend does not hold for element-level action recognition

in FineGym. Table 5 lists the results of TSN [44] on the sub-

set Gym99 as well as existing datasets, where we adjust the

number of input frames. Compared to saturated results on

existing datasets using only few frames, the result of TSN

on Gym99 steadily increases as the number of frames in-

creases, and saturates at 12 frames which account for 30%

of all frames. These results indicate that every frame counts

in fine-grained action recognition on FineGym.

How important is temporal information? As shown

in Figure 6a, motion features such as optical flows could

capture frame-wise temporal dynamics, leading to better

performance of TSN [44]. Many methods have also de-

signed innovative modules for longer-term temporal mod-

eling, such as TRN [55] and TSM [30]. To study them, for

the temporal reasoning module in TRN, we shuffle the input

frames during testing, and observe significant performance

drops in Figure 6b, indicating temporal dynamics indeed

play an important role in FineGym, and TRN could capture

it. Moreover, for the temporal shifting module in TSM, we

conduct a scheme where we start by training a TSM with 3

input frames, then gradually increase the number of frames

during testing. Taking TSN for a comparison, Figure 6c in-

cludes the resulting curves, where the performance of TSM

drops sharply when the number of testing frames is very

different from that in training, and TSN maintains its per-

formance as only temporal average pooling is applied in it.

These results again verify that temporal dynamics is essen-

tial on FineGym, so that a very different number of frames

leads to significantly different temporal dynamics. To sum-

marize, optical flows could capture some extent of temporal
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(a) (b) (c) (d)

Figure 6: (a) Per-class performances of TSN with motion and appearance features in 6 element categories. (b) Performances

of TRN on the set UB-circles using ordered or shuffled testing frames. N (c) Mean-class accuracies of TSM and TSN on

Gym99 when trained with 3 frames and tested with more frames. (d) Per-class performances of I3D pre-trained on Kinetics

and ImageNet in various element categories. Best viewed in high resolution.

dynamics, but not all. Fine-grained action recognition of

motion-intense actions heavily relies on temporal dynamics

modeling.

Does pre-training on large-scale video datasets help?

Considering the number of parameters in 3D-CNN meth-

ods, e.g. I3D [3], usually they are pre-trained first on large-

scale datasets, e.g. Kinetics, which indeed leads to a perfor-

mance boost [3, 52]. For example, the Kinetics pre-trained

I3D could promote the recognition accuracy from 84.5%

to 97.9% on UCF101 [40]. However, on FineGym, such a

pre-training scheme is not always helpful, as shown in Fig-

ure 6d. One potential reason is the large gaps in terms of

temporal patterns between coarse- and fine-grained actions.

What can not be handled by current meth-

ods/modules? By carefully observing the confusion ma-

trices 5, we summarize some points that are challenging for

existing methods. (1) Intense motion, especially in different

kinds of saltos (often finished within 1 second), as shown

in the last several frames of Figure 5. (2) Subtle spatial

semantics, which involves differences in body parts such

as legs are whether bent or straight, and human-object re-

lationships. (3) Complex temporal dynamics, such as the

direction of motion, and the degree of rotation. (4) Reason-

ing, such as counting the times of saltos. We hope the high-

resolution and professional data of FineGym could help fu-

ture researches aiming for these points. In addition, Fin-

eGym poses higher requirements for methods that have an

intermediate representation, e.g. human skeleton, which is

hard to be estimated on FineGym due to the large diversity

in human poses. See Figure 5 for a demonstration.

5. Potential Applications and Discussion

While more types of annotations will be added subse-

quently, the high-quality data of FineGym has offered a

foundation for various applications, besides coarse- and

fine-grained action recognition and localization, including

5See supplementary material for examples.

but not limited to (1) auto-scoring, where difficult scores

are given for each element category in the official docu-

ments, and we could also estimate the quality scores based

on visual information, resulting in a gymnastic auto-scoring

framework. (2) Action generation, where the consistent

background context of fine-grained sub-actions could help

generative models focus more on the action themselves, and

the standard and diverse instances in FineGym could facil-

itate exploration. (3) Multi-attribute prediction, for which

the attribute ground-truths of the element categories are im-

mediately ready due to the use of decision trees. (4) Model

interpretation and reasoning, which could benefit from the

manually built decision trees, as shown in Figure 3.

FineGym may be used to conduct more empirical studies

on model designs, such as how to strike a balance between

accuracy and efficiency when dealing with highly informa-

tive yet subtly different actions? And how to model the com-

plex temporal dynamics efficiently, effectively and robustly?

6. Conclusion

In this paper, we propose FineGym, a dataset focusing

on gymnastic videos. FineGym differs from existing action

recognition datasets in multiple aspects, including the high-

quality and action-centric data, the consistent annotations

across multiple granularities both semantically and tempo-

rally, as well as the diverse and informative action instances.

On top of FineGym, we have empirically investigated repre-

sentative methods at various levels. These studies not only

lead to a number of attractive findings that are beneficial for

future research, but also clearly show new challenges posed

by FineGym. We hope these efforts could facilitate new ad-

vances in the field of action understanding.
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[4] Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. P-cnn:

Pose-based cnn features for action recognition. In ICCV,

pages 3218–3226, 2015. 3

[5] Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud,
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