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Abstract

6D pose estimation from a single RGB image is a chal-

lenging and vital task in computer vision. The current main-

stream deep model methods resort to 2D images annotated

with real-world ground-truth 6D object poses, whose col-

lection is fairly cumbersome and expensive, even unavail-

able in many cases. In this work, to get rid of the bur-

den of 6D annotations, we formulate the 6D pose refine-

ment as a Markov Decision Process and impose on the re-

inforcement learning approach with only 2D image annota-

tions as weakly-supervised 6D pose information, via a deli-

cate reward definition and a composite reinforced optimiza-

tion method for efficient and effective policy training. Ex-

periments on LINEMOD and T-LESS datasets demonstrate

that our Pose-Free approach is able to achieve state-of-the-

art performance compared with the methods without using

real-world ground-truth 6D pose labels.

1. Introduction

6D pose estimation aims to localize the 3D location and

the 3D orientation of the object from a single image. It plays

a crucial role in real-world applications including robot ma-

nipulation [5, 43], augmented reality [21] and self-driving

cars [4, 19]. For instance, when a robot tries to grab an ob-

ject, it is a prerequisite to accurately estimate the 6D object

poses from the image captured by the equipped camera.

This problem was traditionally regarded as a geometric

problem and can be solved with Perspective-n-Point (PnP)

[14] algorithms by matching features between the 2D image

and the 3D object model. Since rich textures are indispens-

able for feature matching, they cannot effectively handle

the texture-less cases. With the rise of deep learning, con-

siderable learning-based approaches are proposed for var-

ious perception cases (e.g., RGB-only, RGB-D) and have

greatly promoted the evolvement of this field. Some people

[24, 29, 25] followed the conventional way to build the 2D-

3D correspondences and subsequently solve the pose via

Figure 1. The sketch of Pose-Free Reinforcement Learning

(PFRL). We formulate the pose refining procedure as a sequen-

tial decision-making process and exploit a composite reinforced

optimization approach to tackle it. We calculate the reward us-

ing the similarity measurement of mask information to avoid the

annotations of pose labels.

PnP. Others [12, 38] instead trained the deep model in an

end-to-end manner to directly derive the pose from the im-

age. Compared with traditional ones, these approaches can

achieve remarkable performance even in challenging situ-

ations such as texture-less, clutter, occlusion, etc. A com-

mon way to further improve the pose accuracy is pose re-

finement. DeepIM [15] is able to predict the 6D pose dif-

ference between the current estimation and the ground-truth

by comparing the rendered object with the observed one in

2D space. A similar idea is also explored by [20, 40].

Real-world pose annotations are essential for current ap-

proaches to achieve excellent performance. Unfortunately,

acquisition of the 2D images annotated with real-world

ground-truth 6D object poses is fairly cumbersome and ex-

pensive compared with that in 2D space (e.g. instance 2D

mask), which greatly restricts the popularization of these

approaches. Alternatively, some researchers [12, 33, 40]

turned to getting rid of this problem by training on synthetic

data only. However, the domain gap is prone to degrade

pose estimation performance in real-world cases.

In this work, we focus on 6D pose estimation from RGB

images only without requiring real-world pose annotations
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and avoiding the domain gap caused by training the model

on synthetic-only data.

To achieve this goal, we introduce reinforcement learn-

ing by formulating the 6D pose refinement problem as a

Markov Decision Process (MDP). Given an initial pose es-

timate, our approach learns to rotate and translate the 3D

object model sequentially to align it to the observation.

To train the model, we design a 2D mask-based reward

which is computed only from the rendered and the target

2D masks. For each episode, the accumulated rewards are

maximized, resulting in a policy that can approach the tar-

get smoothly and quickly (Fig. 1). We also propose a com-

posite reinforced optimization method to learn the opera-

tion policy efficiently and effectively. Compared with exist-

ing supervised approaches, our method utilizes a sequential

decision-making process to optimize a delayed accumulated

reward from the weakly-supervised mask similarity instead

of the supervised loss from the ground-truth 6D pose. Since

no ground-truth 6D pose information is involved, we call

our proposed approach a Pose-Free Reinforcement Learn-

ing (PFRL) approach for 6D pose estimation.

Experiments on LINEMOD [9] and T-LESS [10]

datasets demonstrate that our approach is able to achieve

state-of-the-art performance compared with existing meth-

ods without using ground-truth 6D pose labels. Our work

makes the following main contributions: i) We formulate

the 6D pose estimation problem as a Markov Decision Pro-

cess and propose a Pose-Free Reinforced Learning solution,

which is able to exploit 2D image annotations as weakly

supervised information and reward-based sequential deci-

sion making for 6D pose refinement. ii) We design a low-

cost reward strategy based on the 2D mask and propose a

composite reinforced optimization method for efficient and

effective policy training. iii) On LINEMOD and T-LESS

datasets we achieve state-of-the-art performance compared

to the methods without using real-world ground-truth 6D

pose labels.

2. Related Work

RGB-based 6D Object Pose Estimation. Traditionally,

the pose estimation was considered as a geometric prob-

lem and solved with Perspective-n-Point (PnP) [14] algo-

rithms by matching the features between the 2D image and

the 3D model. However, they rely heavily on the textures

and cannot handle the textures-less cases. Recently, the

deep learning technique has significantly advanced the de-

velopment of pose estimation. Some works followed the

traditional way by training the model to build the 2D-3D

correspondences by 1) detecting the pre-defined keypoints

from image [24, 29, 36, 41] or 2) predicting the 3D coordi-

nates for object pixels [2, 37, 40, 16]. For the former, the

sparse 2D-3D correspondences make the estimator sensitive

to the occlusion. For the latter, RANSAC [23] is necessary

to solve the pose from the dense correspondences, which re-

markably increase the computational complexity of the in-

ference. Different from these PnP-based approaches, others

trained the deep model in an end-to-end manner to predict

the pose directly from an image. [12] trained a viewpoint

classifier on the SSD [17] by discretizing the 3D rotation

space into some bins. The translation was calculated from

the 2D bounding box. [33] leveraged an Augmented Auto-

Encoder (AAE) to encode features for each discrete rotation

to build a dictionary. During test, the rotation is retrieved by

matching the feature with the dictionary. [38] developed a

CNN-based network to regress the quaternions from image

directly. These direct approaches can enjoy fast inference

speed, but they typically suffer from inferior performance

when compared to PnP-based approaches.

Current RGB-based pose estimation approaches rely

heavily on real-world annotated training data. For instance,

with the aid of real data, the pose estimation precision of

DPOD [40] can be improved from 50% to 82.98% on met-

ric ADD. Without real training samples, the performance of

current approaches is far from satisfactory. Unfortunately,

the pose annotations of real data are quite expensive and

time-consuming. We propose Pose-Free Reinforced Learn-

ing (PFRL) framework, which can significantly improve the

pose estimation accuracy only based on the relatively low-

cost 2D real-data annotations (i.e. segmentation masks).

6D Object Pose Refinement. To further promote the

performance of 6D pose refinement, numerous approaches

leveraged depth by ICP [1]. As a result, additional depth

sensor is required and may be restricted by its the frame

rate, resolution, depth range and light illumination, etc. For

RGB-based pose refinement, a promising way is to train

a pose refiner. For instance, DeepIM [15] was proposed

to compare the rendered objects (accompanied with mask)

with the observed ones, which can iteratively predict the

relative transformation between the current pose estimation

and the ground-truth. [20] and [40] developed the similar

idea by introducing the parallel branches to extract features.

These approaches can achieve remarkable pose estimation

performance by utilizing the ground-truth pose annotations

to provide fully-supervised training signals. More recently,

[26] attempted to train a 6D object pose refiner without

real 6D pose labels via an approximated differentiable ren-

derer, however the utilization of the differentiable renderer

was non-trivial, since they required an additional represen-

tation learning step where real 6D pose annotations were

still needed.

Reinforcement Learning for Vision Tasks. Recently,

deep reinforcement learning [35] has been successfully ap-

plied to a wide range of computer vision tasks, such as

object detection [22], semantic segmentation [42], visual

object tracking [34, 39, 30], vision-based robotic grasp-

ing [28], etc. Several works also try to solve 6D object pose
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Figure 2. The PFRL framework. At each time step k, we use the cropped observed image, ground-truth bounding box, rendered image and

rendered mask to form state sk. The policy network (detailed in Sec. 3.4) takes sk as input and generates disentangled action ak, which

represents the relative SE(3) transformation for current pose (detailed in Sec. 3.1). The environment (i.e. renderer) then renders a new

image according to the new pose, calculating the reward from current mask and the ground-truth mask (detailed in Sec. 3.2). Finally the

composite policy optimization is executed using the reward (detailed in Sec. 3.3).

estimation related tasks via reinforcement learning. For in-

stance, [13] proposes a policy gradient based method to save

the inference budget for an existing 6D object pose estima-

tion system. [32] selects the strategy of camera movements

by policy gradient method, directing the camera’s attention

to the most uncertain object.

Different from them, we propose a novel approach to

learn the 6D pose refinement in a Pose-Free fashion without

the need of real-world 6D pose annotations via reinforce-

ment learning. By formulating the problem under the re-

inforcement learning framework, the information from the

non-differentiable rasterization-based renderer can be better

exploited during optimization. It enjoys both Pose-Free 2D

annotations and pose refinement prediction capability.

3. Methodology

The overview of our framework is depicted in Fig. 2. In

following sections, we first present the formulation of Rein-

forcement Learning (RL) for solving the 6D pose estimation

problem in Sec. 3.1. We then introduce a 2D mask-based

reward function in Sec. 3.2. Further, a composite reinforced

optimization is proposed for the task-specific 6D pose esti-

mation problem in Sec. 3.3. Finally, we discuss our policy

network architecture in Sec. 3.4.

3.1. Problem Formulation

To achieve accurate 6D pose estimation, our core idea is

to align the 2D projection of 3D object with its appearance

observed in 2D image. We propose the PFRL framework to

tackle the problem by reinforcement learning. We hypoth-

esize that the decision made by the agent at each time step

will be only based on the current state and not be affected

by previous states, which can be formulated as an MDP. The

goal is to maximize the expected sum of future discounted

rewards V π(s) = E
[
∑

k≥0 γ
krk

]

[27], where γ ∈ [0, 1) is

the discount factor, rk = r(sk,ak) is immediate reward at

time k, sk is the state at time k and ak ∼ π(·|sk) is the ac-

tion generated by following some policy π conditioned on

sk. The state and action space of our framework are defined

as follows:

State: The state which encodes the knowledge of the

environment should be instrumental for the agent to decide

how to rotate and translate the 3D model. At current time

step k, the state sk is formed by a rendered RGB image and

a projected mask of the 3D object model specified by the

current pose, and the observed RGB image as well as the

ground-truth 2D bounding box of the object. These four

images are concatenated together as the input of the policy

network. During test, since the ground-truth bounding box

is not available, we then exploit it by projecting the object

with the initial pose instead.

Action: Action is the relative SE(3) transformation the

agent performs at each time step, which will affect the state

of the environment. We exploit the same representation of

∆p as in [15] for its characteristics of disentangled rota-

tion and translation, i.e., the actions of rotation and trans-

lation are not mutually affected. The rotation and transla-

tion actions are chosen stochastically from the two distribu-

tions parameterized by policy network. Different from con-
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ventional reinforcement learning approaches, we measure

a single policy value for the two distributions by concate-

nating the features of rotation and translation together (Sec.

3.4). We evaluate continuous and discrete distributions for

the policy model respectively:

aR ∼ N (µR(θ),σ
2
R),at ∼ N (µt(θ),σ

2
t ), (1)

and

aR ∼ C(ζR(θ)),at ∼ C(ζt(θ)). (2)

Eq. 1 is the continuous distributions for rotation and

translation actions. N (·) represents multivariate Gaussian

distribution. µR(θ) and µt(θ) represent the mean values

of rotation (i.e. quaternion) and translation from the policy

network respectively. Accordingly, σR and σt are the vari-

ance matrices. We assume the dimensions are independent

of each other for simplicity and without loss of representa-

tion ability, hence both of σR and σt are diagonal matrices.

Eq. 2 indicates the discrete distribution for rotation and

translation actions. C(·) represents Categorical distribution,

where ζR(θ) and ζt(θ) are the probabilities produced by

the policy network.

We handcraft 13 operations for rotation and translation

actions, where each of them includes rotating (or translat-

ing) 3D model along ±x,±y,±z with a fixed small and large

degree (or step) as well as no rotation/translation action. See

Sec. 1 of the supplementary material for more details.

Each operation for rotation and translation is encoded

with a quaternion and a direction vector. The final form

sampled from the continuous and discrete distribution is the

same.

3.2. 2D Mask­based Reward

After rotating and translating the 3D model, the agent

needs a reward signal rA for policy update. Under the Pose-

Free situation, we propose a 2D mask-based reward, which

includes three components: IoU (Intersection over Union)

Difference Reward rI , Goal Reached Reward rG, and Cen-

tralization Reward rC , which are purely computed from the

rendered and ground-truth masks in 2D space.

We denote the IoU Difference Reward rI as:

rI = fφ(IoUk+1)− fφ(IoUk), (3)

where

fφ(x) =

{

x, x < Xthr

αx2 − βx, x ≥ Xthr
. (4)

Let MR and MG represent the rendered mask at current

state and the ground-truth mask respectively. In Eq. 3

IoUk =
S(MRk

∩MG)

S(MRk
∪MG) measures their IoU. fφ is a mapping

function, whose shape is controlled by α, β, and a threshold

Xthr. The motivation is that if the mask of an object without

high symmetry has a perfect overlap with the ground-truth

mask, it is very likely for the object to be in the actual lo-

calization and orientation. Therefore the pose estimation

problem can be converted into a 2D mask matching prob-

lem. Our objective is to maximize the IoU at the last image

frame. Therefore, we design rI in the form of IoU differ-

ence in adjacent frames corresponding to the RL objective:

maximizing the cumulative reward
∑kend

0 rk. The mapping

function fφ is designed to give a larger reward when IoU is

closer to 1. Sharper changes of reward at frames with large

IoUs (e.g., 0.8 to 1.0), which is the most common situation

during training, help the agent learn the objective much eas-

ier.

In practice, when the IoU reaches some threshold IoUthr,

we expect the environment to give the reward feedback im-

mediately and stop refining. Thus we define an additional

Goal Reached Reward rG as:

rG =

{

1, IoUk ≥ IoUthr

0, IoUk < IoUthr
. (5)

Such reward gives the agent an evident arrival signal, which

saves the budget in real-world applications.

In case of the object locating far away from the true po-

sition, which might happen if the network is not well ini-

tialized, we further add a Centralization Reward rC to give

an explicit constraint on the estimate of translation. rC is

denoted as:

rC = min(||cr − cg||
− 1

2

2 , 1), (6)

where cr and cg are the center of the rendered mask and the

ground-truth mask, respectively.

Above all, the final reward rA can be summarized as:

rA = rI + σCrC + σGrG, (7)

where σC and σG are weights of rC and rG.

Note that if an object exhibits some symmetry, naively

training a pose estimator is problematic and unstable since

the similar appearances in RGB can show different 6D

poses and lead to distinct loss values [18]. Our design of

mask-based reward can implicitly avoid this problem and

work well on symmetric objects, similar to the idea in [33].

3.3. Composite Reinforced Optimization

The high dimensional state space brings high variance

and instability for training the policy network. In usual, mil-

lions of samples are required to fully exploit the power of

reinforcement learning model. However, in the 6D pose es-

timation, it is difficult to render such tremendous amount

of the images. In this section, we propose a task-specific

composite reinforced optimization method for 6D pose esti-

mation. We combine the on-policy and off-policy strategies

together to fully utilize the rendered images.
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We use θ and φ to denote the current policy network

and value function parameters. Given the tuple (sk,ak, rk),
we use θold to denote the parameters of the policy network

where ak samples before θ. The corresponding policies are

denoted as πθ(ak|sk) and πθold
(ak|sk). The on-policy op-

timization refers to learning the value Vφ(sk) of the policy

πθ(ak|sk) being carried out by the agent with correspond-

ing ak. In this paper, we employ the Proximal Policy Opti-

mization (PPO) algorithm [31] for the on-policy optimiza-

tion. The loss function of PPO is defined as:

Lon = Lclip + λvLvalue + λeLentropy. (8)

In Eq. 8, Lclip is the clipped surrogate objective measur-

ing minimum of clipped and original importance-weighted

advantage value function. λv and λe are trade-off param-

eters. Lvalue measures an approximated squared-error loss

between value function and cumulative reward. Lentropy is

the entropy bonus of policy. For further details of the loss

function, we refer readers to [31].

After updating policy network, the tuple (sk,ak, rk) are

no longer associated with the πθ, i.e., ak was sampled

by a previous policy network πθold
. Therefore the tuple

(sk,ak, rk) can not be used for on-policy optimization. In

order to further fully utilize “outdated” data samples and

take advantage of data efficiency, we introduce an off-policy

value update strategy similar to [7] to assist the on-policy

optimization to accelerate the training process. We set up

a priority queue replay buffer to store the “outdated” data

samples. We then update the value function Vφ(sk) with

off-policy loss using samples from the replay buffer:

Loff = (Vφ(sk)− Vtrace)
2. (9)

Definitions of Vtrace in Eq. 9 can be found in [7]. The overall

procedure of the composite reinforced optimization is sum-

marized Algorithm 1.

Algorithm 1: Composite Reinforced Optimization

Initialize policy network πθ and value function Vφ;

Initialize replay buffer R.

for episode = 1,M do

Generate trajectories T = (s0,a0, r0, s1, ...);
Update πθ and Vφ with Lon using T ;

Store T into R;

Sample B = (s,a, r) pairs from R;

Compute V-trace target Vtrace using B;

Update Vφ with Loff.

end

3.4. Disentangled Policy Architecture

Fig. 3 depicts the disentangled policy network structure.

The backbone consists of the first 11 convolutional layers

Figure 3. Disentangled Policy Architecture. The observed image,

ground-truth bounding box, rendered image, rendered mask are

concatenated and zoomed together as input. Branches for rotation

and translation are separated and actions are sampled from con-

tinuous or discrete distributions. ‘C3’ and ‘C4’ denote the con-

tinuous distribution for translation and rotation while the double

‘D13’ denote the discrete distribution. The value function is com-

puted together.

of FlowNet-S [6]. Similar to [15], the input images and

masks are zoomed-in before feeding to the backbone. As

discussed in Sec. 3.1, two separate branches are used to pre-

dict the distribution of the disentangled rotation and trans-

lation. Both branches contain 2 fully-connected (FC) layers

with 256 hidden units, and are followed by one additional

FC layer. Compared with [15], our network is lightweight

both in training and inference, since we do not use the heav-

ily computational flow and mask branches. The last FC lay-

ers of both branches are concatenated together followed by

2 FC layers to produce the value function. In this manner,

the value function shares the same parameters as actions,

and can be used for optimization of both actions.

4. Experiments

4.1. Data Preparation

We conduct our experiments on LINEMOD [9] and T-

LESS [10] dataset. We split the LINEMOD dataset follow-

ing [3], including about 15% for training and 85% for test,

i.e., around 200 images per object for the training set. Note

that no 6D pose annotations are directly used during train-

ing and testing. They are only used to generate ground-truth

masks. Under the case that 6D pose is hard or impossible

to obtain, we can get the ground-truth mask by semantic

segmentation or manual annotation.

On LINEMOD dataset, we use results from AAE [33]

and PoseCNN [38] as our initial pose for test. Random

Gaussian noise with zero mean is added to each dimen-
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Train data Pose-Free Init +Pose-Free Refine Gt Pose Init +Pose-Free Refine

Object
AAE[33] DPOD-SYN[40] SSD6D[12] DPOD-SYN+Refine AAE+ours YOLO6D[36] PoseCNN[38] PoseCNN+DeepIM-SYN[15] PoseCNN+ours

ADD ADD ADD ADD ADD ADD ADD Proj.2D ADD Proj.2D ADD

Ape 3.96 37.22 - 55.23 65.4 21.6 27.8 81.7 23.9 95.6 60.5

Benchvise 20.92 66.76 - 72.69 84.5 81.8 68.9 92.2 93.1 94.7 88.9

Camera 30.47 24.22 - 34.76 41.5 36.6 47.5 97.0 84.7 95.0 64.6

Can 35.87 52.57 - 83.59 80.9 68.8 71.4 89.6 91.5 93.1 91.3

Cat 17.90 32.36 - 65.10 80.4 41.8 56.7 96.1 79.5 99.3 82.9

Driller 23.99 66.60 - 73.32 77.6 63.5 65.4 85.9 82.3 94.8 92.0

Duck 4.86 26.12 - 50.04 52.5 27.2 42.8 92.6 24.0 98.2 55.2

Eggbox 81.01 73.35 - 89.05 96.1 69.6 98.3 90.8 88.3 97.8 99.4

Glue 45.49 74.96 - 84.37 76.7 80.0 95.6 81.2 96.9 97.1 93.3

Holepuncher 17.60 24.50 - 35.35 44.9 42.6 50.9 78.0 20.6 96.7 66.7

Iron 32.03 85.02 - 98.78 67.3 75.0 65.6 59.3 85.1 81.6 75.8

Lamp 60.47 57.26 - 74.27 91.1 71.1 70.3 75.6 85.5 96.0 96.6

Phone 33.79 29.08 - 46.98 52.7 47.7 54.6 88.3 66.1 91.0 69.1

Mean 31.41 50.0 34.1 66.43 70.1 56.0 62.7 85.3 70.9 94.7 79.7

Table 1. Comparison with state-of-the-art Pose-Free methods on LINEMOD with metrics ADD and Proj. 2D. Left part is results of initial

pose trained on synthetic data + Pose-Free refiner, and right part is results of initial pose trained on ground-truth labels + Pose-Free refiner.

PFRL (ours) outperforms the state-of-the-art method DPOD trained with synthetic data, despite that we use a much worse initialization

method provided by AAE. When using the same initial pose from PoseCNN, PFRL outperforms DeepIM trained on synthetic data.

sion of the rotation and translation as initial pose for train-

ing. The variance is (15◦)2 for each rotation axis and

[22, 22, 52](cm)2 for translation [x, y, z]. A noise is resam-

pled if one of the rotation axis exceeds 45 degrees.

On T-LESS dataset we initialize our method with re-

sults from AAE [33], the current state-of-the-art RGB-only

method on T-LESS. No real images are available for train-

ing, so we render objects with random poses and light

conditions on random background images from PASCAL

VOC [8]. We perturb the ground-truth poses with the same

noise used for LINEMOD as initial poses. Since the camera

intrinsic matrix of each real image differs only in the prin-

cipal points slightly, we translate and crop the images such

that they have the same intrinsic matrix for ease of use.

4.2. Evaluation Metrics

In our experiments, we use three common metrics for

evaluation: Proj. 2D, ADD and VSD. For Proj. 2D metric, a

pose is regarded as correct if the average Proj. 2D distance

(Eq.(10)) of the model points is less than 5 pixels:

Proj. 2D =
1

m

∑

x∈M

‖K(Rx+ t)−K(R̂x+ t̂)‖. (10)

For ADD metric, a pose is regarded as correct if the aver-

age distance of model points is less than 10% of the model

diameter [9] (Eq.(11)). For symmetric objects, the distance

is calculated by the closest model point (Eq.(12)).

ADD =
1

m

∑

x∈M

‖(Rx+ t)− (R̂x+ t̂)‖, (11)

ADD-S =
1

m

∑

x1∈M

min
x2∈M

‖(Rx1+t)−(R̂x2+ t̂)‖. (12)

Visible Surface Discrepancy (VSD) [11] is an ambiguity-

invariant metric that depends on the visible surface, which

can account for the symmetry better. The parameters used

for VSD metric are the same as [33].

4.3. Results on LINEMOD

Table 1 shows the results of our method and some recent

well-performed RGB-based methods. We achieve state-of-

the-art on Pose-Free methods. Most Pose-Free methods like

DPOD [40] and AAE [33] render objects on random back-

grounds such as images from PASCAL VOC dataset [8] and

train on synthetic data. When the initial pose estimation and

the refiner are both Pose-Free, our method achieves aver-

age ADD 70.1% with initial pose estimated by AAE (ADD

31.41%), surpassing the previous state-of-the art method

DPOD’s ADD 66.43% with initial pose ADD 50.0%. And

on 10 of 13 objects we get a higher score than DPOD de-

spite the relatively lower initial pose score. We bring on

average 38.7 percentages ADD improvement on AAE.

To evaluate our method with better initial poses, we also

use the results of PoseCNN [38] trained with real 6D pose

labels as initial poses. We bring 17.0 percentages improve-

ment on PoseCNN. Our method also surpasses DeepIM-

SYN [15], the DeepIM trained with pure synthetic data and

initialized with PoseCNN results during test, on both met-

rics overall. We can also see that on Proj. 2D metric, our

method performs better on 12 of 13 objects, which demon-

strates the advantage of our design of the 2D mask based

reward. We also provide results with DPOD initialization

in Sec. 3 of the supplementary material.

4.4. Results on T­LESS

To evaluate our method on synthetic-only cases, we train

on objects 19-23 of T-LESS dataset. We use AAE [33] with
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Figure 4. Curve of different reward styles.

ground-truth bounding box as our initial pose for testing.

Objects 19-23 are the only objects trained with texture-less

models for AAE. Since T-LESS dataset has no real images

for training, we use synthetic data for training similar to

AAE. The results are shown in Table 2.

Method AAE[33] AAE+Ours

Metric Proj. 2D VSD Proj. 2D VSD

19 30.65 49.95 32.79 57.39

20 23.51 41.87 25.40 45.29

21 56.55 59.06 60.58 62.50

22 42.99 46.08 44.78 48.02

23 21.88 40.38 29.32 44.44

Mean 35.12 47.47 38.57 51.53

Table 2. Results on the T-LESS dataset. Accuracy in the left side

is calculated from the models provided by the author of AAE [33]

and is slightly better than the original reported results.

On texture-less objects without real training images,

the improvement of metric recall is not as obvious as in

LINEMOD due to the large domain gap. However we still

get 3.5 percentages improvement on Proj. 2D and 4.1 per-

centages on the more widely used metric VSD. We believe

further improvement can be achieved with the availability of

real images with mask annotations, which is much cheaper

to obtain than 6D pose annotations.

4.5. Ablation study

We do ablation study on the reward style, action style,

testing speed and optimization strategy. For each ablation

we use several objects from LINEMOD [9] for training and

testing. We set batch size to 256, Xthr = 0.5, IoUthr = 0.98,

α = 3.8, β = 1.8, σC = 1, σG = 2, λv = 0.5, λe = 0.001.

All hyper-parameters are fixed unless otherwise stated.

Reward style. Our basic reward is the IoU Difference

Reward rI . We train on object Iron with the same param-

eters and training steps using rI and the additional Goal

Reached Reward rG and the Centralization Reward rC . Fig.

4 shows the comparison of four reward styles in four eval-

uation metrics. Although we can not see obvious differ-

ence from the average rotation and translation error since

rewards are designed from the mask information, the IoU

of rI + rG + rC increases fastest and maintains the high-

est level, while it has the lowest Proj. 2D error. Compar-

ing rI + rC with rI , rC brings obvious acceleration on

the IoU improvement. Although adding rG to rI indepen-

dently seems bad, it performs well when combined with rC .

Therefore in the rest part of our experiment, we all use re-

ward rI + rG + rC .

Action Style Continuous Discrete

Metric Proj. 2D ADD Proj. 2D ADD

Initial 14.2 35.6 14.2 35.6

Epoch: 800 37.6 43.8 58.9 52.8

Epoch:1600 45.7 46.7 63.3 55.4

Epoch:2400 57.5 56.2 75.3 70.7

Epoch:3200 60.4 60.9 80.6 79.2

Table 3. Ablation on action style.

Action style. We train 2 models on the same conditions

except that the action styles are continuous and discrete sep-

arately and test on the Benchvise object. Table 3 shows the

results for different training epochs on the test set. We can

tell that discrete action space outperforms continuous one

for the whole training procedure, and performs around 20%

better in convergence. Discretization makes great contribu-

tion to our method.

Effect of refining steps and testing speed. Our exper-

iments were conducted on a desktop with an Intel Core i7

3.60GHz CPU and a NVIDIA GeForce RTX 2080 Ti GPU.

We set episode length to 50 for one pose estimation process

during training. We find that the object usually gets very

close to the target pose in a few steps and keeps motionless

in the next steps. Therefore we plot the curve of Proj. 2D

accuracy with respect to refining steps in Fig. 6. Curves

include 3 objects (Ape, Benchvise, Can) with 2 kinds of

initial poses (AAE, PoseCNN). We can see that all objects

reach their best accuracy at step 15-20. We summarize the
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Figure 5. Qualitative results of AAE initial poses [33] and our refined poses on the LINEMOD dataset. The red and green lines represent

the contours of the initial poses and our refined poses respectively.
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Figure 6. The Proj. 2D accuracy with respect to test episode length

curves of 3 objects: Ape, Benchvise, Can.

accuracy and test speed(ms per frame) with respect to the

episode length using AAE [33] as initial pose in Table 4.

Our method is flexible in terms of accuracy and refining

Ep Length
Ape Benchvise Can

A P A P A P

Acc

(%)

0 39.0 83.1 14.2 50.0 16.8 69.6

5 87.0 92.0 48.2 78.4 59.8 84.8

10 93.0 93.4 66.1 83.9 71.6 87.5

20 95.2 94.0 78.4 88.9 77.7 90.0

50 96.9 94.2 85.1 92.7 82.6 91.1

Time

(ms)

5 62 64 67 65 68 68

10 110 114 126 121 128 127

20 218 220 243 234 245 243

50 529 534 588 578 588 584

Table 4. Accuracy and testing time with respect to episode length.

‘A’ and ‘P’ denote initial poses from AAE [33] and PoseCNN [38],

respectively.

steps. We find that a relatively good pose can be estimated

in 20 steps, that is, in about 240ms per frame.

Optimization strategy. We compare the composite opti-

mization strategy with the pure on-policy optimization strat-

egy on objects Ape and Lamp under the same number of

samples in Fig. 7. The 4 curves in each figure represents

2 objects with 2 optimization strategies separately. We use

the same learning rate 10−4 for on-policy and off-policy up-

date. The on-policy and off-policy update times are 4:1.

0 2000 4000 6000 8000 10000samples
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IoU
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Lamp

0 2000 4000 6000 8000 10000samples
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Proj. 2D error (px)
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Figure 7. Composite optimization strategy (solid line) versus on-

policy optimization strategy (dashed line).

The left and right shows the change of IoU and Proj. 2D er-

ror with the number of updated samples. We can tell that for

the same object and the same update samples, mixed update

rule has higher IoU and lower Proj. 2D error than on-policy

update rule, which demonstrates that extra updates on value

functions help the policy get an accurate value earlier with-

out more samples acquired from the environment.

For more experiment results such as generalization abil-

ity and class-agnostic training, we kindly refer readers to

supplementary material.

5. Conclusion

In this work we formulate the RGB-based 6D pose es-

timation problem as an MDP and introduce PFRL frame-

work in a Pose-Free fashion without the need of real-world

6D pose annotations. We design a task-specified 2D mask-

based reward which is purely computed from the object

mask information and employ a composite reinforced op-

timization rule to learn the operation policy efficiently and

effectively. The experiments demonstrate that our approach

is able to achieve the state-of-the-art performance compared

with the methods without using real-world ground-truth 6D

pose labels on LINEMOD and T-LESS dataset.
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