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Figure 1: Manipulating various facial attributes through varying the latent codes of a well-trained GAN model. The first column shows the

original synthesis from PGGAN [19], while each of the other columns shows the results of manipulating a specific attribute.

Abstract

Despite the recent advance of Generative Adversarial

Networks (GANs) in high-fidelity image synthesis, there

lacks enough understanding of how GANs are able to map a

latent code sampled from a random distribution to a photo-

realistic image. Previous work assumes the latent space

learned by GANs follows a distributed representation but

observes the vector arithmetic phenomenon. In this work,

we propose a novel framework, called InterFaceGAN, for

semantic face editing by interpreting the latent semantics

learned by GANs. In this framework, we conduct a detailed

study on how different semantics are encoded in the latent

space of GANs for face synthesis. We find that the latent

code of well-trained generative models actually learns a

disentangled representation after linear transformations.

We explore the disentanglement between various semantics

and manage to decouple some entangled semantics with

subspace projection, leading to more precise control of

facial attributes. Besides manipulating gender, age, expres-

sion, and the presence of eyeglasses, we can even vary the

face pose as well as fix the artifacts accidentally generated

by GAN models. The proposed method is further applied

to achieve real image manipulation when combined with

GAN inversion methods or some encoder-involved models.

Extensive results suggest that learning to synthesize faces

spontaneously brings a disentangled and controllable facial

attribute representation.1

1. Introduction

Generative Adversarial Networks (GANs) [15] have

significantly advanced image synthesis in recent years. The

rationale behind GANs is to learn the mapping from a latent

distribution to the real data through adversarial training.

After learning such a non-linear mapping, GAN is capable

of producing photo-realistic images from randomly sam-

pled latent codes. However, it is uncertain how semantics

originate and are organized in the latent space. Taking face

synthesis as an example, when sampling a latent code to

produce an image, how the code is able to determine various

semantic attributes (e.g., gender and age) of the output face,

and how these attributes are entangled with each other?

1Code and models are available at this link.
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Existing work typically focuses on improving the syn-

thesis quality of GANs [37, 25, 19, 8, 20], however, few

efforts have been made on studying what a GAN actually

learns with respect to the latent space. Radford et al. [28]

first observes the vector arithmetic property in the latent

space. A recent work [4] further shows that some units from

intermediate layers of the GAN generator are specialized

to synthesize certain visual concepts, such as sofa and TV

for living room generation. Even so, there lacks enough

understanding of how GAN connects the latent space and

the image semantic space, as well as how the latent code

can be used for image editing.

In this paper, we propose a framework InterFaceGAN,

short for Interpreting Face GANs, to identify the semantics

encoded in the latent space of well-trained face synthesis

models and then utilize them for semantic face editing.

Beyond the vector arithmetic property, this framework

provides both theoretical analysis and experimental results

to verify that linear subspaces align with different true-or-

false semantics emerging in the latent space. We further

study the disentanglement between different semantics and

show that we can decouple some entangled attributes (e.g.,

old people are more likely to wear eyeglasses then young

people) through the linear subspace projection. These

disentangled semantics enable precise control of facial

attributes with any given GAN model without retraining.

Our contributions are summarized as follows:

• We propose InterFaceGAN to explore how a single

or multiple semantics are encoded in the latent space

of GANs, such as PGGAN [19] and StyleGAN [20],

and observe that GANs spontaneously learn various

latent subspaces corresponding to specific attributes.

These attribute representations become disentangled

after some linear transformations.

• We show that InterFaceGAN enables semantic face

editing with any fixed pre-trained GAN model. Some

results are shown in Fig.1. Besides gender, age,

expression, and the presence of eyeglasses, we can

noticeably also vary the face pose or correct some

artifacts produced by GANs.

• We extend InterFaceGAN to real image editing with

GAN inversion methods and encoder-involved models.

We successfully manipulate the attributes of real faces

by simply varying the latent code, even with GANs

that are not specifically designed for the editing task.

1.1. Related Work

Generative Adversarial Networks. GAN [15] has brought

wide attention in recent years due to its great potential in

producing photo-realistic images [1, 17, 6, 37, 25, 19, 8,

20]. It typically takes a sampled latent code as the input

and outputs an image synthesis. To make GANs applicable

for real image processing, existing methods proposed to

reverse the mapping from the latent space to the image

space [27, 39, 24, 5, 16] or learn an additional encoder

associated with the GAN training [13, 12, 38]. Despite

this tremendous success, little work has been done on

understanding how GANs learn to connect the input latent

space with the semantics in the real visual world.

Study on Latent Space of GANs. Latent space of GANs

is generally treated as Riemannian manifold [9, 2, 21].

Prior work focused on exploring how to make the output

image vary smoothly from one synthesis to another through

interpolation in the latent space, regardless of whether

the image is semantically controllable [22, 29]. GLO [7]

optimized the generator and latent code simultaneously to

learn a better latent space. However, the study on how

a well-trained GAN is able to encode different semantics

inside the latent space is still missing. Some work has

observed the vector arithmetic property [28, 33]. Beyond

that, this work provides a detailed analysis of the semantics

encoded in the latent space from both the property of

a single semantic and the disentanglement of multiple

semantics. Some concurrent work also explores the latent

semantics learned by GANs. Jahanian et al. [18] studies

the steerability of GANs concerning camera motion and

image color tone. Goetschalckx et al. [14] improves

the memorability of the output image. Yang et al. [35]

explores the hierarchical semantics in the deep generative

representations for scene synthesis. Unlike them, we focus

on facial attributes emerging in GANs for face synthesis and

extend our method to real image manipulation.

Semantic Face Editing with GANs. Semantic face editing

aims at manipulating facial attributes of a given image.

Compared to unconditional GANs which can generate im-

age arbitrarily, semantic editing expects the model to only

change the target attribute but maintain other information

of the input face. To achieve this goal, current methods

required carefully designed loss functions [26, 10, 32],

introduction of additional attribute labels or features [23,

36, 3, 34, 31], or special architectures [11, 30] to train

new models. However, the synthesis resolution and quality

of these models are far behind those of native GANs,

like PGGAN [19] and StyleGAN [20]. Different from

previous learning-based methods, this work explores the

interpretable semantics inside the latent space of fixed GAN

models, and turns unconstrained GANs to controllable

GANs by varying the latent code.

2. Framework of InterFaceGAN

In this section, we introduce the framework of Inter-

FaceGAN, which first provides a rigorous analysis of the

semantic attributes emerging in the latent space of well-

trained GAN models, and then constructs a manipulation

pipeline of leveraging the semantics in the latent code for

facial attribute editing.
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2.1. Semantics in the Latent Space

Given a well-trained GAN model, the generator can

be formulated as a deterministic function g : Z → X .

Here, Z ⊆ R
d denotes the d-dimensional latent space, for

which Gaussian distribution N (0, Id) is commonly used

[25, 19, 8, 20]. X stands for the image space, where

each sample x possesses certain semantic information, like

gender and age for face model. Suppose we have a semantic

scoring function fS : X → S , where S ⊆ R
m represents

the semantic space with m semantics. We can bridge the

latent space Z and the semantic space S with s = fS(g(z)),
where s and z denote the semantic scores and the sampled

latent code respectively.

Single Semantic. It has been widely observed that when

linearly interpolating two latent codes z1 and z2, the appear-

ance of the corresponding synthesis changes continuously

[28, 8, 20]. It implicitly means that the semantics contained

in the image also change gradually. According to Property

1, the linear interpolation between z1 and z2 forms a

direction in Z , which further defines a hyperplane. We

therefore make an assumption2 that for any binary semantic

(e.g., male v.s. female), there exists a hyperplane in the

latent space serving as the separation boundary. Semantic

remains the same when the latent code walks within the

same side of the hyperplane yet turns into the opposite when

across the boundary.

Given a hyperplane with a unit normal vector n ∈ R
d,

we define the “distance” from a sample z to this hyperplane

as

d(n, z) = n
T
z. (1)

Here, d(·, ·) is not a strictly defined distance since it can

be negative. When z lies near the boundary and is moved

toward and across the hyperplane, both the “distance” and

the semantic score vary accordingly. And it is just at the

time when the “distance” changes its numerical sign that

the semantic attribute reverses. We therefore expect these

two to be linearly dependent with

f(g(z)) = λd(n, z), (2)

where f(·) is the scoring function for a particular semantic,

and λ > 0 is a scalar to measure how fast the semantic

varies along with the change of distance. According to

Property 2, random samples drawn from N (0, Id) are

very likely to locate close enough to a given hyperplane.

Therefore, the corresponding semantic can be modeled by

the linear subspace that is defined by n.

Property 1 Given n ∈ R
d with n 6= 0, the set {z ∈

R
d : nT

z = 0} defines a hyperplane in R
d, and n is called

the normal vector. All vectors z ∈ R
d satisfying n

T
z > 0

locate from the same side of the hyperplane.

2This assumption is empirically verified in Sec.3.1.

n1

n1 − (nT
1 n2)n2

n2

Figure 2: Illustration of the conditional manipulation in subspace.

The projection of n1 onto n2 is subtracted from n1, resulting in a

new direction n1 − (nT

1 n2)n2.

Property 2 Given n ∈ R
d with n

T
n = 1, which

defines a hyperplane, and a multivariate random variable

z ∼ N (0, Id), we have P(|nT
z| ≤ 2α

√

d
d−2 ) ≥ (1 −

3e−cd)(1− 2
αe

−α2/2) for any α ≥ 1 and d ≥ 4. Here, P(·)
stands for probability and c is a fixed positive constant.3

Multiple Semantics. When the case comes to m different

semantics, we have

s ≡ fS(g(z)) = ΛNT
z, (3)

where s = [s1, . . . , sm]T denotes the semantic scores, Λ =
diag(λ1, . . . , λm) is a diagonal matrix containing the linear

coefficients, and N = [n1, . . . ,nm] indicates the separation

boundaries. Aware of the distribution of random sample z,

which is N (0, Id), we can easily compute the mean and

covariance matrix of the semantic scores s as

µs = E(ΛNT
z) = ΛNT

E(z) = 0, (4)

Σs = E(ΛNT
zz

T
NΛT ) = ΛNT

E(zzT )NΛT

= ΛNT
NΛ. (5)

We therefore have s ∼ N (0,Σs), which is a multivariate

normal distribution. Different entries of s are disentangled

if and only if Σs is a diagonal matrix, which requires

{n1, . . . ,nm} to be orthogonal with each other. If this

condition does not hold, some semantics will correlate

with each other and n
T
i nj can be used to measure the

entanglement between the i-th and j-th semantics.

2.2. Manipulation in the Latent Space

In this part, we introduce how to use the semantics found

in latent space for image editing.

Single Attribute Manipulation. According to Eq.(2), to

manipulate the attribute of a synthesized image, we can

easily edit the original latent code z with zedit = z+αn. It

will make the synthesis look more positive on such semantic

with α > 0, since the score becomes f(g(zedit)) =
f(g(z)) + λα after editing. Similarly, α < 0 will make

the synthesis look more negative.

3When d = 512, we have P (|nT
z| > 5.0) < 1e−6. It suggests that

almost all sampled latent codes are expected to locate within 5 unit-length

to the boundary. Proof can be found in supplementary material.
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Conditional Manipulation. When there is more than one

attribute, editing one may affect another since some seman-

tics can be coupled with each other. To achieve more precise

control, we propose conditional manipulation by manually

forcing N
T
N in Eq.(5) to be diagonal. In particular, we use

projection to orthogonalize different vectors. As shown in

Fig.2, given two hyperplanes with normal vectors n1 and

n2, we find a projected direction n1 − (nT
1 n2)n2, such

that moving samples along this new direction can change

“attribute 1” without affecting “attribute 2”. We call this

operation as conditional manipulation. If there is more

than one attribute to be conditioned on, we just subtract the

projection from the primal direction onto the plane that is

constructed by all conditioned directions.

Real Image Manipulation. Since our approach enables

semantic editing from the latent space of a fixed GAN

model, we need to first map a real image to a latent code

before performing manipulation. For this purpose, existing

methods have proposed to directly optimize the latent code

to minimize the reconstruction loss [24], or to learn an

extra encoder to invert the target image back to latent space

[39, 5]. There are also some models that have already

involved an encoder along with the training process of

GANs [13, 12, 38], which we can directly use for inference.

3. Experiments

In this section, we evaluate InterFaceGAN with state-

of-the-art GAN models, PGGAN [19] and StyleGAN

[20]. Specifically, the experiments in Sec.3.1, Sec.3.2, and

Sec.3.3 are conducted on PGGAN to interpret the latent

space of the traditional generator. Experiments in Sec.3.4

are carried out on StyleGAN to investigate the style-based

generator and also compare the differences between the

two sets of latent representations in StyleGAN. We also

apply our approach to real images in Sec.3.5 to see how

the semantics implicitly learned by GANs can be applied to

real face editing. Implementation details can be found in

supplementary material.

3.1. Latent Space Separation

As mentioned in Sec.2.1, our framework is based on

an assumption that for any binary attribute, there exists

a hyperplane in latent space such that all samples from

the same side are with the same attribute. Accordingly,

we would like to first evaluate the correctness of this

assumption to make the remaining analysis considerable.

We train five independent linear SVMs on pose, smile,

age, gender, eyeglasses, and then evaluate them on the

validation set (6K samples with high confidence level on

attribute scores) as well as the entire set (480K random

samples). Tab.1 shows the results. We find that all linear

boundaries achieve over 95% accuracy on the validation set

Pose Smile Age Gender Eyeglasses

D
ist
an
ce

+𝑖𝑖𝑖𝑖𝑖𝑖

−𝑖𝑖𝑖𝑖𝑖𝑖
0

Figure 3: Synthesis samples with the distance near to (middle row)

and extremely far away from (top and bottom rows) the separation

boundary. Each column corresponds to a particular attribute.

Table 1: Classification accuracy (%) on separation boundaries in

latent space with respect to different attributes.

Dataset Pose Smile Age Gender Eyeglasses

Validation 100.0 96.9 97.9 98.7 95.6

All 90.3 78.5 75.3 84.2 80.1

and over 75% on the entire set, suggesting that for a binary

attribute, there exists a linear hyperplane in the latent space

that can well separate the data into two groups.

We also visualize some samples in Fig.3 by ranking them

with the distance to the decision boundary. Note that those

extreme cases (first and last row in Fig.3) are very unlikely

to be directly sampled, instead constructed by moving a

latent code towards the normal direction “infinitely”. From

Fig.3, we can tell that the positive samples and negative

samples are distinguishable to each other with respect to

the corresponding attribute.

3.2. Latent Space Manipulation

In this part, we verify whether the semantics found by

InterFaceGAN are manipulable.

Manipulating Single Attribute. Fig.4 plots the manipu-

lation results on five different attributes. It suggests that

our manipulation approach performs well on all attributes in

both positive and negative directions. Particularly on pose

attribute, we observe that even the boundary is searched by

solving a bi-classification problem, moving the latent code

can produce continuous changing. Furthermore, although

there lacks enough data with extreme poses in the training

set, GAN is capable of imagining how profile faces should

look like. The same situation also happens on eyeglasses

attribute. We can manually create a lot of faces wearing

eyeglasses despite the inadequate data in the training set.

These two observations provide strong evidence that GAN

does not produce images randomly, but learns some inter-

pretable semantics from the latent space.

Distance Effect of Semantic Subspace. When manipu-

lating the latent code, we observe an interesting distance

effect that the samples will suffer from severe changes in

appearance if being moved too far from the boundary, and
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Pose

Smile

Age

Gender

Eyeglasses
Figure 4: Single attribute manipulation results. The first row shows the same person under gradually changed poses. The following rows

correspond to the results of manipulating four different attributes. For each set of three samples in a row, the central one is the original

synthesis, while the left and right stand for the results by moving the latent code along negative and positive direction respectively.

Male (Extreme)Near BoundaryFemale (Extreme)

⋯ ⋯
Figure 5: Illustration of the distance effect by taking gender manipulation as an example. The image in the red dashed box stands for the

original synthesis. Our approach performs well when the latent code locates close to the boundary. However, when the distance keeps

increasing, the synthesized images are no longer like the same person.

finally tend to become the extreme cases shown in Fig.3.

Fig.5 illustrates this phenomenon by taking gender editing

as an instance. Near-boundary manipulation works well.

When samples go beyond a certain region4, however, the

editing results are no longer like the original face anymore.

But this effect does not affect our understanding of the

disentangled semantics in latent space. That is because

such extreme samples are very unlikely to be directly drawn

from a standard normal distribution, which is pointed out

in Property 2 in Sec.2.1. Instead, they are constructed

manually by keeping moving a normally sampled latent

code along a certain direction. In this way, we can get a

better interpretation on the latent semantics of GANs.

Artifacts Correction. We further apply our approach to

fix the artifacts that sometimes occurred in the synthesized

4We choose 5.0 as the threshold.

Fi
x 

A
rti

fa
ct

s

Figure 6: Examples on fixing the artifacts that GAN has generated.

First row shows some bad generation results, while the following

two rows present the gradually corrected synthesis by moving the

latent codes along the positive “quality” direction.

9247



Age w/ Gender Preserved Eyeglasses w/ Age Preserved

Age

Gender

Eyeglasses

Age

Figure 7: Examples for conditional manipulation. The first two rows show the manipulation results along with the original directions

learned by SVMs for two attributes independently. The last row edits the faces by varying one attribute with the other one unchanged.

outputs. We manually labeled 4K bad synthesis and then

trained a linear SVM to find the separation hyperplane,

same as other attributes. We surprisingly find that GAN

also encodes such information in latent space. Based on

this discovery, we are capable of correcting some mistakes

GAN has made in the generation process, as shown in Fig.6.

3.3. Conditional Manipulation

In this section, we study the disentanglement between

different attributes and evaluate the conditional manipula-

tion approach.

Correlation between Attributes. Different from [20]

which introduced perceptual path length and linear sepa-

rability to measure the disentanglement property of latent

space, we focus more on the relationships between different

hidden semantics and study how they are coupled with each

other. Here, two different metrics are used to measure the

correlation between two attributes. (i) We compute the

cosine similarity between two directions as cos(n1,n2) =
n
T
1 n2, where n1 and n2 stand for unit vectors. (ii) We

treat each attribute score as a random variable, and use the

attribute distribution observed from all 500K synthesized

data to compute the correlation coefficient ρ. Here, we

have ρA1A2
= Cov(A1,A2)

σA1
σA2

, where A1 and A2 represent two

random variables with respect to two attributes. Cov(·, ·)
stands for covariance, and σ denotes standard deviation.

Tab.2 and Tab.3 report the results. We can tell that

attributes behave similarly under these two metrics, show-

ing that our InterFaceGAN is able to accurately identify

the semantics hidden in latent space. We also find that

pose and smile are almost orthogonal to other attributes.

Nevertheless, gender, age, and eyeglasses are highly corre-

Eyeglasses

Age

Gender

Original Eyeglasses w/
Age, Gender Preserved

Figure 8: Examples for conditional manipulation with more than

one conditions. Left: Original synthesis. Middle: Manipulations

along single boundary. Right: Conditional manipulation. Green

arrow: Primal direction. Red arrows: Projection subtraction.

Table 2: Correlation matrix of attribute boundaries.

Pose Smile Age Gender Eyeglasses

Pose 1.00 -0.04 -0.06 -0.05 -0.04

Smile - 1.00 0.04 -0.10 -0.05

Age - - 1.00 0.49 0.38

Gender - - - 1.00 0.52

Eyeglasses - - - - 1.00

Table 3: Correlation matrix of synthesized attribute distributions.

Pose Smile Age Gender Eyeglasses

Pose 1.00 -0.01 -0.01 -0.02 0.00

Smile - 1.00 0.02 -0.08 -0.01

Age - - 1.00 0.42 0.35

Gender - - - 1.00 0.47

Eyeglasses - - - - 1.00

lated with each other. This observation reflects the attribute

correlation in the training dataset (i.e., CelebA-HQ [19]) to

some extent, where male old people are more likely to wear

eyeglasses. This characteristic is also captured by GAN

when learning to produce real observation.
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AgeNear Boundary

𝒲𝒲 Space

𝒵𝒵 Space

𝒵𝒵 Space
w/ Condition

Figure 9: Analysis on the latent space Z and disentangled latent space W of StyleGAN [20] by taking age manipulation as an example.

W space behaves better for long term manipulation, but the flaw in Z space can be fixed by projection (i.e., conditional manipulation) to

achieve better performance.

Conditional Manipulation. To decorrelate different se-

mantics for independent facial attribute editing, we propose

conditional manipulation in Sec.2.2. Fig.7 shows some

results by manipulating one attribute with another one as

a condition. Taking the left sample in Fig.7 as an example,

the results tend to become male when being edited to get old

(first row). We fix this problem by subtracting its projection

onto the gender direction (second row) from age direction,

resulting in a new direction. In this way, we can make sure

the gender component is barely affected when the sample

is moved along the projected direction (third row). Fig.8

shows conditional manipulation with more than one con-

straint, where we add glasses by conditionally preserving

age and gender. In the beginning, adding eyeglasses is

entangled with changing both age and gender. But we

manage to add glasses without affecting age and gender

with projection operation. These two experiments show

that our proposed conditional approach helps to achieve

independent and precise attribute control.

3.4. Results on StyleGAN

Different from conventional GANs, StyleGAN [20] pro-

posed style-based generator. Basically, StyleGAN learns

to map the latent code from space Z to another high

dimensional space W before feeding it into the generator.

As pointed out in [20], W shows much stronger disen-

tanglement property than Z , since W is not restricted to

any certain distribution and can better model the underlying

character of real data.

We did a similar analysis on both Z and W spaces of

StyleGAN as did to PGGAN and found that W space indeed

learns a more disentangled representation, as pointed out

by [20]. Such disentanglement helps W space achieve

strong superiority over Z space for attribute editing. As

shown in Fig.9, age and eyeglasses are also entangled in

StyleGAN model. Compared to Z space (second row), W
space (first row) performs better, especially in long-distance

manipulation. Nevertheless, we can use the conditional

manipulation trick described in Sec.2.2 to decorrelate these

two attributes in Z space (third row), resulting in more

appealing results. This trick, however, cannot be applied

to W space. We found that W space sometimes captures

the attributes correlation that happens in training data and

encodes them together as a coupled “style”. Taking Fig.9

as an example, “age” and “eyeglasses” are supported to be

two independent semantics, but StyleGAN actually learns

an eyeglasses-included age direction such that this new

direction is somehow orthogonal to the eyeglasses direction

itself. In this way, subtracting the projection, which is

almost zero, will hardly affect the final results.

3.5. Real Image Manipulation

In this part, we manipulate real faces with the proposed

InterFaceGAN to verify whether the semantic attributes

learned by GAN can be applied to real faces. Recall that

InterFaceGAN achieves semantic face editing by moving

the latent code along a certain direction. Accordingly, we

need to first invert the given real image back to the latent

code. It turns out to be a non-trivial task because GANs do

not fully capture all the modes as well as the diversity of the

true distribution. To invert a pre-trained GAN model, there

are two typical approaches. One is the optimization-based

approach, which directly optimizes the latent code with the

fixed generator to minimize the pixel-wise reconstruction

error [24]. The other is the encoder-based, where an extra

encoder network is trained to learn the inverse mapping

[39]. We tested the two baseline approaches on PGGAN

and StyleGAN.
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Inversion

(a)

(b)

(c)
Young Old Inversion

(a)

(b)

(c)
Calm Smile

Figure 10: Manipulating real faces with respect to the attributes age and gender, using the pre-trained PGGAN [19] and StyleGAN [20].

Given an image to edit, we first invert it back to the latent code and then manipulate the latent code with InterFaceGAN. On the top left

corner is the input real face. From top to bottom: (a) PGGAN with optimization-based inversion method, (b) PGGAN with encoder-based

inversion method, (c) StyleGAN with optimization-based inversion method.

Input Reconstruction Gender Age Smile Eyeglasses Pose
Figure 11: Manipulating real faces with LIA [38], which is a encoder-decoder generative model for high-resolution face synthesis.

Results are shown in Fig.10. We can tell that both

optimization-based (first row) and encoder-based (second

row) methods show poor performance when inverting PG-

GAN. This can be imputed to the strong discrepancy be-

tween training and testing data distributions. For example,

the model tends to generate Western people even the input is

an Easterner (see the right example in Fig.10). Even unlike

the inputs, however, the inverted images can still be seman-

tically edited with InterFaceGAN. Compared to PGGAN,

the results on StyleGAN (third row) are much better. Here,

we treat the layer-wise styles (i.e., w for all layers) as the

optimization target. When editing an instance, we push all

style codes towards the same direction. As shown in Fig.10,

we successfully change the attributes of real face images

without retraining StyleGAN but leveraging the interpreted

semantics from latent space.

We also test InterFaceGAN on encoder-decoder gen-

erative models, which train an encoder together with the

generator and discriminator. After the model converges,

the encoder can be directly used for inference to map a

given image to latent space. We apply our method to

interpret the latent space of the recent encoder-decoder

model LIA [38]. The manipulation result is shown in Fig.11

where we successfully edit the input faces with various

attributes, like age and face pose. It suggests that the latent

code in the encoder-decoder based generative models also

supports semantic manipulation. In addition, compared to

Fig.10 (b) where the encoder is separately learned after the

GAN model is well-prepared, the encoder trained together

with the generator gives better reconstruction as well as

manipulation results.

4. Conclusion

We propose InterFaceGAN to interpret the semantics

encoded in the latent space of GANs. By leveraging the

interpreted semantics as well as the proposed conditional

manipulation technique, we are able to precisely control the

facial attributes with any fixed GAN model, even turning

unconditional GANs to controllable GANs. Extensive

experiments suggest that InterFaceGAN can also be applied

to real image editing.
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